blob: 9dec8c419bf4028e11350f5bab3cc079cdaf67b7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/uaccess.h>
#include <clocksource/arm_arch_timer.h>
#include <asm/arch_timer.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_nested.h>
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
#include "trace.h"
static struct timecounter *timecounter;
static unsigned int host_vtimer_irq;
static unsigned int host_ptimer_irq;
static u32 host_vtimer_irq_flags;
static u32 host_ptimer_irq_flags;
static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
static const u8 default_ppi[] = {
[TIMER_PTIMER] = 30,
[TIMER_VTIMER] = 27,
[TIMER_HPTIMER] = 26,
[TIMER_HVTIMER] = 28,
};
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
struct arch_timer_context *timer_ctx);
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
struct arch_timer_context *timer,
enum kvm_arch_timer_regs treg,
u64 val);
static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
struct arch_timer_context *timer,
enum kvm_arch_timer_regs treg);
static bool kvm_arch_timer_get_input_level(int vintid);
static struct irq_ops arch_timer_irq_ops = {
.get_input_level = kvm_arch_timer_get_input_level,
};
static int nr_timers(struct kvm_vcpu *vcpu)
{
if (!vcpu_has_nv(vcpu))
return NR_KVM_EL0_TIMERS;
return NR_KVM_TIMERS;
}
u32 timer_get_ctl(struct arch_timer_context *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
case TIMER_PTIMER:
return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
case TIMER_HVTIMER:
return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
case TIMER_HPTIMER:
return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
default:
WARN_ON(1);
return 0;
}
}
u64 timer_get_cval(struct arch_timer_context *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
case TIMER_PTIMER:
return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
case TIMER_HVTIMER:
return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
case TIMER_HPTIMER:
return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
default:
WARN_ON(1);
return 0;
}
}
static u64 timer_get_offset(struct arch_timer_context *ctxt)
{
u64 offset = 0;
if (!ctxt)
return 0;
if (ctxt->offset.vm_offset)
offset += *ctxt->offset.vm_offset;
if (ctxt->offset.vcpu_offset)
offset += *ctxt->offset.vcpu_offset;
return offset;
}
static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
break;
case TIMER_PTIMER:
__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
break;
case TIMER_HVTIMER:
__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
break;
case TIMER_HPTIMER:
__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
break;
default:
WARN_ON(1);
}
}
static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
break;
case TIMER_PTIMER:
__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
break;
case TIMER_HVTIMER:
__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
break;
case TIMER_HPTIMER:
__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
break;
default:
WARN_ON(1);
}
}
static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
{
if (!ctxt->offset.vm_offset) {
WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
return;
}
WRITE_ONCE(*ctxt->offset.vm_offset, offset);
}
u64 kvm_phys_timer_read(void)
{
return timecounter->cc->read(timecounter->cc);
}
void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
{
if (vcpu_has_nv(vcpu)) {
if (is_hyp_ctxt(vcpu)) {
map->direct_vtimer = vcpu_hvtimer(vcpu);
map->direct_ptimer = vcpu_hptimer(vcpu);
map->emul_vtimer = vcpu_vtimer(vcpu);
map->emul_ptimer = vcpu_ptimer(vcpu);
} else {
map->direct_vtimer = vcpu_vtimer(vcpu);
map->direct_ptimer = vcpu_ptimer(vcpu);
map->emul_vtimer = vcpu_hvtimer(vcpu);
map->emul_ptimer = vcpu_hptimer(vcpu);
}
} else if (has_vhe()) {
map->direct_vtimer = vcpu_vtimer(vcpu);
map->direct_ptimer = vcpu_ptimer(vcpu);
map->emul_vtimer = NULL;
map->emul_ptimer = NULL;
} else {
map->direct_vtimer = vcpu_vtimer(vcpu);
map->direct_ptimer = NULL;
map->emul_vtimer = NULL;
map->emul_ptimer = vcpu_ptimer(vcpu);
}
trace_kvm_get_timer_map(vcpu->vcpu_id, map);
}
static inline bool userspace_irqchip(struct kvm *kvm)
{
return static_branch_unlikely(&userspace_irqchip_in_use) &&
unlikely(!irqchip_in_kernel(kvm));
}
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
{
hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
HRTIMER_MODE_ABS_HARD);
}
static void soft_timer_cancel(struct hrtimer *hrt)
{
hrtimer_cancel(hrt);
}
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
struct arch_timer_context *ctx;
struct timer_map map;
/*
* We may see a timer interrupt after vcpu_put() has been called which
* sets the CPU's vcpu pointer to NULL, because even though the timer
* has been disabled in timer_save_state(), the hardware interrupt
* signal may not have been retired from the interrupt controller yet.
