blob: 6c94451d0faadaaf89a0b73eece8a3482482d4bd [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "priv.h"
#include "cgrp.h"
#include "chan.h"
#include "chid.h"
#include "runl.h"
#include "runq.h"
#include <core/gpuobj.h>
#include <subdev/bar.h>
#include <subdev/fault.h>
#include <subdev/mc.h>
#include <subdev/mmu.h>
#include <engine/sw.h>
#include <nvif/class.h>
void
gf100_chan_preempt(struct nvkm_chan *chan)
{
nvkm_wr32(chan->cgrp->runl->fifo->engine.subdev.device, 0x002634, chan->id);
}
static void
gf100_chan_stop(struct nvkm_chan *chan)
{
struct nvkm_device *device = chan->cgrp->runl->fifo->engine.subdev.device;
nvkm_mask(device, 0x003004 + (chan->id * 8), 0x00000001, 0x00000000);
}
static void
gf100_chan_start(struct nvkm_chan *chan)
{
struct nvkm_device *device = chan->cgrp->runl->fifo->engine.subdev.device;
nvkm_wr32(device, 0x003004 + (chan->id * 8), 0x001f0001);
}
static void gf100_fifo_intr_engine(struct nvkm_fifo *);
static void
gf100_chan_unbind(struct nvkm_chan *chan)
{
struct nvkm_fifo *fifo = chan->cgrp->runl->fifo;
struct nvkm_device *device = fifo->engine.subdev.device;
/*TODO: Is this cargo-culted, or necessary? RM does *something* here... Why? */
gf100_fifo_intr_engine(fifo);
nvkm_wr32(device, 0x003000 + (chan->id * 8), 0x00000000);
}
static void
gf100_chan_bind(struct nvkm_chan *chan)
{
struct nvkm_device *device = chan->cgrp->runl->fifo->engine.subdev.device;
nvkm_wr32(device, 0x003000 + (chan->id * 8), 0xc0000000 | chan->inst->addr >> 12);
}
static int
gf100_chan_ramfc_write(struct nvkm_chan *chan, u64 offset, u64 length, u32 devm, bool priv)
{
const u64 userd = nvkm_memory_addr(chan->userd.mem) + chan->userd.base;
const u32 limit2 = ilog2(length / 8);
nvkm_kmap(chan->inst);
nvkm_wo32(chan->inst, 0x08, lower_32_bits(userd));
nvkm_wo32(chan->inst, 0x0c, upper_32_bits(userd));
nvkm_wo32(chan->inst, 0x10, 0x0000face);
nvkm_wo32(chan->inst, 0x30, 0xfffff902);
nvkm_wo32(chan->inst, 0x48, lower_32_bits(offset));
nvkm_wo32(chan->inst, 0x4c, upper_32_bits(offset) | (limit2 << 16));
nvkm_wo32(chan->inst, 0x54, 0x00000002);
nvkm_wo32(chan->inst, 0x84, 0x20400000);
nvkm_wo32(chan->inst, 0x94, 0x30000000 | devm);
nvkm_wo32(chan->inst, 0x9c, 0x00000100);
nvkm_wo32(chan->inst, 0xa4, 0x1f1f1f1f);
nvkm_wo32(chan->inst, 0xa8, 0x1f1f1f1f);
nvkm_wo32(chan->inst, 0xac, 0x0000001f);
nvkm_wo32(chan->inst, 0xb8, 0xf8000000);
nvkm_wo32(chan->inst, 0xf8, 0x10003080); /* 0x002310 */
nvkm_wo32(chan->inst, 0xfc, 0x10000010); /* 0x002350 */
nvkm_done(chan->inst);
return 0;
}
static const struct nvkm_chan_func_ramfc
gf100_chan_ramfc = {
.write = gf100_chan_ramfc_write,
.devm = 0xfff,
};
void
gf100_chan_userd_clear(struct nvkm_chan *chan)
{
nvkm_kmap(chan->userd.mem);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x040, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x044, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x048, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x04c, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x050, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x058, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x05c, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x060, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x088, 0x00000000);
