blob: cf76523a219456dda0891ac9e6f21fb4eadf7e48 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* VGIC MMIO handling functions
*/
#include <linux/bitops.h>
#include <linux/bsearch.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/iodev.h>
#include <kvm/arm_arch_timer.h>
#include <kvm/arm_vgic.h>
#include "vgic.h"
#include "vgic-mmio.h"
unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return 0;
}
unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return -1UL;
}
void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len, unsigned long val)
{
/* Ignore */
}
int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len, unsigned long val)
{
/* Ignore */
return 0;
}
unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 value = 0;
int i;
/* Loop over all IRQs affected by this read */
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
if (irq->group)
value |= BIT(i);
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
static void vgic_update_vsgi(struct vgic_irq *irq)
{
WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
}
void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len, unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
irq->group = !!(val & BIT(i));
if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
vgic_update_vsgi(irq);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
} else {
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
}
vgic_put_irq(vcpu->kvm, irq);
}
}
/*
* Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
* of the enabled bit, so there is only one function for both here.
*/
unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 value = 0;
int i;
/* Loop over all IRQs affected by this read */
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
if (irq->enabled)
value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
if (!irq->enabled) {
struct irq_data *data;
irq->enabled = true;
data = &irq_to_desc(irq->host_irq)->irq_data;
while (irqd_irq_disabled(data))
enable_irq(irq->host_irq);
}
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
continue;
} else if (vgic_irq_is_mapped_level(irq)) {
bool was_high = irq->line_level;
/*
* We need to update the state of the interrupt because
* the guest might have changed the state of the device
* while the interrupt was disabled at the VGIC level.
*/
irq->line_level = vgic_get_phys_line_level(irq);
/*
* Deactivate the physical interrupt so the GIC will let
* us know when it is asserted again.
*/
if (!irq->active && was_high && !irq->line_level)
vgic_irq_set_phys_active(irq, false);
}
irq->enabled = true;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
disable_irq_nosync(irq->host_irq);
irq->enabled = false;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
irq->enabled = true;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
return 0;
}
int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
irq->enabled = false;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
return 0;
}
static unsigned long __read_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
bool is_user)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 value = 0;
int i;
/* Loop over all IRQs affected by this read */
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
unsigned long flags;
bool val;
/*
* When used from userspace with a GICv3 model:
*
* Pending state of interrupt is latched in pending_latch
* variable. Userspace will save and restore pending state
* and line_level separately.
* Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
* for handling of ISPENDR and ICPENDR.
*/
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
int err;
val = false;
err = irq_get_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
&val);
WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
} else if (!is_user && vgic_irq_is_mapped_level(irq)) {
val = vgic_get_phys_line_level(irq);
} else {
switch (vcpu->kvm->arch.vgic.vgic_model) {
case KVM_DEV_TYPE_ARM_VGIC_V3:
if (is_user) {
val = irq->pending_latch;
break;
}
fallthrough;
default:
val = irq_is_pending(irq);
break;
}
}
value |= ((u32)val << i);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return __read_pending(vcpu, addr, len, false);
}
unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return __read_pending(vcpu, addr, len, true);
}
static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
{
return (vgic_irq_is_sgi(irq->intid) &&
vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
}
static void __set_pending(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len,
unsigned long val, bool is_user)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
/* GICD_ISPENDR0 SGI bits are WI when written from the guest. */
if (is_vgic_v2_sgi(vcpu, irq) && !is_user) {
vgic_put_irq(vcpu->kvm, irq);
continue;
}
raw_spin_lock_irqsave(&irq->irq_lock, flags);
/*
* GICv2 SGIs are terribly broken. We can't restore
* the source of the interrupt, so just pick the vcpu
* itself as the source...
*/
if (is_vgic_v2_sgi(vcpu, irq))
irq->source |= BIT(vcpu->vcpu_id);
if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
/* HW SGI? Ask the GIC to inject it */
int err;
err = irq_set_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
true);
WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
continue;
}
irq->pending_latch = true;
if (irq->hw && !is_user)
vgic_irq_set_phys_active(irq, true);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
__set_pending(vcpu, addr, len, val, false);
}
int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
__set_pending(vcpu, addr, len, val, true);
return 0;
}
/* Must be called with irq->irq_lock held */
static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
{
irq->pending_latch = false;
/*
* We don't want the guest to effectively mask the physical
* interrupt by doing a write to SPENDR followed by a write to
* CPENDR for HW interrupts, so we clear the active state on
* the physical side if the virtual interrupt is not active.