*/
if (!vcpu)
return IRQ_HANDLED;
get_timer_map(vcpu, &map);
if (irq == host_vtimer_irq)
ctx = map.direct_vtimer;
else
ctx = map.direct_ptimer;
if (kvm_timer_should_fire(ctx))
kvm_timer_update_irq(vcpu, true, ctx);
if (userspace_irqchip(vcpu->kvm) &&
!static_branch_unlikely(&has_gic_active_state))
disable_percpu_irq(host_vtimer_irq);
return IRQ_HANDLED;
}
static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
u64 val)
{
u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
if (now < val) {
u64 ns;
ns = cyclecounter_cyc2ns(timecounter->cc,
val - now,
timecounter->mask,
&timer_ctx->ns_frac);
return ns;
}
return 0;
}
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
{
return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
}
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
WARN_ON(timer_ctx && timer_ctx->loaded);
return timer_ctx &&
((timer_get_ctl(timer_ctx) &
(ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
}
static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
{
return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
vcpu_get_flag(vcpu, IN_WFIT));
}
static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
{
u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
struct arch_timer_context *ctx;
ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
return kvm_counter_compute_delta(ctx, val);
}
/*
* Returns the earliest expiration time in ns among guest timers.
* Note that it will return 0 if none of timers can fire.
*/
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
u64 min_delta = ULLONG_MAX;
int i;
for (i = 0; i < nr_timers(vcpu); i++) {
struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
WARN(ctx->loaded, "timer %d loaded\n", i);
if (kvm_timer_irq_can_fire(ctx))
min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
}
if (vcpu_has_wfit_active(vcpu))
min_delta = min(min_delta, wfit_delay_ns(vcpu));
/* If none of timers can fire, then return 0 */
if (min_delta == ULLONG_MAX)
return 0;
return min_delta;
}
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
{
struct arch_timer_cpu *timer;
struct kvm_vcpu *vcpu;
u64 ns;
timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
/*
* Check that the timer has really expired from the guest's
* PoV (NTP on the host may have forced it to expire
* early). If we should have slept longer, restart it.
*/
ns = kvm_timer_earliest_exp(vcpu);
if (unlikely(ns)) {
hrtimer_forward_now(hrt, ns_to_ktime(ns));
return HRTIMER_RESTART;
}
kvm_vcpu_wake_up(vcpu);
return HRTIMER_NORESTART;
}
static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
{
struct arch_timer_context *ctx;
struct kvm_vcpu *vcpu;
u64 ns;
ctx = container_of(hrt, struct arch_timer_context, hrtimer);
vcpu = ctx->vcpu;
trace_kvm_timer_hrtimer_expire(ctx);
/*
* Check that the timer has really expired from the guest's
* PoV (NTP on the host may have forced it to expire
* early). If not ready, schedule for a later time.
*/
ns = kvm_timer_compute_delta(ctx);
if (unlikely(ns)) {
hrtimer_forward_now(hrt, ns_to_ktime(ns));
return HRTIMER_RESTART;
}
kvm_timer_update_irq(vcpu, true, ctx);
return HRTIMER_NORESTART;
}
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
{
enum kvm_arch_timers index;
u64 cval, now;
if (!timer_ctx)
return false;
index = arch_timer_ctx_index(timer_ctx);
if (timer_ctx->loaded) {
u32 cnt_ctl = 0;
switch (index) {
case TIMER_VTIMER:
case TIMER_HVTIMER:
cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
break;
case TIMER_PTIMER:
case TIMER_HPTIMER:
cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
break;
case NR_KVM_TIMERS:
/* GCC is braindead */
cnt_ctl = 0;
break;
}
return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
(cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
!(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
}
if (!kvm_timer_irq_can_fire(timer_ctx))
return false;
cval = timer_get_cval(timer_ctx);
now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
return cval <= now;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
}
/*
* Reflect the timer output level into the kvm_run structure
*/
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Populate the device bitmap with the timer states */
regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
KVM_ARM_DEV_EL1_PTIMER);
if (kvm_timer_should_fire(vtimer))
regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
if (kvm_timer_should_fire(ptimer))
regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
struct arch_timer_context *timer_ctx)
{
int ret;
timer_ctx->irq.level = new_level;
trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
timer_ctx->irq.level);
if (!userspace_irqchip(vcpu->kvm)) {
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
timer_irq(timer_ctx),
timer_ctx->irq.level,
timer_ctx);
WARN_ON(ret);
}
}
/* Only called for a fully emulated timer */
static void timer_emulate(struct arch_timer_context *ctx)
{
bool should_fire = kvm_timer_should_fire(ctx);
trace_kvm_timer_emulate(ctx, should_fire);
if (should_fire != ctx->irq.level) {
kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
return;
}
/*
* If the timer can fire now, we don't need to have a soft timer
* scheduled for the future. If the timer cannot fire at all,
* then we also don't need a soft timer.