nvkm_wo32(chan->userd.mem, chan->userd.base + 0x08c, 0x00000000);
nvkm_done(chan->userd.mem);
}
static const struct nvkm_chan_func_userd
gf100_chan_userd = {
.bar = 1,
.size = 0x1000,
.clear = gf100_chan_userd_clear,
};
const struct nvkm_chan_func_inst
gf100_chan_inst = {
.size = 0x1000,
.zero = true,
.vmm = true,
};
static const struct nvkm_chan_func
gf100_chan = {
.inst = &gf100_chan_inst,
.userd = &gf100_chan_userd,
.ramfc = &gf100_chan_ramfc,
.bind = gf100_chan_bind,
.unbind = gf100_chan_unbind,
.start = gf100_chan_start,
.stop = gf100_chan_stop,
.preempt = gf100_chan_preempt,
};
static void
gf100_ectx_bind(struct nvkm_engn *engn, struct nvkm_cctx *cctx, struct nvkm_chan *chan)
{
u64 addr = 0ULL;
u32 ptr0;
switch (engn->engine->subdev.type) {
case NVKM_ENGINE_SW : return;
case NVKM_ENGINE_GR : ptr0 = 0x0210; break;
case NVKM_ENGINE_CE : ptr0 = 0x0230 + (engn->engine->subdev.inst * 0x10); break;
case NVKM_ENGINE_MSPDEC: ptr0 = 0x0250; break;
case NVKM_ENGINE_MSPPP : ptr0 = 0x0260; break;
case NVKM_ENGINE_MSVLD : ptr0 = 0x0270; break;
default:
WARN_ON(1);
return;
}
if (cctx) {
addr = cctx->vctx->vma->addr;
addr |= 4ULL;
}
nvkm_kmap(chan->inst);
nvkm_wo32(chan->inst, ptr0 + 0, lower_32_bits(addr));
nvkm_wo32(chan->inst, ptr0 + 4, upper_32_bits(addr));
nvkm_done(chan->inst);
}
static int
gf100_ectx_ctor(struct nvkm_engn *engn, struct nvkm_vctx *vctx)
{
int ret;
ret = nvkm_vmm_get(vctx->vmm, 12, vctx->inst->size, &vctx->vma);
if (ret)
return ret;
return nvkm_memory_map(vctx->inst, 0, vctx->vmm, vctx->vma, NULL, 0);
}
bool
gf100_engn_mmu_fault_triggered(struct nvkm_engn *engn)
{
struct nvkm_runl *runl = engn->runl;
struct nvkm_fifo *fifo = runl->fifo;
struct nvkm_device *device = fifo->engine.subdev.device;
u32 data = nvkm_rd32(device, 0x002a30 + (engn->id * 4));
ENGN_DEBUG(engn, "%08x: mmu fault triggered", data);
if (!(data & 0x00000100))
return false;
spin_lock(&fifo->lock);
nvkm_mask(device, 0x002a30 + (engn->id * 4), 0x00000100, 0x00000000);
if (atomic_dec_and_test(&runl->rc_triggered))
nvkm_mask(device, 0x002140, 0x00000100, 0x00000100);
spin_unlock(&fifo->lock);
return true;
}
void
gf100_engn_mmu_fault_trigger(struct nvkm_engn *engn)
{
struct nvkm_runl *runl = engn->runl;
struct nvkm_fifo *fifo = runl->fifo;
struct nvkm_device *device = fifo->engine.subdev.device;
ENGN_DEBUG(engn, "triggering mmu fault on 0x%02x", engn->fault);
spin_lock(&fifo->lock);
if (atomic_inc_return(&runl->rc_triggered) == 1)
nvkm_mask(device, 0x002140, 0x00000100, 0x00000000);
nvkm_wr32(device, 0x002100, 0x00000100);
nvkm_wr32(device, 0x002a30 + (engn->id * 4), 0x00000100 | engn->fault);
spin_unlock(&fifo->lock);
}
/*TODO: clean all this up. */
struct gf100_engn_status {
bool busy;
bool save;
bool unk0;
bool unk1;
u8 chid;
};
static void
gf100_engn_status(struct nvkm_engn *engn, struct gf100_engn_status *status)
{