* This may lead to taking an additional interrupt on the
* host, but that should not be a problem as the worst that
* can happen is an additional vgic injection. We also clear
* the pending state to maintain proper semantics for edge HW
* interrupts.
*/
vgic_irq_set_phys_pending(irq, false);
if (!irq->active)
vgic_irq_set_phys_active(irq, false);
}
static void __clear_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val, bool is_user)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
/* GICD_ICPENDR0 SGI bits are WI when written from the guest. */
if (is_vgic_v2_sgi(vcpu, irq) && !is_user) {
vgic_put_irq(vcpu->kvm, irq);
continue;
}
raw_spin_lock_irqsave(&irq->irq_lock, flags);
/*
* More fun with GICv2 SGIs! If we're clearing one of them
* from userspace, which source vcpu to clear? Let's not
* even think of it, and blow the whole set.
*/
if (is_vgic_v2_sgi(vcpu, irq))
irq->source = 0;
if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
/* HW SGI? Ask the GIC to clear its pending bit */
int err;
err = irq_set_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
false);
WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
continue;
}
if (irq->hw && !is_user)
vgic_hw_irq_cpending(vcpu, irq);
else
irq->pending_latch = false;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
__clear_pending(vcpu, addr, len, val, false);
}
int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
__clear_pending(vcpu, addr, len, val, true);
return 0;
}
/*
* If we are fiddling with an IRQ's active state, we have to make sure the IRQ
* is not queued on some running VCPU's LRs, because then the change to the
* active state can be overwritten when the VCPU's state is synced coming back
* from the guest.
*
* For shared interrupts as well as GICv3 private interrupts accessed from the
* non-owning CPU, we have to stop all the VCPUs because interrupts can be
* migrated while we don't hold the IRQ locks and we don't want to be chasing
* moving targets.
*
* For GICv2 private interrupts we don't have to do anything because
* userspace accesses to the VGIC state already require all VCPUs to be
* stopped, and only the VCPU itself can modify its private interrupts
* active state, which guarantees that the VCPU is not running.
*/
static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
{
if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
vcpu != kvm_get_running_vcpu()) ||
intid >= VGIC_NR_PRIVATE_IRQS)
kvm_arm_halt_guest(vcpu->kvm);
}
/* See vgic_access_active_prepare */
static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
{
if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
vcpu != kvm_get_running_vcpu()) ||
intid >= VGIC_NR_PRIVATE_IRQS)
kvm_arm_resume_guest(vcpu->kvm);
}
static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 value = 0;
int i;
/* Loop over all IRQs affected by this read */
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
/*
* Even for HW interrupts, don't evaluate the HW state as
* all the guest is interested in is the virtual state.
*/
if (irq->active)
value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 val;
mutex_lock(&vcpu->kvm->arch.config_lock);
vgic_access_active_prepare(vcpu, intid);
val = __vgic_mmio_read_active(vcpu, addr, len);
vgic_access_active_finish(vcpu, intid);
mutex_unlock(&vcpu->kvm->arch.config_lock);
return val;
}
unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return __vgic_mmio_read_active(vcpu, addr, len);
}
/* Must be called with irq->irq_lock held */
static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
bool active, bool is_uaccess)
{
if (is_uaccess)
return;
irq->active = active;
vgic_irq_set_phys_active(irq, active);
}
static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
bool active)
{
unsigned long flags;
struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
} else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
/*
* GICv4.1 VSGI feature doesn't track an active state,
* so let's not kid ourselves, there is nothing we can
* do here.
*/
irq->active = false;
} else {
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u8 active_source;
irq->active = active;
/*
* The GICv2 architecture indicates that the source CPUID for
* an SGI should be provided during an EOI which implies that
* the active state is stored somewhere, but at the same time
* this state is not architecturally exposed anywhere and we
* have no way of knowing the right source.
*
* This may lead to a VCPU not being able to receive
* additional instances of a particular SGI after migration
* for a GICv2 VM on some GIC implementations. Oh well.
