| /* |
| * Copyright (c) Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* This header contains definitions |
| * that shall **only** be used by modules within lib/compress. |
| */ |
| |
| #ifndef ZSTD_COMPRESS_H |
| #define ZSTD_COMPRESS_H |
| |
| /*-************************************* |
| * Dependencies |
| ***************************************/ |
| #include "../common/zstd_internal.h" |
| #include "zstd_cwksp.h" |
| |
| |
| /*-************************************* |
| * Constants |
| ***************************************/ |
| #define kSearchStrength 8 |
| #define HASH_READ_SIZE 8 |
| #define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted". |
| It could be confused for a real successor at index "1", if sorted as larger than its predecessor. |
| It's not a big deal though : candidate will just be sorted again. |
| Additionally, candidate position 1 will be lost. |
| But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss. |
| The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy. |
| This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */ |
| |
| |
| /*-************************************* |
| * Context memory management |
| ***************************************/ |
| typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e; |
| typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage; |
| |
| typedef struct ZSTD_prefixDict_s { |
| const void* dict; |
| size_t dictSize; |
| ZSTD_dictContentType_e dictContentType; |
| } ZSTD_prefixDict; |
| |
| typedef struct { |
| void* dictBuffer; |
| void const* dict; |
| size_t dictSize; |
| ZSTD_dictContentType_e dictContentType; |
| ZSTD_CDict* cdict; |
| } ZSTD_localDict; |
| |
| typedef struct { |
| HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)]; |
| HUF_repeat repeatMode; |
| } ZSTD_hufCTables_t; |
| |
| typedef struct { |
| FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)]; |
| FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)]; |
| FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)]; |
| FSE_repeat offcode_repeatMode; |
| FSE_repeat matchlength_repeatMode; |
| FSE_repeat litlength_repeatMode; |
| } ZSTD_fseCTables_t; |
| |
| typedef struct { |
| ZSTD_hufCTables_t huf; |
| ZSTD_fseCTables_t fse; |
| } ZSTD_entropyCTables_t; |
| |
| /* ********************************************* |
| * Entropy buffer statistics structs and funcs * |
| ***********************************************/ |
| /* ZSTD_hufCTablesMetadata_t : |
| * Stores Literals Block Type for a super-block in hType, and |
| * huffman tree description in hufDesBuffer. |
| * hufDesSize refers to the size of huffman tree description in bytes. |
| * This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */ |
| typedef struct { |
| symbolEncodingType_e hType; |
| BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE]; |
| size_t hufDesSize; |
| } ZSTD_hufCTablesMetadata_t; |
| |
| /* ZSTD_fseCTablesMetadata_t : |
| * Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and |
| * fse tables in fseTablesBuffer. |
| * fseTablesSize refers to the size of fse tables in bytes. |
| * This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */ |
| typedef struct { |
| symbolEncodingType_e llType; |
| symbolEncodingType_e ofType; |
| symbolEncodingType_e mlType; |
| BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE]; |
| size_t fseTablesSize; |
| size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */ |
| } ZSTD_fseCTablesMetadata_t; |
| |
| typedef struct { |
| ZSTD_hufCTablesMetadata_t hufMetadata; |
| ZSTD_fseCTablesMetadata_t fseMetadata; |
| } ZSTD_entropyCTablesMetadata_t; |
| |
| /* ZSTD_buildBlockEntropyStats() : |
| * Builds entropy for the block. |
| * @return : 0 on success or error code */ |
| size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr, |
| const ZSTD_entropyCTables_t* prevEntropy, |
| ZSTD_entropyCTables_t* nextEntropy, |
| const ZSTD_CCtx_params* cctxParams, |
| ZSTD_entropyCTablesMetadata_t* entropyMetadata, |
| void* workspace, size_t wkspSize); |
| |
| /* ******************************* |
| * Compression internals structs * |
| *********************************/ |
| |
| typedef struct { |
| U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */ |
| U32 len; /* Raw length of match */ |
| } ZSTD_match_t; |
| |
| typedef struct { |
| U32 offset; /* Offset of sequence */ |
| U32 litLength; /* Length of literals prior to match */ |
| U32 matchLength; /* Raw length of match */ |
| } rawSeq; |
| |
| typedef struct { |
| rawSeq* seq; /* The start of the sequences */ |
| size_t pos; /* The index in seq where reading stopped. pos <= size. */ |
| size_t posInSequence; /* The position within the sequence at seq[pos] where reading |
| stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */ |
| size_t size; /* The number of sequences. <= capacity. */ |
| size_t capacity; /* The capacity starting from `seq` pointer */ |
| } rawSeqStore_t; |
| |
| UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0}; |
| |
| typedef struct { |
| int price; |
| U32 off; |
| U32 mlen; |
| U32 litlen; |
| U32 rep[ZSTD_REP_NUM]; |
| } ZSTD_optimal_t; |
| |
| typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e; |
| |
| typedef struct { |
| /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */ |
| unsigned* litFreq; /* table of literals statistics, of size 256 */ |
| unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */ |
| unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */ |
| unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */ |
| ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */ |
| ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */ |
| |
| U32 litSum; /* nb of literals */ |
| U32 litLengthSum; /* nb of litLength codes */ |
| U32 matchLengthSum; /* nb of matchLength codes */ |
| U32 offCodeSum; /* nb of offset codes */ |
| U32 litSumBasePrice; /* to compare to log2(litfreq) */ |
| U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */ |
| U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */ |
| U32 offCodeSumBasePrice; /* to compare to log2(offreq) */ |
| ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */ |
| const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */ |
| ZSTD_paramSwitch_e literalCompressionMode; |
| } optState_t; |