u32 stat = nvkm_rd32(engn->engine->subdev.device, 0x002640 + (engn->id * 4));
status->busy = (stat & 0x10000000);
status->save = (stat & 0x00100000);
status->unk0 = (stat & 0x00004000);
status->unk1 = (stat & 0x00001000);
status->chid = (stat & 0x0000007f);
ENGN_DEBUG(engn, "%08x: busy %d save %d unk0 %d unk1 %d chid %d",
stat, status->busy, status->save, status->unk0, status->unk1, status->chid);
}
static int
gf100_engn_cxid(struct nvkm_engn *engn, bool *cgid)
{
struct gf100_engn_status status;
gf100_engn_status(engn, &status);
if (status.busy) {
*cgid = false;
return status.chid;
}
return -ENODEV;
}
static bool
gf100_engn_chsw(struct nvkm_engn *engn)
{
struct gf100_engn_status status;
gf100_engn_status(engn, &status);
if (status.busy && (status.unk0 || status.unk1))
return true;
return false;
}
static const struct nvkm_engn_func
gf100_engn = {
.chsw = gf100_engn_chsw,
.cxid = gf100_engn_cxid,
.mmu_fault_trigger = gf100_engn_mmu_fault_trigger,
.mmu_fault_triggered = gf100_engn_mmu_fault_triggered,
.ctor = gf100_ectx_ctor,
.bind = gf100_ectx_bind,
};
const struct nvkm_engn_func
gf100_engn_sw = {
};
static const struct nvkm_bitfield
gf100_runq_intr_0_names[] = {
/* { 0x00008000, "" } seen with null ib push */
{ 0x00200000, "ILLEGAL_MTHD" },
{ 0x00800000, "EMPTY_SUBC" },
{}
};
bool
gf100_runq_intr(struct nvkm_runq *runq, struct nvkm_runl *null)
{
struct nvkm_subdev *subdev = &runq->fifo->engine.subdev;
struct nvkm_device *device = subdev->device;
u32 mask = nvkm_rd32(device, 0x04010c + (runq->id * 0x2000));
u32 stat = nvkm_rd32(device, 0x040108 + (runq->id * 0x2000)) & mask;
u32 addr = nvkm_rd32(device, 0x0400c0 + (runq->id * 0x2000));
u32 data = nvkm_rd32(device, 0x0400c4 + (runq->id * 0x2000));
u32 chid = nvkm_rd32(device, 0x040120 + (runq->id * 0x2000)) & runq->fifo->chid->mask;
u32 subc = (addr & 0x00070000) >> 16;
u32 mthd = (addr & 0x00003ffc);
u32 show = stat;
struct nvkm_chan *chan;
unsigned long flags;
char msg[128];
if (stat & 0x00800000) {
if (device->sw) {
if (nvkm_sw_mthd(device->sw, chid, subc, mthd, data))
show &= ~0x00800000;
}
}
if (show) {
nvkm_snprintbf(msg, sizeof(msg), runq->func->intr_0_names, show);
chan = nvkm_chan_get_chid(&runq->fifo->engine, chid, &flags);
nvkm_error(subdev, "PBDMA%d: %08x [%s] ch %d [%010llx %s] "
"subc %d mthd %04x data %08x\n",
runq->id, show, msg, chid, chan ? chan->inst->addr : 0,
chan ? chan->name : "unknown", subc, mthd, data);
/*TODO: use proper procedure for clearing each exception / debug output */
if ((stat & 0xc67fe000) && chan)
nvkm_chan_error(chan, true);
nvkm_chan_put(&chan, flags);
}
nvkm_wr32(device, 0x0400c0 + (runq->id * 0x2000), 0x80600008);
nvkm_wr32(device, 0x040108 + (runq->id * 0x2000), stat);
return true;
}
void
gf100_runq_init(struct nvkm_runq *runq)
{
struct nvkm_device *device = runq->fifo->engine.subdev.device;
nvkm_mask(device, 0x04013c + (runq->id * 0x2000), 0x10000100, 0x00000000);
nvkm_wr32(device, 0x040108 + (runq->id * 0x2000), 0xffffffff); /* INTR */
nvkm_wr32(device, 0x04010c + (runq->id * 0x2000), 0xfffffeff); /* INTREN */
}