*/
if (should_fire || !kvm_timer_irq_can_fire(ctx))
return;
soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
}
static void set_cntvoff(u64 cntvoff)
{
kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
}
static void set_cntpoff(u64 cntpoff)
{
if (has_cntpoff())
write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
}
static void timer_save_state(struct arch_timer_context *ctx)
{
struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
unsigned long flags;
if (!timer->enabled)
return;
local_irq_save(flags);
if (!ctx->loaded)
goto out;
switch (index) {
u64 cval;
case TIMER_VTIMER:
case TIMER_HVTIMER:
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
/* Disable the timer */
write_sysreg_el0(0, SYS_CNTV_CTL);
isb();
/*
* The kernel may decide to run userspace after
* calling vcpu_put, so we reset cntvoff to 0 to
* ensure a consistent read between user accesses to
* the virtual counter and kernel access to the
* physical counter of non-VHE case.
*
* For VHE, the virtual counter uses a fixed virtual
* offset of zero, so no need to zero CNTVOFF_EL2
* register, but this is actually useful when switching
* between EL1/vEL2 with NV.
*
* Do it unconditionally, as this is either unavoidable
* or dirt cheap.
*/
set_cntvoff(0);
break;
case TIMER_PTIMER:
case TIMER_HPTIMER:
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
cval = read_sysreg_el0(SYS_CNTP_CVAL);
cval -= timer_get_offset(ctx);
timer_set_cval(ctx, cval);
/* Disable the timer */
write_sysreg_el0(0, SYS_CNTP_CTL);
isb();
set_cntpoff(0);
break;
case NR_KVM_TIMERS:
BUG();
}
trace_kvm_timer_save_state(ctx);
ctx->loaded = false;
out:
local_irq_restore(flags);
}
/*
* Schedule the background timer before calling kvm_vcpu_halt, so that this
* thread is removed from its waitqueue and made runnable when there's a timer
* interrupt to handle.
*/
static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct timer_map map;
get_timer_map(vcpu, &map);
/*
* If no timers are capable of raising interrupts (disabled or
* masked), then there's no more work for us to do.
*/
if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
!kvm_timer_irq_can_fire(map.direct_ptimer) &&
!kvm_timer_irq_can_fire(map.emul_vtimer) &&
!kvm_timer_irq_can_fire(map.emul_ptimer) &&
!vcpu_has_wfit_active(vcpu))
return;
/*
* At least one guest time will expire. Schedule a background timer.
* Set the earliest expiration time among the guest timers.
*/
soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
}
static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
soft_timer_cancel(&timer->bg_timer);
}
static void timer_restore_state(struct arch_timer_context *ctx)
{
struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
unsigned long flags;
if (!timer->enabled)
return;
local_irq_save(flags);
if (ctx->loaded)
goto out;
switch (index) {
u64 cval, offset;
case TIMER_VTIMER:
case TIMER_HVTIMER:
set_cntvoff(timer_get_offset(ctx));
write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
isb();
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
break;
case TIMER_PTIMER:
case TIMER_HPTIMER:
cval = timer_get_cval(ctx);
offset = timer_get_offset(ctx);
set_cntpoff(offset);
cval += offset;
write_sysreg_el0(cval, SYS_CNTP_CVAL);
isb();
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
break;
case NR_KVM_TIMERS:
BUG();
}
trace_kvm_timer_restore_state(ctx);
ctx->loaded = true;
out:
local_irq_restore(flags);
}
static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
{
int r;
r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
WARN_ON(r);
}
static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
{
struct kvm_vcpu *vcpu = ctx->vcpu;
bool phys_active = false;
/*
* Update the timer output so that it is likely to match the
* state we're about to restore. If the timer expires between
* this point and the register restoration, we'll take the
* interrupt anyway.