| |
| typedef struct { |
| ZSTD_entropyCTables_t entropy; |
| U32 rep[ZSTD_REP_NUM]; |
| } ZSTD_compressedBlockState_t; |
| |
| typedef struct { |
| BYTE const* nextSrc; /* next block here to continue on current prefix */ |
| BYTE const* base; /* All regular indexes relative to this position */ |
| BYTE const* dictBase; /* extDict indexes relative to this position */ |
| U32 dictLimit; /* below that point, need extDict */ |
| U32 lowLimit; /* below that point, no more valid data */ |
| U32 nbOverflowCorrections; /* Number of times overflow correction has run since |
| * ZSTD_window_init(). Useful for debugging coredumps |
| * and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY. |
| */ |
| } ZSTD_window_t; |
| |
| #define ZSTD_WINDOW_START_INDEX 2 |
| |
| typedef struct ZSTD_matchState_t ZSTD_matchState_t; |
| |
| #define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */ |
| |
| struct ZSTD_matchState_t { |
| ZSTD_window_t window; /* State for window round buffer management */ |
| U32 loadedDictEnd; /* index of end of dictionary, within context's referential. |
| * When loadedDictEnd != 0, a dictionary is in use, and still valid. |
| * This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance. |
| * Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity(). |
| * When dict referential is copied into active context (i.e. not attached), |
| * loadedDictEnd == dictSize, since referential starts from zero. |
| */ |
| U32 nextToUpdate; /* index from which to continue table update */ |
| U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */ |
| |
| U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/ |
| U16* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */ |
| U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */ |
| |
| U32* hashTable; |
| U32* hashTable3; |
| U32* chainTable; |
| |
| U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */ |
| |
| int dedicatedDictSearch; /* Indicates whether this matchState is using the |
| * dedicated dictionary search structure. |
| */ |
| optState_t opt; /* optimal parser state */ |
| const ZSTD_matchState_t* dictMatchState; |
| ZSTD_compressionParameters cParams; |
| const rawSeqStore_t* ldmSeqStore; |
| }; |
| |
| typedef struct { |
| ZSTD_compressedBlockState_t* prevCBlock; |
| ZSTD_compressedBlockState_t* nextCBlock; |
| ZSTD_matchState_t matchState; |
| } ZSTD_blockState_t; |
| |
| typedef struct { |
| U32 offset; |
| U32 checksum; |
| } ldmEntry_t; |
| |
| typedef struct { |
| BYTE const* split; |
| U32 hash; |
| U32 checksum; |
| ldmEntry_t* bucket; |
| } ldmMatchCandidate_t; |
| |
| #define LDM_BATCH_SIZE 64 |
| |
| typedef struct { |
| ZSTD_window_t window; /* State for the window round buffer management */ |
| ldmEntry_t* hashTable; |
| U32 loadedDictEnd; |
| BYTE* bucketOffsets; /* Next position in bucket to insert entry */ |
| size_t splitIndices[LDM_BATCH_SIZE]; |
| ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE]; |
| } ldmState_t; |
| |
| typedef struct { |
| ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */ |
| U32 hashLog; /* Log size of hashTable */ |
| U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */ |
| U32 minMatchLength; /* Minimum match length */ |
| U32 hashRateLog; /* Log number of entries to skip */ |
| U32 windowLog; /* Window log for the LDM */ |
| } ldmParams_t; |
| |
| typedef struct { |
| int collectSequences; |
| ZSTD_Sequence* seqStart; |
| size_t seqIndex; |
| size_t maxSequences; |
| } SeqCollector; |
| |
| struct ZSTD_CCtx_params_s { |
| ZSTD_format_e format; |
| ZSTD_compressionParameters cParams; |
| ZSTD_frameParameters fParams; |
| |
| int compressionLevel; |
| int forceWindow; /* force back-references to respect limit of |
| * 1<<wLog, even for dictionary */ |
| size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize. |
| * No target when targetCBlockSize == 0. |
| * There is no guarantee on compressed block size */ |
| int srcSizeHint; /* User's best guess of source size. |
| * Hint is not valid when srcSizeHint == 0. |
| * There is no guarantee that hint is close to actual source size */ |
| |
| ZSTD_dictAttachPref_e attachDictPref; |
| ZSTD_paramSwitch_e literalCompressionMode; |
| |
| /* Multithreading: used to pass parameters to mtctx */ |
| int nbWorkers; |
| size_t jobSize; |
| int overlapLog; |
| int rsyncable; |
| |
| /* Long distance matching parameters */ |
| ldmParams_t ldmParams; |
| |
| /* Dedicated dict search algorithm trigger */ |
| int enableDedicatedDictSearch; |
| |
| /* Input/output buffer modes */ |
| ZSTD_bufferMode_e inBufferMode; |
| ZSTD_bufferMode_e outBufferMode; |
| |
| /* Sequence compression API */ |
| ZSTD_sequenceFormat_e blockDelimiters; |
| int validateSequences; |
| |
| /* Block splitting */ |
| ZSTD_paramSwitch_e useBlockSplitter; |
| |
| /* Param for deciding whether to use row-based matchfinder */ |
| ZSTD_paramSwitch_e useRowMatchFinder; |
| |
| /* Always load a dictionary in ext-dict mode (not prefix mode)? */ |
| int deterministicRefPrefix; |
| |
| /* Internal use, for createCCtxParams() and freeCCtxParams() only */ |
| ZSTD_customMem customMem; |
| }; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */ |
| |
| #define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2)) |
| #define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE) |
| |
| /* |
| * Indicates whether this compression proceeds directly from user-provided |
| * source buffer to user-provided destination buffer (ZSTDb_not_buffered), or |
| * whether the context needs to buffer the input/output (ZSTDb_buffered). |
| */ |
| typedef enum { |
| ZSTDb_not_buffered, |
| ZSTDb_buffered |
| } ZSTD_buffered_policy_e; |
| |
| /* |
| * Struct that contains all elements of block splitter that should be allocated |
| * in a wksp. |
| */ |
| #define ZSTD_MAX_NB_BLOCK_SPLITS 196 |
| typedef struct { |
| seqStore_t fullSeqStoreChunk; |
| seqStore_t firstHalfSeqStore; |
| seqStore_t secondHalfSeqStore; |
| seqStore_t currSeqStore; |
| seqStore_t nextSeqStore; |
| |
| U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS]; |
| ZSTD_entropyCTablesMetadata_t entropyMetadata; |
| } ZSTD_blockSplitCtx; |
| |
| struct ZSTD_CCtx_s { |
| ZSTD_compressionStage_e stage; |
| int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */ |
| int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ |
| ZSTD_CCtx_params requestedParams; |
| ZSTD_CCtx_params appliedParams; |
| ZSTD_CCtx_params simpleApiParams; /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */ |
| U32 dictID; |
| size_t dictContentSize; |
| |
| ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */ |
| size_t blockSize; |
| unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */ |
| unsigned long long consumedSrcSize; |
| unsigned long long producedCSize; |
| struct xxh64_state xxhState; |
| ZSTD_customMem customMem; |
| ZSTD_threadPool* pool; |
| size_t staticSize; |
| SeqCollector seqCollector; |
| int isFirstBlock; |
| int initialized; |
| |
| seqStore_t seqStore; /* sequences storage ptrs */ |
| ldmState_t ldmState; /* long distance matching state */ |
| rawSeq* ldmSequences; /* Storage for the ldm output sequences */ |
| size_t maxNbLdmSequences; |
| rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */ |
| ZSTD_blockState_t blockState; |
| U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */ |
| |
| /* Whether we are streaming or not */ |
| ZSTD_buffered_policy_e bufferedPolicy; |
| |
| /* streaming */ |
| char* inBuff; |
| size_t inBuffSize; |
| size_t inToCompress; |
| size_t inBuffPos; |
| size_t inBuffTarget; |
| char* outBuff; |
| size_t outBuffSize; |
| size_t outBuffContentSize; |
| size_t outBuffFlushedSize; |
| ZSTD_cStreamStage streamStage; |
| U32 frameEnded; |
| |
| /* Stable in/out buffer verification */ |
| ZSTD_inBuffer expectedInBuffer; |
| size_t expectedOutBufferSize; |
| |
| /* Dictionary */ |
| ZSTD_localDict localDict; |
| const ZSTD_CDict* cdict; |
| ZSTD_prefixDict prefixDict; /* single-usage dictionary */ |
| |
| /* Multi-threading */ |
| |
| /* Tracing */ |
| |
| /* Workspace for block splitter */ |
| ZSTD_blockSplitCtx blockSplitCtx; |
| }; |
| |
| typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e; |
| |
| typedef enum { |
| ZSTD_noDict = 0, |
| ZSTD_extDict = 1, |
| ZSTD_dictMatchState = 2, |
| ZSTD_dedicatedDictSearch = 3 |
| } ZSTD_dictMode_e; |
| |
| typedef enum { |
| ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict. |
| * In this mode we use both the srcSize and the dictSize |
| * when selecting and adjusting parameters. |
| */ |
| ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch. |
| * In this mode we only take the srcSize into account when selecting |
| * and adjusting parameters. |
| */ |
| ZSTD_cpm_createCDict = 2, /* Creating a CDict. |
| * In this mode we take both the source size and the dictionary size |
| * into account when selecting and adjusting the parameters. |
| */ |
| ZSTD_cpm_unknown = 3, /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams. |
| * We don't know what these parameters are for. We default to the legacy |
| * behavior of taking both the source size and the dict size into account |
| * when selecting and adjusting parameters. |
| */ |
| } ZSTD_cParamMode_e; |
| |
| typedef size_t (*ZSTD_blockCompressor) ( |
| ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize); |
| ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode); |
| |
| |
| MEM_STATIC U32 ZSTD_LLcode(U32 litLength) |
| { |
| static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 16, 17, 17, 18, 18, 19, 19, |
| 20, 20, 20, 20, 21, 21, 21, 21, |
| 22, 22, 22, 22, 22, 22, 22, 22, |
| 23, 23, 23, 23, 23, 23, 23, 23, |
| 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24 }; |
| static const U32 LL_deltaCode = 19; |
| return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength]; |
| } |
| |
| /* ZSTD_MLcode() : |
| * note : mlBase = matchLength - MINMATCH; |
| * because it's the format it's stored in seqStore->sequences */ |
| MEM_STATIC U32 ZSTD_MLcode(U32 mlBase) |
| { |
| static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, |
| 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, |
| 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, |
| 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, |
| 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, |
| 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 }; |
| static const U32 ML_deltaCode = 36; |
| return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase]; |
| } |
| |
| /* ZSTD_cParam_withinBounds: |
| * @return 1 if value is within cParam bounds, |
| * 0 otherwise */ |
| MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value) |
| { |
| ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); |
| if (ZSTD_isError(bounds.error)) return 0; |
| if (value < bounds.lowerBound) return 0; |
| if (value > bounds.upperBound) return 0; |
| return 1; |
| } |
| |
| /* ZSTD_noCompressBlock() : |
| * Writes uncompressed block to dst buffer from given src. |
| * Returns the size of the block */ |
| MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) |
| { |
| U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3); |
| RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity, |
| dstSize_tooSmall, "dst buf too small for uncompressed block"); |
| MEM_writeLE24(dst, cBlockHeader24); |
| ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); |
| return ZSTD_blockHeaderSize + srcSize; |
| } |
| |
| MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock) |
| { |
| BYTE* const op = (BYTE*)dst; |
| U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3); |
| RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, ""); |
| MEM_writeLE24(op, cBlockHeader); |
| op[3] = src; |
| return 4; |
| } |
| |
| |
| /* ZSTD_minGain() : |
| * minimum compression required |
| * to generate a compress block or a compressed literals section. |
| * note : use same formula for both situations */ |
| MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat) |
| { |
| U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6; |
| ZSTD_STATIC_ASSERT(ZSTD_btultra == 8); |
| assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat)); |
| return (srcSize >> minlog) + 2; |
| } |
| |
| MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams) |
| { |
| switch (cctxParams->literalCompressionMode) { |
| case ZSTD_ps_enable: |
| return 0; |
| case ZSTD_ps_disable: |
| return 1; |
| default: |
| assert(0 /* impossible: pre-validated */); |
| ZSTD_FALLTHROUGH; |
| case ZSTD_ps_auto: |