static const struct nvkm_runq_func
gf100_runq = {
.init = gf100_runq_init,
.intr = gf100_runq_intr,
.intr_0_names = gf100_runq_intr_0_names,
};
bool
gf100_runl_preempt_pending(struct nvkm_runl *runl)
{
return nvkm_rd32(runl->fifo->engine.subdev.device, 0x002634) & 0x00100000;
}
static void
gf100_runl_fault_clear(struct nvkm_runl *runl)
{
nvkm_mask(runl->fifo->engine.subdev.device, 0x00262c, 0x00000000, 0x00000000);
}
static void
gf100_runl_allow(struct nvkm_runl *runl, u32 engm)
{
nvkm_mask(runl->fifo->engine.subdev.device, 0x002630, engm, 0x00000000);
}
static void
gf100_runl_block(struct nvkm_runl *runl, u32 engm)
{
nvkm_mask(runl->fifo->engine.subdev.device, 0x002630, engm, engm);
}
static bool
gf100_runl_pending(struct nvkm_runl *runl)
{
return nvkm_rd32(runl->fifo->engine.subdev.device, 0x00227c) & 0x00100000;
}
static void
gf100_runl_commit(struct nvkm_runl *runl, struct nvkm_memory *memory, u32 start, int count)
{
struct nvkm_device *device = runl->fifo->engine.subdev.device;
u64 addr = nvkm_memory_addr(memory) + start;
int target;
switch (nvkm_memory_target(memory)) {
case NVKM_MEM_TARGET_VRAM: target = 0; break;
case NVKM_MEM_TARGET_NCOH: target = 3; break;
default:
WARN_ON(1);
return;
}
nvkm_wr32(device, 0x002270, (target << 28) | (addr >> 12));
nvkm_wr32(device, 0x002274, 0x01f00000 | count);
}
static void
gf100_runl_insert_chan(struct nvkm_chan *chan, struct nvkm_memory *memory, u64 offset)
{
nvkm_wo32(memory, offset + 0, chan->id);
nvkm_wo32(memory, offset + 4, 0x00000004);
}
static const struct nvkm_runl_func
gf100_runl = {
.size = 8,
.update = nv50_runl_update,
.insert_chan = gf100_runl_insert_chan,
.commit = gf100_runl_commit,
.wait = nv50_runl_wait,
.pending = gf100_runl_pending,
.block = gf100_runl_block,
.allow = gf100_runl_allow,
.fault_clear = gf100_runl_fault_clear,
.preempt_pending = gf100_runl_preempt_pending,
};
static void
gf100_fifo_nonstall_allow(struct nvkm_event *event, int type, int index)
{
struct nvkm_fifo *fifo = container_of(event, typeof(*fifo), nonstall.event);
unsigned long flags;
spin_lock_irqsave(&fifo->lock, flags);
nvkm_mask(fifo->engine.subdev.device, 0x002140, 0x80000000, 0x80000000);
spin_unlock_irqrestore(&fifo->lock, flags);
}
static void
gf100_fifo_nonstall_block(struct nvkm_event *event, int type, int index)
{
struct nvkm_fifo *fifo = container_of(event, typeof(*fifo), nonstall.event);
unsigned long flags;
spin_lock_irqsave(&fifo->lock, flags);
nvkm_mask(fifo->engine.subdev.device, 0x002140, 0x80000000, 0x00000000);
spin_unlock_irqrestore(&fifo->lock, flags);
}
const struct nvkm_event_func
gf100_fifo_nonstall = {
.init = gf100_fifo_nonstall_allow,
.fini = gf100_fifo_nonstall_block,
};
static const struct nvkm_enum
gf100_fifo_mmu_fault_engine[] = {
{ 0x00, "PGRAPH", NULL, NVKM_ENGINE_GR },
{ 0x03, "PEEPHOLE", NULL, NVKM_ENGINE_IFB },
{ 0x04, "BAR1", NULL, NVKM_SUBDEV_BAR },
{ 0x05, "BAR3", NULL, NVKM_SUBDEV_INSTMEM },
{ 0x07, "PFIFO" },
{ 0x10, "PMSVLD", NULL, NVKM_ENGINE_MSVLD },
{ 0x11, "PMSPPP", NULL, NVKM_ENGINE_MSPPP },
{ 0x13, "PCOUNTER" },