*/
active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
active && vgic_irq_is_sgi(irq->intid))
irq->active_source = active_source;
}
if (irq->active)
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
else
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
}
static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
vgic_mmio_change_active(vcpu, irq, false);
vgic_put_irq(vcpu->kvm, irq);
}
}
void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
mutex_lock(&vcpu->kvm->arch.config_lock);
vgic_access_active_prepare(vcpu, intid);
__vgic_mmio_write_cactive(vcpu, addr, len, val);
vgic_access_active_finish(vcpu, intid);
mutex_unlock(&vcpu->kvm->arch.config_lock);
}
int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
__vgic_mmio_write_cactive(vcpu, addr, len, val);
return 0;
}
static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
vgic_mmio_change_active(vcpu, irq, true);
vgic_put_irq(vcpu->kvm, irq);
}
}
void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
mutex_lock(&vcpu->kvm->arch.config_lock);
vgic_access_active_prepare(vcpu, intid);
__vgic_mmio_write_sactive(vcpu, addr, len, val);
vgic_access_active_finish(vcpu, intid);
mutex_unlock(&vcpu->kvm->arch.config_lock);
}
int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
__vgic_mmio_write_sactive(vcpu, addr, len, val);
return 0;
}
unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
int i;
u64 val = 0;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
val |= (u64)irq->priority << (i * 8);
vgic_put_irq(vcpu->kvm, irq);
}
return val;
}
/*
* We currently don't handle changing the priority of an interrupt that
* is already pending on a VCPU. If there is a need for this, we would
* need to make this VCPU exit and re-evaluate the priorities, potentially
* leading to this interrupt getting presented now to the guest (if it has
* been masked by the priority mask before).
*/
void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
int i;
unsigned long flags;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
/* Narrow the priority range to what we actually support */
irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
if (irq->hw && vgic_irq_is_sgi(irq->intid))
vgic_update_vsgi(irq);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
u32 value = 0;
int i;
for (i = 0; i < len * 4; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
if (irq->config == VGIC_CONFIG_EDGE)
value |= (2U << (i * 2));
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
int i;
unsigned long flags;
for (i = 0; i < len * 4; i++) {
struct vgic_irq *irq;
/*
* The configuration cannot be changed for SGIs in general,
* for PPIs this is IMPLEMENTATION DEFINED. The arch timer
* code relies on PPIs being level triggered, so we also
* make them read-only here.
*/
if (intid + i < VGIC_NR_PRIVATE_IRQS)
continue;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (test_bit(i * 2 + 1, &val))
irq->config = VGIC_CONFIG_EDGE;
else
irq->config = VGIC_CONFIG_LEVEL;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
{
int i;
u32 val = 0;
int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
for (i = 0; i < 32; i++) {
struct vgic_irq *irq;
if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
continue;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
val |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
}
return val;
}
void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
const u32 val)
{
int i;
int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
unsigned long flags;
for (i = 0; i < 32; i++) {
struct vgic_irq *irq;
bool new_level;
if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
continue;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
/*
* Line level is set irrespective of irq type
* (level or edge) to avoid dependency that VM should
* restore irq config before line level.
*/
new_level = !!(val & (1U << i));
raw_spin_lock_irqsave(&irq->irq_lock, flags);
irq->line_level = new_level;
if (new_level)
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
else
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
static int match_region(const void *key, const void *elt)
{
const unsigned int offset = (unsigned long)key;
const struct vgic_register_region *region = elt;
if (offset < region->reg_offset)
return -1;
if (offset >= region->reg_offset + region->len)
return 1;
return 0;
}
const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region *regions,
int nr_regions, unsigned int offset)
{
return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
sizeof(regions[0]), match_region);
}
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_set_vmcr(vcpu, vmcr);
else
vgic_v3_set_vmcr(vcpu, vmcr);
}
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_get_vmcr(vcpu, vmcr);
else
vgic_v3_get_vmcr(vcpu, vmcr);
}
/*
* kvm_mmio_read_buf() returns a value in a format where it can be converted
* to a byte array and be directly observed as the guest wanted it to appear
* in memory if it had done the store itself, which is LE for the GIC, as the
* guest knows the GIC is always LE.
*
* We convert this value to the CPUs native format to deal with it as a data
* value.
*/
unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
{
unsigned long data = kvm_mmio_read_buf(val, len);
switch (len) {
case 1:
return data;
case 2:
return le16_to_cpu(data);
case 4:
return le32_to_cpu(data);
default:
return le64_to_cpu(data);
}
}
/*
* kvm_mmio_write_buf() expects a value in a format such that if converted to
* a byte array it is observed as the guest would see it if it could perform
* the load directly. Since the GIC is LE, and the guest knows this, the
* guest expects a value in little endian format.