| return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0); |
| } |
| } |
| |
| /*! ZSTD_safecopyLiterals() : |
| * memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w. |
| * Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single |
| * large copies. |
| */ |
| static void |
| ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) |
| { |
| assert(iend > ilimit_w); |
| if (ip <= ilimit_w) { |
| ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap); |
| op += ilimit_w - ip; |
| ip = ilimit_w; |
| } |
| while (ip < iend) *op++ = *ip++; |
| } |
| |
| #define ZSTD_REP_MOVE (ZSTD_REP_NUM-1) |
| #define STORE_REPCODE_1 STORE_REPCODE(1) |
| #define STORE_REPCODE_2 STORE_REPCODE(2) |
| #define STORE_REPCODE_3 STORE_REPCODE(3) |
| #define STORE_REPCODE(r) (assert((r)>=1), assert((r)<=3), (r)-1) |
| #define STORE_OFFSET(o) (assert((o)>0), o + ZSTD_REP_MOVE) |
| #define STORED_IS_OFFSET(o) ((o) > ZSTD_REP_MOVE) |
| #define STORED_IS_REPCODE(o) ((o) <= ZSTD_REP_MOVE) |
| #define STORED_OFFSET(o) (assert(STORED_IS_OFFSET(o)), (o)-ZSTD_REP_MOVE) |
| #define STORED_REPCODE(o) (assert(STORED_IS_REPCODE(o)), (o)+1) /* returns ID 1,2,3 */ |
| #define STORED_TO_OFFBASE(o) ((o)+1) |
| #define OFFBASE_TO_STORED(o) ((o)-1) |
| |
| /*! ZSTD_storeSeq() : |
| * Store a sequence (litlen, litPtr, offCode and matchLength) into seqStore_t. |
| * @offBase_minus1 : Users should use employ macros STORE_REPCODE_X and STORE_OFFSET(). |
| * @matchLength : must be >= MINMATCH |
| * Allowed to overread literals up to litLimit. |
| */ |
| HINT_INLINE UNUSED_ATTR void |
| ZSTD_storeSeq(seqStore_t* seqStorePtr, |
| size_t litLength, const BYTE* literals, const BYTE* litLimit, |
| U32 offBase_minus1, |
| size_t matchLength) |
| { |
| BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH; |
| BYTE const* const litEnd = literals + litLength; |
| #if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6) |
| static const BYTE* g_start = NULL; |
| if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */ |
| { U32 const pos = (U32)((const BYTE*)literals - g_start); |
| DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u", |
| pos, (U32)litLength, (U32)matchLength, (U32)offBase_minus1); |
| } |
| #endif |
| assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq); |
| /* copy Literals */ |
| assert(seqStorePtr->maxNbLit <= 128 KB); |
| assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit); |
| assert(literals + litLength <= litLimit); |
| if (litEnd <= litLimit_w) { |
| /* Common case we can use wildcopy. |
| * First copy 16 bytes, because literals are likely short. |
| */ |
| assert(WILDCOPY_OVERLENGTH >= 16); |
| ZSTD_copy16(seqStorePtr->lit, literals); |
| if (litLength > 16) { |
| ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap); |
| } |
| } else { |
| ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w); |
| } |
| seqStorePtr->lit += litLength; |
| |
| /* literal Length */ |
| if (litLength>0xFFFF) { |
| assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ |
| seqStorePtr->longLengthType = ZSTD_llt_literalLength; |
| seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); |
| } |
| seqStorePtr->sequences[0].litLength = (U16)litLength; |
| |
| /* match offset */ |
| seqStorePtr->sequences[0].offBase = STORED_TO_OFFBASE(offBase_minus1); |
| |
| /* match Length */ |
| assert(matchLength >= MINMATCH); |
| { size_t const mlBase = matchLength - MINMATCH; |
| if (mlBase>0xFFFF) { |
| assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ |
| seqStorePtr->longLengthType = ZSTD_llt_matchLength; |
| seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); |
| } |
| seqStorePtr->sequences[0].mlBase = (U16)mlBase; |
| } |
| |
| seqStorePtr->sequences++; |
| } |
| |
| /* ZSTD_updateRep() : |
| * updates in-place @rep (array of repeat offsets) |
| * @offBase_minus1 : sum-type, with same numeric representation as ZSTD_storeSeq() |
| */ |
| MEM_STATIC void |
| ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0) |
| { |
| if (STORED_IS_OFFSET(offBase_minus1)) { /* full offset */ |
| rep[2] = rep[1]; |
| rep[1] = rep[0]; |
| rep[0] = STORED_OFFSET(offBase_minus1); |
| } else { /* repcode */ |
| U32 const repCode = STORED_REPCODE(offBase_minus1) - 1 + ll0; |
| if (repCode > 0) { /* note : if repCode==0, no change */ |
| U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; |
| rep[2] = (repCode >= 2) ? rep[1] : rep[2]; |
| rep[1] = rep[0]; |
| rep[0] = currentOffset; |
| } else { /* repCode == 0 */ |
| /* nothing to do */ |
| } |
| } |
| } |
| |
| typedef struct repcodes_s { |
| U32 rep[3]; |
| } repcodes_t; |
| |
| MEM_STATIC repcodes_t |
| ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0) |
| { |
| repcodes_t newReps; |
| ZSTD_memcpy(&newReps, rep, sizeof(newReps)); |
| ZSTD_updateRep(newReps.rep, offBase_minus1, ll0); |
| return newReps; |
| } |
| |
| |
| /*-************************************* |
| * Match length counter |
| ***************************************/ |
| static unsigned ZSTD_NbCommonBytes (size_t val) |
| { |
| if (MEM_isLittleEndian()) { |
| if (MEM_64bits()) { |
| # if (__GNUC__ >= 4) |
| return (__builtin_ctzll((U64)val) >> 3); |
| # else |
| static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, |
| 0, 3, 1, 3, 1, 4, 2, 7, |
| 0, 2, 3, 6, 1, 5, 3, 5, |
| 1, 3, 4, 4, 2, 5, 6, 7, |
| 7, 0, 1, 2, 3, 3, 4, 6, |
| 2, 6, 5, 5, 3, 4, 5, 6, |
| 7, 1, 2, 4, 6, 4, 4, 5, |
| 7, 2, 6, 5, 7, 6, 7, 7 }; |
| return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; |
| # endif |
| } else { /* 32 bits */ |
| # if (__GNUC__ >= 3) |
| return (__builtin_ctz((U32)val) >> 3); |
| # else |
| static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, |
| 3, 2, 2, 1, 3, 2, 0, 1, |
| 3, 3, 1, 2, 2, 2, 2, 0, |
| 3, 1, 2, 0, 1, 0, 1, 1 }; |
| return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; |
| # endif |
| } |
| } else { /* Big Endian CPU */ |
| if (MEM_64bits()) { |
| # if (__GNUC__ >= 4) |
| return (__builtin_clzll(val) >> 3); |
| # else |
| unsigned r; |
| const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ |
| if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } |
| if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } |
| r += (!val); |
| return r; |
| # endif |
| } else { /* 32 bits */ |
| # if (__GNUC__ >= 3) |