{ 0x14, "PMSPDEC", NULL, NVKM_ENGINE_MSPDEC },
{ 0x15, "PCE0", NULL, NVKM_ENGINE_CE, 0 },
{ 0x16, "PCE1", NULL, NVKM_ENGINE_CE, 1 },
{ 0x17, "PMU" },
{}
};
static const struct nvkm_enum
gf100_fifo_mmu_fault_reason[] = {
{ 0x00, "PT_NOT_PRESENT" },
{ 0x01, "PT_TOO_SHORT" },
{ 0x02, "PAGE_NOT_PRESENT" },
{ 0x03, "VM_LIMIT_EXCEEDED" },
{ 0x04, "NO_CHANNEL" },
{ 0x05, "PAGE_SYSTEM_ONLY" },
{ 0x06, "PAGE_READ_ONLY" },
{ 0x0a, "COMPRESSED_SYSRAM" },
{ 0x0c, "INVALID_STORAGE_TYPE" },
{}
};
static const struct nvkm_enum
gf100_fifo_mmu_fault_hubclient[] = {
{ 0x01, "PCOPY0" },
{ 0x02, "PCOPY1" },
{ 0x04, "DISPATCH" },
{ 0x05, "CTXCTL" },
{ 0x06, "PFIFO" },
{ 0x07, "BAR_READ" },
{ 0x08, "BAR_WRITE" },
{ 0x0b, "PVP" },
{ 0x0c, "PMSPPP" },
{ 0x0d, "PMSVLD" },
{ 0x11, "PCOUNTER" },
{ 0x12, "PMU" },
{ 0x14, "CCACHE" },
{ 0x15, "CCACHE_POST" },
{}
};
static const struct nvkm_enum
gf100_fifo_mmu_fault_gpcclient[] = {
{ 0x01, "TEX" },
{ 0x0c, "ESETUP" },
{ 0x0e, "CTXCTL" },
{ 0x0f, "PROP" },
{}
};
const struct nvkm_enum
gf100_fifo_mmu_fault_access[] = {
{ 0x00, "READ" },
{ 0x01, "WRITE" },
{}
};
void
gf100_fifo_mmu_fault_recover(struct nvkm_fifo *fifo, struct nvkm_fault_data *info)
{
struct nvkm_subdev *subdev = &fifo->engine.subdev;
struct nvkm_device *device = subdev->device;
const struct nvkm_enum *er, *ee, *ec, *ea;
struct nvkm_engine *engine = NULL;
struct nvkm_runl *runl;
struct nvkm_engn *engn;
struct nvkm_chan *chan;
unsigned long flags;
char ct[8] = "HUB/";
/* Lookup engine by MMU fault ID. */
nvkm_runl_foreach(runl, fifo) {
engn = nvkm_runl_find_engn(engn, runl, engn->fault == info->engine);
if (engn) {
/* Fault triggered by CTXSW_TIMEOUT recovery procedure. */
if (engn->func->mmu_fault_triggered &&
engn->func->mmu_fault_triggered(engn)) {
nvkm_runl_rc_engn(runl, engn);
return;
}
engine = engn->engine;
break;
}
}
er = nvkm_enum_find(fifo->func->mmu_fault->reason, info->reason);
ee = nvkm_enum_find(fifo->func->mmu_fault->engine, info->engine);
if (info->hub) {
ec = nvkm_enum_find(fifo->func->mmu_fault->hubclient, info->client);
} else {
ec = nvkm_enum_find(fifo->func->mmu_fault->gpcclient, info->client);
snprintf(ct, sizeof(ct), "GPC%d/", info->gpc);
}
ea = nvkm_enum_find(fifo->func->mmu_fault->access, info->access);
/* Handle BAR faults. */
if (ee && ee->data2) {
switch (ee->data2) {
case NVKM_SUBDEV_BAR:
nvkm_bar_bar1_reset(device);
break;
case NVKM_SUBDEV_INSTMEM:
nvkm_bar_bar2_reset(device);
break;
case NVKM_ENGINE_IFB:
nvkm_mask(device, 0x001718, 0x00000000, 0x00000000);
break;
default:
break;
}
}
chan = nvkm_chan_get_inst(&fifo->engine, info->inst, &flags);
nvkm_error(subdev,
"fault %02x [%s] at %016llx engine %02x [%s] client %02x "
"[%s%s] reason %02x [%s] on channel %d [%010llx %s]\n",
info->access, ea ? ea->name : "", info->addr,
info->engine, ee ? ee->name : engine ? engine->subdev.name : "",
info->client, ct, ec ? ec->name : "",
info->reason, er ? er->name : "",
chan ? chan->id : -1, info->inst, chan ? chan->name : "unknown");
/* Handle host/engine faults. */
if (chan)
nvkm_runl_rc_cgrp(chan->cgrp);