*/
kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
if (irqchip_in_kernel(vcpu->kvm))
phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
phys_active |= ctx->irq.level;
set_timer_irq_phys_active(ctx, phys_active);
}
static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
/*
* Update the timer output so that it is likely to match the
* state we're about to restore. If the timer expires between
* this point and the register restoration, we'll take the
* interrupt anyway.
*/
kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
/*
* When using a userspace irqchip with the architected timers and a
* host interrupt controller that doesn't support an active state, we
* must still prevent continuously exiting from the guest, and
* therefore mask the physical interrupt by disabling it on the host
* interrupt controller when the virtual level is high, such that the
* guest can make forward progress. Once we detect the output level
* being de-asserted, we unmask the interrupt again so that we exit
* from the guest when the timer fires.
*/
if (vtimer->irq.level)
disable_percpu_irq(host_vtimer_irq);
else
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
}
/* If _pred is true, set bit in _set, otherwise set it in _clr */
#define assign_clear_set_bit(_pred, _bit, _clr, _set) \
do { \
if (_pred) \
(_set) |= (_bit); \
else \
(_clr) |= (_bit); \
} while (0)
static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
struct timer_map *map)
{
int hw, ret;
if (!irqchip_in_kernel(vcpu->kvm))
return;
/*
* We only ever unmap the vtimer irq on a VHE system that runs nested
* virtualization, in which case we have both a valid emul_vtimer,
* emul_ptimer, direct_vtimer, and direct_ptimer.
*
* Since this is called from kvm_timer_vcpu_load(), a change between
* vEL2 and vEL1/0 will have just happened, and the timer_map will
* represent this, and therefore we switch the emul/direct mappings
* below.
*/
hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
if (hw < 0) {
kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
ret = kvm_vgic_map_phys_irq(vcpu,
map->direct_vtimer->host_timer_irq,
timer_irq(map->direct_vtimer),
&arch_timer_irq_ops);
WARN_ON_ONCE(ret);
ret = kvm_vgic_map_phys_irq(vcpu,
map->direct_ptimer->host_timer_irq,
timer_irq(map->direct_ptimer),
&arch_timer_irq_ops);
WARN_ON_ONCE(ret);
/*
* The virtual offset behaviour is "interresting", as it
* always applies when HCR_EL2.E2H==0, but only when
* accessed from EL1 when HCR_EL2.E2H==1. So make sure we
* track E2H when putting the HV timer in "direct" mode.
*/
if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
struct arch_timer_offset *offs = &map->direct_vtimer->offset;
if (vcpu_el2_e2h_is_set(vcpu))
offs->vcpu_offset = NULL;
else
offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
}
}
}
static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
{
bool tpt, tpc;
u64 clr, set;
/*
* No trapping gets configured here with nVHE. See
* __timer_enable_traps(), which is where the stuff happens.
*/
if (!has_vhe())
return;
/*
* Our default policy is not to trap anything. As we progress
* within this function, reality kicks in and we start adding
* traps based on emulation requirements.
*/
tpt = tpc = false;
/*
* We have two possibility to deal with a physical offset:
*
* - Either we have CNTPOFF (yay!) or the offset is 0:
* we let the guest freely access the HW
*
* - or neither of these condition apply:
* we trap accesses to the HW, but still use it
* after correcting the physical offset
*/
if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
tpt = tpc = true;
/*
* Apply the enable bits that the guest hypervisor has requested for
* its own guest. We can only add traps that wouldn't have been set
* above.
*/
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
/* Use the VHE format for mental sanity */
if (!vcpu_el2_e2h_is_set(vcpu))
val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
}
/*
* Now that we have collected our requirements, compute the
* trap and enable bits.