| return (__builtin_clz((U32)val) >> 3); |
| # else |
| unsigned r; |
| if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } |
| r += (!val); |
| return r; |
| # endif |
| } } |
| } |
| |
| |
| MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit) |
| { |
| const BYTE* const pStart = pIn; |
| const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1); |
| |
| if (pIn < pInLoopLimit) { |
| { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); |
| if (diff) return ZSTD_NbCommonBytes(diff); } |
| pIn+=sizeof(size_t); pMatch+=sizeof(size_t); |
| while (pIn < pInLoopLimit) { |
| size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); |
| if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; } |
| pIn += ZSTD_NbCommonBytes(diff); |
| return (size_t)(pIn - pStart); |
| } } |
| if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; } |
| if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; } |
| if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++; |
| return (size_t)(pIn - pStart); |
| } |
| |
| /* ZSTD_count_2segments() : |
| * can count match length with `ip` & `match` in 2 different segments. |
| * convention : on reaching mEnd, match count continue starting from iStart |
| */ |
| MEM_STATIC size_t |
| ZSTD_count_2segments(const BYTE* ip, const BYTE* match, |
| const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart) |
| { |
| const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd); |
| size_t const matchLength = ZSTD_count(ip, match, vEnd); |
| if (match + matchLength != mEnd) return matchLength; |
| DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength); |
| DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match); |
| DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip); |
| DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart); |
| DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd)); |
| return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd); |
| } |
| |
| |
| /*-************************************* |
| * Hashes |
| ***************************************/ |
| static const U32 prime3bytes = 506832829U; |
| static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; } |
| MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */ |
| |
| static const U32 prime4bytes = 2654435761U; |
| static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; } |
| static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); } |
| |
| static const U64 prime5bytes = 889523592379ULL; |
| static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; } |
| static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); } |
| |
| static const U64 prime6bytes = 227718039650203ULL; |
| static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; } |
| static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); } |
| |
| static const U64 prime7bytes = 58295818150454627ULL; |
| static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; } |
| static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); } |
| |
| static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; |
| static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; } |
| static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); } |
| |
| MEM_STATIC FORCE_INLINE_ATTR |
| size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls) |
| { |
| switch(mls) |
| { |
| default: |
| case 4: return ZSTD_hash4Ptr(p, hBits); |
| case 5: return ZSTD_hash5Ptr(p, hBits); |
| case 6: return ZSTD_hash6Ptr(p, hBits); |
| case 7: return ZSTD_hash7Ptr(p, hBits); |
| case 8: return ZSTD_hash8Ptr(p, hBits); |
| } |
| } |
| |
| /* ZSTD_ipow() : |
| * Return base^exponent. |
| */ |
| static U64 ZSTD_ipow(U64 base, U64 exponent) |
| { |
| U64 power = 1; |
| while (exponent) { |
| if (exponent & 1) power *= base; |
| exponent >>= 1; |
| base *= base; |
| } |
| return power; |
| } |
| |
| #define ZSTD_ROLL_HASH_CHAR_OFFSET 10 |
| |
| /* ZSTD_rollingHash_append() : |
| * Add the buffer to the hash value. |
| */ |
| static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size) |
| { |
| BYTE const* istart = (BYTE const*)buf; |
| size_t pos; |
| for (pos = 0; pos < size; ++pos) { |
| hash *= prime8bytes; |
| hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET; |
| } |
| return hash; |
| } |
| |
| /* ZSTD_rollingHash_compute() : |
| * Compute the rolling hash value of the buffer. |
| */ |
| MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size) |
| { |
| return ZSTD_rollingHash_append(0, buf, size); |
| } |
| |
| /* ZSTD_rollingHash_primePower() : |
| * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash |
| * over a window of length bytes. |
| */ |
| MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length) |
| { |
| return ZSTD_ipow(prime8bytes, length - 1); |
| } |
| |
| /* ZSTD_rollingHash_rotate() : |
| * Rotate the rolling hash by one byte. |
| */ |
| MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower) |
| { |
| hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower; |
| hash *= prime8bytes; |
| hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET; |
| return hash; |
| } |
| |
| /*-************************************* |
| * Round buffer management |
| ***************************************/ |
| #if (ZSTD_WINDOWLOG_MAX_64 > 31) |
| # error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX" |
| #endif |
| /* Max current allowed */ |
| #define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX)) |
| /* Maximum chunk size before overflow correction needs to be called again */ |
| #define ZSTD_CHUNKSIZE_MAX \ |
| ( ((U32)-1) /* Maximum ending current index */ \ |
| - ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */ |
| |
| /* |
| * ZSTD_window_clear(): |
| * Clears the window containing the history by simply setting it to empty. |
| */ |
| MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window) |
| { |
| size_t const endT = (size_t)(window->nextSrc - window->base); |
| U32 const end = (U32)endT; |
| |
| window->lowLimit = end; |
| window->dictLimit = end; |
| } |
| |
| MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window) |
| { |
| return window.dictLimit == ZSTD_WINDOW_START_INDEX && |
| window.lowLimit == ZSTD_WINDOW_START_INDEX && |
| (window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX; |