nvkm_chan_put(&chan, flags);
}
static const struct nvkm_fifo_func_mmu_fault
gf100_fifo_mmu_fault = {
.recover = gf100_fifo_mmu_fault_recover,
.access = gf100_fifo_mmu_fault_access,
.engine = gf100_fifo_mmu_fault_engine,
.reason = gf100_fifo_mmu_fault_reason,
.hubclient = gf100_fifo_mmu_fault_hubclient,
.gpcclient = gf100_fifo_mmu_fault_gpcclient,
};
void
gf100_fifo_intr_ctxsw_timeout(struct nvkm_fifo *fifo, u32 engm)
{
struct nvkm_runl *runl;
struct nvkm_engn *engn, *engn2;
bool cgid, cgid2;
int id, id2;
nvkm_runl_foreach(runl, fifo) {
/* Stop the runlist, and go through all engines serving it. */
nvkm_runl_block(runl);
nvkm_runl_foreach_engn_cond(engn, runl, engm & BIT(engn->id)) {
/* Determine what channel (group) the engine is on. */
id = engn->func->cxid(engn, &cgid);
if (id >= 0) {
/* Trigger MMU fault on any engine(s) on that channel (group). */
nvkm_runl_foreach_engn_cond(engn2, runl, engn2->func->cxid) {
id2 = engn2->func->cxid(engn2, &cgid2);
if (cgid2 == cgid && id2 == id)
engn2->func->mmu_fault_trigger(engn2);
}
}
}
nvkm_runl_allow(runl); /* HW will keep runlist blocked via ERROR_SCHED_DISABLE. */
}
}
static void
gf100_fifo_intr_sched_ctxsw(struct nvkm_fifo *fifo)
{
struct nvkm_runl *runl;
struct nvkm_engn *engn;
u32 engm = 0;
/* Look for any engines that are busy, and awaiting chsw ack. */
nvkm_runl_foreach(runl, fifo) {
nvkm_runl_foreach_engn_cond(engn, runl, engn->func->chsw) {
if (WARN_ON(engn->fault < 0) || !engn->func->chsw(engn))
continue;
engm |= BIT(engn->id);
}
}
if (!engm)
return;
fifo->func->intr_ctxsw_timeout(fifo, engm);
}
static const struct nvkm_enum
gf100_fifo_intr_sched_names[] = {
{ 0x0a, "CTXSW_TIMEOUT" },
{}
};
void
gf100_fifo_intr_sched(struct nvkm_fifo *fifo)
{
struct nvkm_subdev *subdev = &fifo->engine.subdev;
struct nvkm_device *device = subdev->device;
u32 intr = nvkm_rd32(device, 0x00254c);
u32 code = intr & 0x000000ff;
const struct nvkm_enum *en;
en = nvkm_enum_find(gf100_fifo_intr_sched_names, code);
nvkm_error(subdev, "SCHED_ERROR %02x [%s]\n", code, en ? en->name : "");
switch (code) {
case 0x0a:
gf100_fifo_intr_sched_ctxsw(fifo);
break;
default:
break;
}
}
void
gf100_fifo_intr_mmu_fault_unit(struct nvkm_fifo *fifo, int unit)
{
struct nvkm_device *device = fifo->engine.subdev.device;
u32 inst = nvkm_rd32(device, 0x002800 + (unit * 0x10));
u32 valo = nvkm_rd32(device, 0x002804 + (unit * 0x10));
u32 vahi = nvkm_rd32(device, 0x002808 + (unit * 0x10));
u32 type = nvkm_rd32(device, 0x00280c + (unit * 0x10));
struct nvkm_fault_data info;
info.inst = (u64)inst << 12;
info.addr = ((u64)vahi << 32) | valo;
info.time = 0;
info.engine = unit;
info.valid = 1;
info.gpc = (type & 0x1f000000) >> 24;
info.client = (type & 0x00001f00) >> 8;
info.access = (type & 0x00000080) >> 7;
info.hub = (type & 0x00000040) >> 6;
info.reason = (type & 0x0000000f);
nvkm_fifo_fault(fifo, &info);
}
void
gf100_fifo_intr_mmu_fault(struct nvkm_fifo *fifo)
{
struct nvkm_device *device = fifo->engine.subdev.device;
unsigned long mask = nvkm_rd32(device, 0x00259c);
int unit;
for_each_set_bit(unit, &mask, 32) {