*/
set = 0;
clr = 0;
assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
sysreg_clear_set(cnthctl_el2, clr, set);
}
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct timer_map map;
if (unlikely(!timer->enabled))
return;
get_timer_map(vcpu, &map);
if (static_branch_likely(&has_gic_active_state)) {
if (vcpu_has_nv(vcpu))
kvm_timer_vcpu_load_nested_switch(vcpu, &map);
kvm_timer_vcpu_load_gic(map.direct_vtimer);
if (map.direct_ptimer)
kvm_timer_vcpu_load_gic(map.direct_ptimer);
} else {
kvm_timer_vcpu_load_nogic(vcpu);
}
kvm_timer_unblocking(vcpu);
timer_restore_state(map.direct_vtimer);
if (map.direct_ptimer)
timer_restore_state(map.direct_ptimer);
if (map.emul_vtimer)
timer_emulate(map.emul_vtimer);
if (map.emul_ptimer)
timer_emulate(map.emul_ptimer);
timer_set_traps(vcpu, &map);
}
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool vlevel, plevel;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
return kvm_timer_should_fire(vtimer) != vlevel ||
kvm_timer_should_fire(ptimer) != plevel;
}
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct timer_map map;
if (unlikely(!timer->enabled))
return;
get_timer_map(vcpu, &map);
timer_save_state(map.direct_vtimer);
if (map.direct_ptimer)
timer_save_state(map.direct_ptimer);
/*
* Cancel soft timer emulation, because the only case where we
* need it after a vcpu_put is in the context of a sleeping VCPU, and
* in that case we already factor in the deadline for the physical
* timer when scheduling the bg_timer.
*
* In any case, we re-schedule the hrtimer for the physical timer when
* coming back to the VCPU thread in kvm_timer_vcpu_load().
*/
if (map.emul_vtimer)
soft_timer_cancel(&map.emul_vtimer->hrtimer);
if (map.emul_ptimer)
soft_timer_cancel(&map.emul_ptimer->hrtimer);
if (kvm_vcpu_is_blocking(vcpu))
kvm_timer_blocking(vcpu);
}
/*
* With a userspace irqchip we have to check if the guest de-asserted the
* timer and if so, unmask the timer irq signal on the host interrupt
* controller to ensure that we see future timer signals.
*/
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
if (!kvm_timer_should_fire(vtimer)) {
kvm_timer_update_irq(vcpu, false, vtimer);
if (static_branch_likely(&has_gic_active_state))
set_timer_irq_phys_active(vtimer, false);
else
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
}
}
void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
if (unlikely(!timer->enabled))
return;
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
unmask_vtimer_irq_user(vcpu);
}
void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct timer_map map;
get_timer_map(vcpu, &map);
/*
* The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
* and to 0 for ARMv7. We provide an implementation that always
* resets the timer to be disabled and unmasked and is compliant with
* the ARMv7 architecture.
*/
for (int i = 0; i < nr_timers(vcpu); i++)
timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
/*
* A vcpu running at EL2 is in charge of the offset applied to
* the virtual timer, so use the physical VM offset, and point
* the vcpu offset to CNTVOFF_EL2.
*/
if (vcpu_has_nv(vcpu)) {
struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
}
if (timer->enabled) {
for (int i = 0; i < nr_timers(vcpu); i++)
kvm_timer_update_irq(vcpu, false,
vcpu_get_timer(vcpu, i));
if (irqchip_in_kernel(vcpu->kvm)) {
kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
if (map.direct_ptimer)
kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
}
}
if (map.emul_vtimer)
soft_timer_cancel(&map.emul_vtimer->hrtimer);
if (map.emul_ptimer)
soft_timer_cancel(&map.emul_ptimer->hrtimer);
}
static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
{
struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
struct kvm *kvm = vcpu->kvm;
ctxt->vcpu = vcpu;
if (timerid == TIMER_VTIMER)
ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
else
ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
ctxt->hrtimer.function = kvm_hrtimer_expire;
switch (timerid) {
case TIMER_PTIMER:
case TIMER_HPTIMER:
ctxt->host_timer_irq = host_ptimer_irq;
break;
case TIMER_VTIMER:
case TIMER_HVTIMER:
ctxt->host_timer_irq = host_vtimer_irq;
break;
}
}
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
for (int i = 0; i < NR_KVM_TIMERS; i++)
timer_context_init(vcpu, i);
/* Synchronize offsets across timers of a VM if not already provided */
if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
timer_set_offset(vcpu_ptimer(vcpu), 0);
}
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
timer->bg_timer.function = kvm_bg_timer_expire;
}
void kvm_timer_init_vm(struct kvm *kvm)
{
for (int i = 0; i < NR_KVM_TIMERS; i++)
kvm->arch.timer_data.ppi[i] = default_ppi[i];
}
void kvm_timer_cpu_up(void)
{
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
if (host_ptimer_irq)
enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
}
void kvm_timer_cpu_down(void)
{
disable_percpu_irq(host_vtimer_irq);
if (host_ptimer_irq)
disable_percpu_irq(host_ptimer_irq);
}
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
struct arch_timer_context *timer;
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
timer = vcpu_vtimer(vcpu);
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
break;
case KVM_REG_ARM_TIMER_CNT:
if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
&vcpu->kvm->arch.flags)) {
timer = vcpu_vtimer(vcpu);
timer_set_offset(timer, kvm_phys_timer_read() - value);
}
break;
case KVM_REG_ARM_TIMER_CVAL:
timer = vcpu_vtimer(vcpu);
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
break;
case KVM_REG_ARM_PTIMER_CTL:
timer = vcpu_ptimer(vcpu);
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
break;
case KVM_REG_ARM_PTIMER_CNT:
if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
&vcpu->kvm->arch.flags)) {
timer = vcpu_ptimer(vcpu);
timer_set_offset(timer, kvm_phys_timer_read() - value);
}
break;
case KVM_REG_ARM_PTIMER_CVAL:
timer = vcpu_ptimer(vcpu);
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
break;
default:
return -1;
}
return 0;
}
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
/*
* Set ISTATUS bit if it's expired.
* Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
* regardless of ENABLE bit for our implementation convenience.
*/
u32 ctl = timer_get_ctl(timer);
if (!kvm_timer_compute_delta(timer))
ctl |= ARCH_TIMER_CTRL_IT_STAT;
return ctl;
}
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
return kvm_arm_timer_read(vcpu,
vcpu_vtimer(vcpu), TIMER_REG_CTL);
case KVM_REG_ARM_TIMER_CNT:
return kvm_arm_timer_read(vcpu,
vcpu_vtimer(vcpu), TIMER_REG_CNT);
case KVM_REG_ARM_TIMER_CVAL:
return kvm_arm_timer_read(vcpu,
vcpu_vtimer(vcpu), TIMER_REG_CVAL);
case KVM_REG_ARM_PTIMER_CTL:
return kvm_arm_timer_read(vcpu,
vcpu_ptimer(vcpu), TIMER_REG_CTL);
case KVM_REG_ARM_PTIMER_CNT:
return kvm_arm_timer_read(vcpu,
vcpu_ptimer(vcpu), TIMER_REG_CNT);
case KVM_REG_ARM_PTIMER_CVAL:
return kvm_arm_timer_read(vcpu,
vcpu_ptimer(vcpu), TIMER_REG_CVAL);
}
return (u64)-1;
}
static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
struct arch_timer_context *timer,
enum kvm_arch_timer_regs treg)
{
u64 val;
switch (treg) {
case TIMER_REG_TVAL:
val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
val = lower_32_bits(val);
break;
case TIMER_REG_CTL:
val = read_timer_ctl(timer);
break;
case TIMER_REG_CVAL:
val = timer_get_cval(timer);
break;
case TIMER_REG_CNT:
val = kvm_phys_timer_read() - timer_get_offset(timer);
break;
case TIMER_REG_VOFF:
val = *timer->offset.vcpu_offset;
break;
default:
BUG();
}
return val;
}
u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
enum kvm_arch_timers tmr,
enum kvm_arch_timer_regs treg)
{
struct arch_timer_context *timer;
struct timer_map map;
u64 val;
get_timer_map(vcpu, &map);
timer = vcpu_get_timer(vcpu, tmr);
if (timer == map.emul_vtimer || timer == map.emul_ptimer)
return kvm_arm_timer_read(vcpu, timer, treg);
preempt_disable();
timer_save_state(timer);
val = kvm_arm_timer_read(vcpu, timer, treg);
timer_restore_state(timer);
preempt_enable();
return val;
}
static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
struct arch_timer_context *timer,
enum kvm_arch_timer_regs treg,
u64 val)
{
switch (treg) {
case TIMER_REG_TVAL:
timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
break;
case TIMER_REG_CTL:
timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
break;
case TIMER_REG_CVAL:
timer_set_cval(timer, val);
break;
case TIMER_REG_VOFF:
*timer->offset.vcpu_offset = val;
break;
default:
BUG();
}
}
void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
enum kvm_arch_timers tmr,
enum kvm_arch_timer_regs treg,
u64 val)
{
struct arch_timer_context *timer;
struct timer_map map;
get_timer_map(vcpu, &map);
timer = vcpu_get_timer(vcpu, tmr);
if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
soft_timer_cancel(&timer->hrtimer);
kvm_arm_timer_write(vcpu, timer, treg, val);
timer_emulate(timer);
} else {
preempt_disable();
timer_save_state(timer);
kvm_arm_timer_write(vcpu, timer, treg, val);
timer_restore_state(timer);
preempt_enable();
}
}
static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
if (vcpu)
irqd_set_forwarded_to_vcpu(d);
else
irqd_clr_forwarded_to_vcpu(d);
return 0;
}
static int timer_irq_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool val)
{
if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
return irq_chip_set_parent_state(d, which, val);
if (val)
irq_chip_mask_parent(d);
else
irq_chip_unmask_parent(d);
return 0;
}
static void timer_irq_eoi(struct irq_data *d)
{
if (!irqd_is_forwarded_to_vcpu(d))
irq_chip_eoi_parent(d);
}
static void timer_irq_ack(struct irq_data *d)
{
d = d->parent_data;
if (d->chip->irq_ack)
d->chip->irq_ack(d);
}
static struct irq_chip timer_chip = {
.name = "KVM",
.irq_ack = timer_irq_ack,
.irq_mask = irq_chip_mask_parent,
.irq_unmask = irq_chip_unmask_parent,
.irq_eoi = timer_irq_eoi,
.irq_set_type = irq_chip_set_type_parent,
.irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
.irq_set_irqchip_state = timer_irq_set_irqchip_state,
};
static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
irq_hw_number_t hwirq = (uintptr_t)arg;
return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
&timer_chip, NULL);
}
static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
}
static const struct irq_domain_ops timer_domain_ops = {
.alloc = timer_irq_domain_alloc,
.free = timer_irq_domain_free,
};
static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
{
*flags = irq_get_trigger_type(virq);
if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
virq);
*flags = IRQF_TRIGGER_LOW;
}
}
static int kvm_irq_init(struct arch_timer_kvm_info *info)
{
struct irq_domain *domain = NULL;
if (info->virtual_irq <= 0) {
kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
info->virtual_irq);
return -ENODEV;
}
host_vtimer_irq = info->virtual_irq;
kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
if (kvm_vgic_global_state.no_hw_deactivation) {
struct fwnode_handle *fwnode;
struct irq_data *data;
fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
if (!fwnode)
return -ENOMEM;
/* Assume both vtimer and ptimer in the same parent */
data = irq_get_irq_data(host_vtimer_irq);
domain = irq_domain_create_hierarchy(data->domain, 0,
NR_KVM_TIMERS, fwnode,
&timer_domain_ops, NULL);
if (!domain) {
irq_domain_free_fwnode(fwnode);
return -ENOMEM;
}
arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
(void *)TIMER_VTIMER));
}
if (info->physical_irq > 0) {
host_ptimer_irq = info->physical_irq;
kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
if (domain)
WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
(void *)TIMER_PTIMER));
}
return 0;
}
int __init kvm_timer_hyp_init(bool has_gic)
{
struct arch_timer_kvm_info *info;
int err;
info = arch_timer_get_kvm_info();
timecounter = &info->timecounter;
if (!timecounter->cc) {
kvm_err("kvm_arch_timer: uninitialized timecounter\n");
return -ENODEV;
}
err = kvm_irq_init(info);
if (err)
return err;
/* First, do the virtual EL1 timer irq */
err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
"kvm guest vtimer", kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
host_vtimer_irq, err);
return err;
}
if (has_gic) {
err = irq_set_vcpu_affinity(host_vtimer_irq,
kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
goto out_free_vtimer_irq;
}
static_branch_enable(&has_gic_active_state);
}
kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
/* Now let's do the physical EL1 timer irq */
if (info->physical_irq > 0) {
err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
"kvm guest ptimer", kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
host_ptimer_irq, err);
goto out_free_vtimer_irq;
}
if (has_gic) {
err = irq_set_vcpu_affinity(host_ptimer_irq,
kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
goto out_free_ptimer_irq;
}
}
kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
} else if (has_vhe()) {
kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
info->physical_irq);
err = -ENODEV;
goto out_free_vtimer_irq;
}
return 0;
out_free_ptimer_irq:
if (info->physical_irq > 0)
free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
out_free_vtimer_irq:
free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
return err;
}
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
soft_timer_cancel(&timer->bg_timer);
}
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
{
u32 ppis = 0;
bool valid;
mutex_lock(&vcpu->kvm->arch.config_lock);
for (int i = 0; i < nr_timers(vcpu); i++) {
struct arch_timer_context *ctx;
int irq;
ctx = vcpu_get_timer(vcpu, i);
irq = timer_irq(ctx);
if (kvm_vgic_set_owner(vcpu, irq, ctx))
break;
/*
* We know by construction that we only have PPIs, so
* all values are less than 32.