| } |
| |
| /* |
| * ZSTD_window_hasExtDict(): |
| * Returns non-zero if the window has a non-empty extDict. |
| */ |
| MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window) |
| { |
| return window.lowLimit < window.dictLimit; |
| } |
| |
| /* |
| * ZSTD_matchState_dictMode(): |
| * Inspects the provided matchState and figures out what dictMode should be |
| * passed to the compressor. |
| */ |
| MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms) |
| { |
| return ZSTD_window_hasExtDict(ms->window) ? |
| ZSTD_extDict : |
| ms->dictMatchState != NULL ? |
| (ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) : |
| ZSTD_noDict; |
| } |
| |
| /* Defining this macro to non-zero tells zstd to run the overflow correction |
| * code much more frequently. This is very inefficient, and should only be |
| * used for tests and fuzzers. |
| */ |
| #ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY |
| # ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| # define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1 |
| # else |
| # define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0 |
| # endif |
| #endif |
| |
| /* |
| * ZSTD_window_canOverflowCorrect(): |
| * Returns non-zero if the indices are large enough for overflow correction |
| * to work correctly without impacting compression ratio. |
| */ |
| MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window, |
| U32 cycleLog, |
| U32 maxDist, |
| U32 loadedDictEnd, |
| void const* src) |
| { |
| U32 const cycleSize = 1u << cycleLog; |
| U32 const curr = (U32)((BYTE const*)src - window.base); |
| U32 const minIndexToOverflowCorrect = cycleSize |
| + MAX(maxDist, cycleSize) |
| + ZSTD_WINDOW_START_INDEX; |
| |
| /* Adjust the min index to backoff the overflow correction frequency, |
| * so we don't waste too much CPU in overflow correction. If this |
| * computation overflows we don't really care, we just need to make |
| * sure it is at least minIndexToOverflowCorrect. |
| */ |
| U32 const adjustment = window.nbOverflowCorrections + 1; |
| U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment, |
| minIndexToOverflowCorrect); |
| U32 const indexLargeEnough = curr > adjustedIndex; |
| |
| /* Only overflow correct early if the dictionary is invalidated already, |
| * so we don't hurt compression ratio. |
| */ |
| U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd; |
| |
| return indexLargeEnough && dictionaryInvalidated; |
| } |
| |
| /* |
| * ZSTD_window_needOverflowCorrection(): |
| * Returns non-zero if the indices are getting too large and need overflow |
| * protection. |
| */ |
| MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window, |
| U32 cycleLog, |
| U32 maxDist, |
| U32 loadedDictEnd, |
| void const* src, |
| void const* srcEnd) |
| { |
| U32 const curr = (U32)((BYTE const*)srcEnd - window.base); |
| if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) { |
| if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) { |
| return 1; |
| } |
| } |
| return curr > ZSTD_CURRENT_MAX; |
| } |
| |
| /* |
| * ZSTD_window_correctOverflow(): |
| * Reduces the indices to protect from index overflow. |
| * Returns the correction made to the indices, which must be applied to every |
| * stored index. |
| * |
| * The least significant cycleLog bits of the indices must remain the same, |
| * which may be 0. Every index up to maxDist in the past must be valid. |
| */ |
| MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog, |
| U32 maxDist, void const* src) |
| { |
| /* preemptive overflow correction: |
| * 1. correction is large enough: |
| * lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog |
| * 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog |
| * |
| * current - newCurrent |
| * > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog) |
| * > (3<<29) - (1<<chainLog) |
| * > (3<<29) - (1<<30) (NOTE: chainLog <= 30) |
| * > 1<<29 |
| * |
| * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow: |
| * After correction, current is less than (1<<chainLog + 1<<windowLog). |
| * In 64-bit mode we are safe, because we have 64-bit ptrdiff_t. |
| * In 32-bit mode we are safe, because (chainLog <= 29), so |
| * ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32. |
| * 3. (cctx->lowLimit + 1<<windowLog) < 1<<32: |
| * windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32. |
| */ |
| U32 const cycleSize = 1u << cycleLog; |
| U32 const cycleMask = cycleSize - 1; |
| U32 const curr = (U32)((BYTE const*)src - window->base); |
| U32 const currentCycle = curr & cycleMask; |
| /* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */ |
| U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX |
| ? MAX(cycleSize, ZSTD_WINDOW_START_INDEX) |
| : 0; |
| U32 const newCurrent = currentCycle |
| + currentCycleCorrection |
| + MAX(maxDist, cycleSize); |
| U32 const correction = curr - newCurrent; |
| /* maxDist must be a power of two so that: |
| * (newCurrent & cycleMask) == (curr & cycleMask) |
| * This is required to not corrupt the chains / binary tree. |
| */ |
| assert((maxDist & (maxDist - 1)) == 0); |
| assert((curr & cycleMask) == (newCurrent & cycleMask)); |
| assert(curr > newCurrent); |
| if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) { |
| /* Loose bound, should be around 1<<29 (see above) */ |
| assert(correction > 1<<28); |
| } |
| |
| window->base += correction; |
| window->dictBase += correction; |
| if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) { |
| window->lowLimit = ZSTD_WINDOW_START_INDEX; |
| } else { |
| window->lowLimit -= correction; |
| } |
| if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) { |
| window->dictLimit = ZSTD_WINDOW_START_INDEX; |
| } else { |
| window->dictLimit -= correction; |
| } |
| |
| /* Ensure we can still reference the full window. */ |
| assert(newCurrent >= maxDist); |
| assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX); |
| /* Ensure that lowLimit and dictLimit didn't underflow. */ |
| assert(window->lowLimit <= newCurrent); |
| assert(window->dictLimit <= newCurrent); |
| |
| ++window->nbOverflowCorrections; |
| |
| DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction, |
| window->lowLimit); |
| return correction; |
| } |
| |
| /* |