fifo->func->intr_mmu_fault_unit(fifo, unit);
nvkm_wr32(device, 0x00259c, BIT(unit));
}
}
bool
gf100_fifo_intr_pbdma(struct nvkm_fifo *fifo)
{
struct nvkm_device *device = fifo->engine.subdev.device;
struct nvkm_runq *runq;
u32 mask = nvkm_rd32(device, 0x0025a0);
bool handled = false;
nvkm_runq_foreach_cond(runq, fifo, mask & BIT(runq->id)) {
if (runq->func->intr(runq, NULL))
handled = true;
nvkm_wr32(device, 0x0025a0, BIT(runq->id));
}
return handled;
}
static void
gf100_fifo_intr_runlist(struct nvkm_fifo *fifo)
{
struct nvkm_subdev *subdev = &fifo->engine.subdev;
struct nvkm_device *device = subdev->device;
u32 intr = nvkm_rd32(device, 0x002a00);
if (intr & 0x10000000) {
nvkm_wr32(device, 0x002a00, 0x10000000);
intr &= ~0x10000000;
}
if (intr) {
nvkm_error(subdev, "RUNLIST %08x\n", intr);
nvkm_wr32(device, 0x002a00, intr);
}
}
static void
gf100_fifo_intr_engine_unit(struct nvkm_fifo *fifo, int engn)
{
struct nvkm_subdev *subdev = &fifo->engine.subdev;
struct nvkm_device *device = subdev->device;
u32 intr = nvkm_rd32(device, 0x0025a8 + (engn * 0x04));
u32 inte = nvkm_rd32(device, 0x002628);
u32 unkn;
nvkm_wr32(device, 0x0025a8 + (engn * 0x04), intr);
for (unkn = 0; unkn < 8; unkn++) {
u32 ints = (intr >> (unkn * 0x04)) & inte;
if (ints & 0x1) {
nvkm_event_ntfy(&fifo->nonstall.event, 0, NVKM_FIFO_NONSTALL_EVENT);
ints &= ~1;
}
if (ints) {
nvkm_error(subdev, "ENGINE %d %d %01x", engn, unkn, ints);
nvkm_mask(device, 0x002628, ints, 0);
}
}
}
static void
gf100_fifo_intr_engine(struct nvkm_fifo *fifo)
{
struct nvkm_device *device = fifo->engine.subdev.device;
u32 mask = nvkm_rd32(device, 0x0025a4);
while (mask) {
u32 unit = __ffs(mask);
gf100_fifo_intr_engine_unit(fifo, unit);
mask &= ~(1 << unit);
}
}
static irqreturn_t
gf100_fifo_intr(struct nvkm_inth *inth)
{
struct nvkm_fifo *fifo = container_of(inth, typeof(*fifo), engine.subdev.inth);
struct nvkm_subdev *subdev = &fifo->engine.subdev;
struct nvkm_device *device = subdev->device;
u32 mask = nvkm_rd32(device, 0x002140);
u32 stat = nvkm_rd32(device, 0x002100) & mask;
if (stat & 0x00000001) {
u32 intr = nvkm_rd32(device, 0x00252c);
nvkm_warn(subdev, "INTR 00000001: %08x\n", intr);
nvkm_wr32(device, 0x002100, 0x00000001);
stat &= ~0x00000001;
}
if (stat & 0x00000100) {
gf100_fifo_intr_sched(fifo);
nvkm_wr32(device, 0x002100, 0x00000100);
stat &= ~0x00000100;
}
if (stat & 0x00010000) {
u32 intr = nvkm_rd32(device, 0x00256c);
nvkm_warn(subdev, "INTR 00010000: %08x\n", intr);
nvkm_wr32(device, 0x002100, 0x00010000);
stat &= ~0x00010000;
}
if (stat & 0x01000000) {
u32 intr = nvkm_rd32(device, 0x00258c);
nvkm_warn(subdev, "INTR 01000000: %08x\n", intr);
nvkm_wr32(device, 0x002100, 0x01000000);
stat &= ~0x01000000;
}
if (stat & 0x10000000) {
gf100_fifo_intr_mmu_fault(fifo);
stat &= ~0x10000000;
}
if (stat & 0x20000000) {
if (gf100_fifo_intr_pbdma(fifo))
stat &= ~0x20000000;
}
if (stat & 0x40000000) {
gf100_fifo_intr_runlist(fifo);
stat &= ~0x40000000;
}
if (stat & 0x80000000) {
gf100_fifo_intr_engine(fifo);
stat &= ~0x80000000;
}
if (stat) {