*/
ppis |= BIT(irq);
}
valid = hweight32(ppis) == nr_timers(vcpu);
if (valid)
set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
mutex_unlock(&vcpu->kvm->arch.config_lock);
return valid;
}
static bool kvm_arch_timer_get_input_level(int vintid)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
if (WARN(!vcpu, "No vcpu context!\n"))
return false;
for (int i = 0; i < nr_timers(vcpu); i++) {
struct arch_timer_context *ctx;
ctx = vcpu_get_timer(vcpu, i);
if (timer_irq(ctx) == vintid)
return kvm_timer_should_fire(ctx);
}
/* A timer IRQ has fired, but no matching timer was found? */
WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
return false;
}
int kvm_timer_enable(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct timer_map map;
int ret;
if (timer->enabled)
return 0;
/* Without a VGIC we do not map virtual IRQs to physical IRQs */
if (!irqchip_in_kernel(vcpu->kvm))
goto no_vgic;
/*
* At this stage, we have the guarantee that the vgic is both
* available and initialized.
*/
if (!timer_irqs_are_valid(vcpu)) {
kvm_debug("incorrectly configured timer irqs\n");
return -EINVAL;
}
get_timer_map(vcpu, &map);
ret = kvm_vgic_map_phys_irq(vcpu,
map.direct_vtimer->host_timer_irq,
timer_irq(map.direct_vtimer),
&arch_timer_irq_ops);
if (ret)
return ret;
if (map.direct_ptimer) {
ret = kvm_vgic_map_phys_irq(vcpu,
map.direct_ptimer->host_timer_irq,
timer_irq(map.direct_ptimer),
&arch_timer_irq_ops);
}
if (ret)
return ret;
no_vgic:
timer->enabled = 1;
return 0;
}
/* If we have CNTPOFF, permanently set ECV to enable it */
void kvm_timer_init_vhe(void)
{
if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
}
int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
int __user *uaddr = (int __user *)(long)attr->addr;
int irq, idx, ret = 0;
if (!irqchip_in_kernel(vcpu->kvm))
return -EINVAL;
if (get_user(irq, uaddr))
return -EFAULT;
if (!(irq_is_ppi(irq)))
return -EINVAL;
mutex_lock(&vcpu->kvm->arch.config_lock);
if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
&vcpu->kvm->arch.flags)) {
ret = -EBUSY;
goto out;
}
switch (attr->attr) {
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
idx = TIMER_VTIMER;
break;
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
idx = TIMER_PTIMER;
break;
case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
idx = TIMER_HVTIMER;
break;
case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
idx = TIMER_HPTIMER;
break;
default:
ret = -ENXIO;
goto out;
}
/*
* We cannot validate the IRQ unicity before we run, so take it at
* face value. The verdict will be given on first vcpu run, for each
* vcpu. Yes this is late. Blame it on the stupid API.
*/
vcpu->kvm->arch.timer_data.ppi[idx] = irq;
out:
mutex_unlock(&vcpu->kvm->arch.config_lock);
return ret;
}
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
int __user *uaddr = (int __user *)(long)attr->addr;
struct arch_timer_context *timer;
int irq;
switch (attr->attr) {
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
timer = vcpu_vtimer(vcpu);
break;
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
timer = vcpu_ptimer(vcpu);
break;
case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
timer = vcpu_hvtimer(vcpu);
break;
case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
timer = vcpu_hptimer(vcpu);
break;
default:
return -ENXIO;
}
irq = timer_irq(timer);
return put_user(irq, uaddr);
}
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
return 0;
}
return -ENXIO;
}
int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
struct kvm_arm_counter_offset *offset)
{
int ret = 0;
if (offset->reserved)
return -EINVAL;
mutex_lock(&kvm->lock);
if (lock_all_vcpus(kvm)) {
set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
/*
* If userspace decides to set the offset using this
* API rather than merely restoring the counter
* values, the offset applies to both the virtual and
* physical views.
*/
kvm->arch.timer_data.voffset = offset->counter_offset;
kvm->arch.timer_data.poffset = offset->counter_offset;
unlock_all_vcpus(kvm);
} else {
ret = -EBUSY;
}
mutex_unlock(&kvm->lock);
return ret;
}