| * ZSTD_window_enforceMaxDist(): |
| * Updates lowLimit so that: |
| * (srcEnd - base) - lowLimit == maxDist + loadedDictEnd |
| * |
| * It ensures index is valid as long as index >= lowLimit. |
| * This must be called before a block compression call. |
| * |
| * loadedDictEnd is only defined if a dictionary is in use for current compression. |
| * As the name implies, loadedDictEnd represents the index at end of dictionary. |
| * The value lies within context's referential, it can be directly compared to blockEndIdx. |
| * |
| * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0. |
| * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit. |
| * This is because dictionaries are allowed to be referenced fully |
| * as long as the last byte of the dictionary is in the window. |
| * Once input has progressed beyond window size, dictionary cannot be referenced anymore. |
| * |
| * In normal dict mode, the dictionary lies between lowLimit and dictLimit. |
| * In dictMatchState mode, lowLimit and dictLimit are the same, |
| * and the dictionary is below them. |
| * forceWindow and dictMatchState are therefore incompatible. |
| */ |
| MEM_STATIC void |
| ZSTD_window_enforceMaxDist(ZSTD_window_t* window, |
| const void* blockEnd, |
| U32 maxDist, |
| U32* loadedDictEndPtr, |
| const ZSTD_matchState_t** dictMatchStatePtr) |
| { |
| U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base); |
| U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0; |
| DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u", |
| (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd); |
| |
| /* - When there is no dictionary : loadedDictEnd == 0. |
| In which case, the test (blockEndIdx > maxDist) is merely to avoid |
| overflowing next operation `newLowLimit = blockEndIdx - maxDist`. |
| - When there is a standard dictionary : |
| Index referential is copied from the dictionary, |
| which means it starts from 0. |
| In which case, loadedDictEnd == dictSize, |
| and it makes sense to compare `blockEndIdx > maxDist + dictSize` |
| since `blockEndIdx` also starts from zero. |
| - When there is an attached dictionary : |
| loadedDictEnd is expressed within the referential of the context, |
| so it can be directly compared against blockEndIdx. |
| */ |
| if (blockEndIdx > maxDist + loadedDictEnd) { |
| U32 const newLowLimit = blockEndIdx - maxDist; |
| if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit; |
| if (window->dictLimit < window->lowLimit) { |
| DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u", |
| (unsigned)window->dictLimit, (unsigned)window->lowLimit); |
| window->dictLimit = window->lowLimit; |
| } |
| /* On reaching window size, dictionaries are invalidated */ |
| if (loadedDictEndPtr) *loadedDictEndPtr = 0; |
| if (dictMatchStatePtr) *dictMatchStatePtr = NULL; |
| } |
| } |
| |
| /* Similar to ZSTD_window_enforceMaxDist(), |
| * but only invalidates dictionary |
| * when input progresses beyond window size. |
| * assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL) |
| * loadedDictEnd uses same referential as window->base |
| * maxDist is the window size */ |
| MEM_STATIC void |
| ZSTD_checkDictValidity(const ZSTD_window_t* window, |
| const void* blockEnd, |
| U32 maxDist, |
| U32* loadedDictEndPtr, |
| const ZSTD_matchState_t** dictMatchStatePtr) |
| { |
| assert(loadedDictEndPtr != NULL); |
| assert(dictMatchStatePtr != NULL); |
| { U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base); |
| U32 const loadedDictEnd = *loadedDictEndPtr; |
| DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u", |
| (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd); |
| assert(blockEndIdx >= loadedDictEnd); |
| |
| if (blockEndIdx > loadedDictEnd + maxDist) { |
| /* On reaching window size, dictionaries are invalidated. |
| * For simplification, if window size is reached anywhere within next block, |
| * the dictionary is invalidated for the full block. |
| */ |
| DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)"); |
| *loadedDictEndPtr = 0; |
| *dictMatchStatePtr = NULL; |
| } else { |
| if (*loadedDictEndPtr != 0) { |
| DEBUGLOG(6, "dictionary considered valid for current block"); |
| } } } |
| } |
| |
| MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) { |
| ZSTD_memset(window, 0, sizeof(*window)); |
| window->base = (BYTE const*)" "; |
| window->dictBase = (BYTE const*)" "; |
| ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */ |
| window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */ |
| window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */ |
| window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */ |
| window->nbOverflowCorrections = 0; |
| } |
| |
| /* |
| * ZSTD_window_update(): |
| * Updates the window by appending [src, src + srcSize) to the window. |
| * If it is not contiguous, the current prefix becomes the extDict, and we |
| * forget about the extDict. Handles overlap of the prefix and extDict. |
| * Returns non-zero if the segment is contiguous. |
| */ |
| MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window, |
| void const* src, size_t srcSize, |
| int forceNonContiguous) |
| { |
| BYTE const* const ip = (BYTE const*)src; |
| U32 contiguous = 1; |
| DEBUGLOG(5, "ZSTD_window_update"); |
| if (srcSize == 0) |
| return contiguous; |
| assert(window->base != NULL); |
| assert(window->dictBase != NULL); |
| /* Check if blocks follow each other */ |
| if (src != window->nextSrc || forceNonContiguous) { |
| /* not contiguous */ |
| size_t const distanceFromBase = (size_t)(window->nextSrc - window->base); |
| DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit); |
| window->lowLimit = window->dictLimit; |
| assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */ |
| window->dictLimit = (U32)distanceFromBase; |
| window->dictBase = window->base; |
| window->base = ip - distanceFromBase; |
| /* ms->nextToUpdate = window->dictLimit; */ |
| if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */ |
| contiguous = 0; |
| } |
| window->nextSrc = ip + srcSize; |
| /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */ |
| if ( (ip+srcSize > window->dictBase + window->lowLimit) |
| & (ip < window->dictBase + window->dictLimit)) { |
| ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase; |