nvkm_error(subdev, "INTR %08x\n", stat);
spin_lock(&fifo->lock);
nvkm_mask(device, 0x002140, stat, 0x00000000);
spin_unlock(&fifo->lock);
nvkm_wr32(device, 0x002100, stat);
}
return IRQ_HANDLED;
}
static void
gf100_fifo_init_pbdmas(struct nvkm_fifo *fifo, u32 mask)
{
struct nvkm_device *device = fifo->engine.subdev.device;
/* Enable PBDMAs. */
nvkm_wr32(device, 0x000204, mask);
nvkm_wr32(device, 0x002204, mask);
/* Assign engines to PBDMAs. */
if ((mask & 7) == 7) {
nvkm_wr32(device, 0x002208, ~(1 << 0)); /* PGRAPH */
nvkm_wr32(device, 0x00220c, ~(1 << 1)); /* PVP */
nvkm_wr32(device, 0x002210, ~(1 << 1)); /* PMSPP */
nvkm_wr32(device, 0x002214, ~(1 << 1)); /* PMSVLD */
nvkm_wr32(device, 0x002218, ~(1 << 2)); /* PCE0 */
nvkm_wr32(device, 0x00221c, ~(1 << 1)); /* PCE1 */
}
nvkm_mask(device, 0x002a04, 0xbfffffff, 0xbfffffff);
}
static void
gf100_fifo_init(struct nvkm_fifo *fifo)
{
struct nvkm_device *device = fifo->engine.subdev.device;
nvkm_mask(device, 0x002200, 0x00000001, 0x00000001);
nvkm_wr32(device, 0x002254, 0x10000000 | fifo->userd.bar1->addr >> 12);
nvkm_wr32(device, 0x002100, 0xffffffff);
nvkm_wr32(device, 0x002140, 0x7fffffff);
nvkm_wr32(device, 0x002628, 0x00000001); /* ENGINE_INTR_EN */
}
static int
gf100_fifo_runl_ctor(struct nvkm_fifo *fifo)
{
struct nvkm_runl *runl;
runl = nvkm_runl_new(fifo, 0, 0, 0);
if (IS_ERR(runl))
return PTR_ERR(runl);
nvkm_runl_add(runl, 0, fifo->func->engn, NVKM_ENGINE_GR, 0);
nvkm_runl_add(runl, 1, fifo->func->engn, NVKM_ENGINE_MSPDEC, 0);
nvkm_runl_add(runl, 2, fifo->func->engn, NVKM_ENGINE_MSPPP, 0);
nvkm_runl_add(runl, 3, fifo->func->engn, NVKM_ENGINE_MSVLD, 0);
nvkm_runl_add(runl, 4, fifo->func->engn, NVKM_ENGINE_CE, 0);
nvkm_runl_add(runl, 5, fifo->func->engn, NVKM_ENGINE_CE, 1);
nvkm_runl_add(runl, 15, &gf100_engn_sw, NVKM_ENGINE_SW, 0);
return 0;
}
int
gf100_fifo_runq_nr(struct nvkm_fifo *fifo)
{
struct nvkm_device *device = fifo->engine.subdev.device;
u32 save;
/* Determine number of PBDMAs by checking valid enable bits. */
save = nvkm_mask(device, 0x000204, 0xffffffff, 0xffffffff);
save = nvkm_mask(device, 0x000204, 0xffffffff, save);
return hweight32(save);
}
int
gf100_fifo_chid_ctor(struct nvkm_fifo *fifo, int nr)
{
return nvkm_chid_new(&nvkm_chan_event, &fifo->engine.subdev, nr, 0, nr, &fifo->chid);
}
static const struct nvkm_fifo_func
gf100_fifo = {
.chid_nr = nv50_fifo_chid_nr,
.chid_ctor = gf100_fifo_chid_ctor,
.runq_nr = gf100_fifo_runq_nr,
.runl_ctor = gf100_fifo_runl_ctor,
.init = gf100_fifo_init,
.init_pbdmas = gf100_fifo_init_pbdmas,
.intr = gf100_fifo_intr,
.intr_mmu_fault_unit = gf100_fifo_intr_mmu_fault_unit,
.intr_ctxsw_timeout = gf100_fifo_intr_ctxsw_timeout,
.mmu_fault = &gf100_fifo_mmu_fault,
.nonstall = &gf100_fifo_nonstall,
.runl = &gf100_runl,
.runq = &gf100_runq,
.engn = &gf100_engn,
.cgrp = {{ }, &nv04_cgrp },
.chan = {{ 0, 0, FERMI_CHANNEL_GPFIFO }, &gf100_chan },
};
int
gf100_fifo_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
struct nvkm_fifo **pfifo)
{
return nvkm_fifo_new_(&gf100_fifo, device, type, inst, pfifo);
}