*
* We convert the data value from the CPUs native format to LE so that the
* value is returned in the proper format.
*/
void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
unsigned long data)
{
switch (len) {
case 1:
break;
case 2:
data = cpu_to_le16(data);
break;
case 4:
data = cpu_to_le32(data);
break;
default:
data = cpu_to_le64(data);
}
kvm_mmio_write_buf(buf, len, data);
}
static
struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
{
return container_of(dev, struct vgic_io_device, dev);
}
static bool check_region(const struct kvm *kvm,
const struct vgic_register_region *region,
gpa_t addr, int len)
{
int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
switch (len) {
case sizeof(u8):
flags = VGIC_ACCESS_8bit;
break;
case sizeof(u32):
flags = VGIC_ACCESS_32bit;
break;
case sizeof(u64):
flags = VGIC_ACCESS_64bit;
break;
default:
return false;
}
if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
if (!region->bits_per_irq)
return true;
/* Do we access a non-allocated IRQ? */
return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
}
return false;
}
const struct vgic_register_region *
vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
gpa_t addr, int len)
{
const struct vgic_register_region *region;
region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
addr - iodev->base_addr);
if (!region || !check_region(vcpu->kvm, region, addr, len))
return NULL;
return region;
}
static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
gpa_t addr, u32 *val)
{
const struct vgic_register_region *region;
struct kvm_vcpu *r_vcpu;
region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
if (!region) {
*val = 0;
return 0;
}
r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
if (region->uaccess_read)
*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
else
*val = region->read(r_vcpu, addr, sizeof(u32));
return 0;
}
static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
gpa_t addr, const u32 *val)
{
const struct vgic_register_region *region;
struct kvm_vcpu *r_vcpu;
region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
if (!region)
return 0;
r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
if (region->uaccess_write)
return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
region->write(r_vcpu, addr, sizeof(u32), *val);
return 0;
}
/*
* Userland access to VGIC registers.
*/
int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
bool is_write, int offset, u32 *val)
{
if (is_write)
return vgic_uaccess_write(vcpu, dev, offset, val);
else
return vgic_uaccess_read(vcpu, dev, offset, val);
}
static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
gpa_t addr, int len, void *val)
{
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
const struct vgic_register_region *region;
unsigned long data = 0;
region = vgic_get_mmio_region(vcpu, iodev, addr, len);
if (!region) {
memset(val, 0, len);
return 0;
}
switch (iodev->iodev_type) {
case IODEV_CPUIF:
data = region->read(vcpu, addr, len);
break;
case IODEV_DIST:
data = region->read(vcpu, addr, len);
break;
case IODEV_REDIST:
data = region->read(iodev->redist_vcpu, addr, len);
break;
case IODEV_ITS:
data = region->its_read(vcpu->kvm, iodev->its, addr, len);
break;
}
vgic_data_host_to_mmio_bus(val, len, data);
return 0;
}
static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
gpa_t addr, int len, const void *val)
{
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
const struct vgic_register_region *region;
unsigned long data = vgic_data_mmio_bus_to_host(val, len);
region = vgic_get_mmio_region(vcpu, iodev, addr, len);
if (!region)
return 0;
switch (iodev->iodev_type) {
case IODEV_CPUIF:
region->write(vcpu, addr, len, data);
break;
case IODEV_DIST:
region->write(vcpu, addr, len, data);
break;
case IODEV_REDIST:
region->write(iodev->redist_vcpu, addr, len, data);
break;
case IODEV_ITS:
region->its_write(vcpu->kvm, iodev->its, addr, len, data);
break;
}
return 0;
}
const struct kvm_io_device_ops kvm_io_gic_ops = {
.read = dispatch_mmio_read,
.write = dispatch_mmio_write,
};
int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
enum vgic_type type)
{
struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
unsigned int len;
switch (type) {
case VGIC_V2:
len = vgic_v2_init_dist_iodev(io_device);
break;
case VGIC_V3:
len = vgic_v3_init_dist_iodev(io_device);
break;
default:
BUG_ON(1);
}
io_device->base_addr = dist_base_address;
io_device->iodev_type = IODEV_DIST;
io_device->redist_vcpu = NULL;
return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
len, &io_device->dev);
}