| U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx; |
| window->lowLimit = lowLimitMax; |
| DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit); |
| } |
| return contiguous; |
| } |
| |
| /* |
| * Returns the lowest allowed match index. It may either be in the ext-dict or the prefix. |
| */ |
| MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog) |
| { |
| U32 const maxDistance = 1U << windowLog; |
| U32 const lowestValid = ms->window.lowLimit; |
| U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; |
| U32 const isDictionary = (ms->loadedDictEnd != 0); |
| /* When using a dictionary the entire dictionary is valid if a single byte of the dictionary |
| * is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't |
| * valid for the entire block. So this check is sufficient to find the lowest valid match index. |
| */ |
| U32 const matchLowest = isDictionary ? lowestValid : withinWindow; |
| return matchLowest; |
| } |
| |
| /* |
| * Returns the lowest allowed match index in the prefix. |
| */ |
| MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog) |
| { |
| U32 const maxDistance = 1U << windowLog; |
| U32 const lowestValid = ms->window.dictLimit; |
| U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; |
| U32 const isDictionary = (ms->loadedDictEnd != 0); |
| /* When computing the lowest prefix index we need to take the dictionary into account to handle |
| * the edge case where the dictionary and the source are contiguous in memory. |
| */ |
| U32 const matchLowest = isDictionary ? lowestValid : withinWindow; |
| return matchLowest; |
| } |
| |
| |
| |
| /* debug functions */ |
| #if (DEBUGLEVEL>=2) |
| |
| MEM_STATIC double ZSTD_fWeight(U32 rawStat) |
| { |
| U32 const fp_accuracy = 8; |
| U32 const fp_multiplier = (1 << fp_accuracy); |
| U32 const newStat = rawStat + 1; |
| U32 const hb = ZSTD_highbit32(newStat); |
| U32 const BWeight = hb * fp_multiplier; |
| U32 const FWeight = (newStat << fp_accuracy) >> hb; |
| U32 const weight = BWeight + FWeight; |
| assert(hb + fp_accuracy < 31); |
| return (double)weight / fp_multiplier; |
| } |
| |
| /* display a table content, |
| * listing each element, its frequency, and its predicted bit cost */ |
| MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max) |
| { |
| unsigned u, sum; |
| for (u=0, sum=0; u<=max; u++) sum += table[u]; |
| DEBUGLOG(2, "total nb elts: %u", sum); |
| for (u=0; u<=max; u++) { |
| DEBUGLOG(2, "%2u: %5u (%.2f)", |
| u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) ); |
| } |
| } |
| |
| #endif |
| |
| |
| |
| /* =============================================================== |
| * Shared internal declarations |
| * These prototypes may be called from sources not in lib/compress |
| * =============================================================== */ |
| |
| /* ZSTD_loadCEntropy() : |
| * dict : must point at beginning of a valid zstd dictionary. |
| * return : size of dictionary header (size of magic number + dict ID + entropy tables) |
| * assumptions : magic number supposed already checked |
| * and dictSize >= 8 */ |
| size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace, |
| const void* const dict, size_t dictSize); |
| |
| void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs); |
| |
| /* ============================================================== |
| * Private declarations |
| * These prototypes shall only be called from within lib/compress |
| * ============================================================== */ |
| |
| /* ZSTD_getCParamsFromCCtxParams() : |
| * cParams are built depending on compressionLevel, src size hints, |
| * LDM and manually set compression parameters. |
| * Note: srcSizeHint == 0 means 0! |
| */ |
| ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( |
| const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode); |
| |
| /*! ZSTD_initCStream_internal() : |
| * Private use only. Init streaming operation. |
| * expects params to be valid. |
| * must receive dict, or cdict, or none, but not both. |
| * @return : 0, or an error code */ |
| size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, |
| const void* dict, size_t dictSize, |
| const ZSTD_CDict* cdict, |
| const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize); |
| |
| void ZSTD_resetSeqStore(seqStore_t* ssPtr); |
| |
| /*! ZSTD_getCParamsFromCDict() : |
| * as the name implies */ |
| ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict); |
| |
| /* ZSTD_compressBegin_advanced_internal() : |
| * Private use only. To be called from zstdmt_compress.c. */ |
| size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, |
| const void* dict, size_t dictSize, |
| ZSTD_dictContentType_e dictContentType, |
| ZSTD_dictTableLoadMethod_e dtlm, |
| const ZSTD_CDict* cdict, |
| const ZSTD_CCtx_params* params, |
| unsigned long long pledgedSrcSize); |
| |
| /* ZSTD_compress_advanced_internal() : |
| * Private use only. To be called from zstdmt_compress.c. */ |
| size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize, |
| const ZSTD_CCtx_params* params); |
| |
| |
| /* ZSTD_writeLastEmptyBlock() : |
| * output an empty Block with end-of-frame mark to complete a frame |
| * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) |
| * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize) |
| */ |
| size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity); |
| |
| |
| /* ZSTD_referenceExternalSequences() : |
| * Must be called before starting a compression operation. |
| * seqs must parse a prefix of the source. |
| * This cannot be used when long range matching is enabled. |
| * Zstd will use these sequences, and pass the literals to a secondary block |
| * compressor. |
| * @return : An error code on failure. |
| * NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory |
| * access and data corruption. |
| */ |
| size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq); |
| |
| /* ZSTD_cycleLog() : |
| * condition for correct operation : hashLog > 1 */ |
| U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat); |
| |
| /* ZSTD_CCtx_trace() : |
| * Trace the end of a compression call. |
| */ |
| void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize); |
| |
| #endif /* ZSTD_COMPRESS_H */ |