| #!/usr/bin/env perl |
| # SPDX-License-Identifier: GPL-2.0 |
| |
| # This code is taken from the OpenSSL project but the author (Andy Polyakov) |
| # has relicensed it under the GPLv2. Therefore this program is free software; |
| # you can redistribute it and/or modify it under the terms of the GNU General |
| # Public License version 2 as published by the Free Software Foundation. |
| # |
| # The original headers, including the original license headers, are |
| # included below for completeness. |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see https://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # GHASH for PowerISA v2.07. |
| # |
| # July 2014 |
| # |
| # Accurate performance measurements are problematic, because it's |
| # always virtualized setup with possibly throttled processor. |
| # Relative comparison is therefore more informative. This initial |
| # version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x |
| # faster than "4-bit" integer-only compiler-generated 64-bit code. |
| # "Initial version" means that there is room for futher improvement. |
| |
| $flavour=shift; |
| $output =shift; |
| |
| if ($flavour =~ /64/) { |
| $SIZE_T=8; |
| $LRSAVE=2*$SIZE_T; |
| $STU="stdu"; |
| $POP="ld"; |
| $PUSH="std"; |
| } elsif ($flavour =~ /32/) { |
| $SIZE_T=4; |
| $LRSAVE=$SIZE_T; |
| $STU="stwu"; |
| $POP="lwz"; |
| $PUSH="stw"; |
| } else { die "nonsense $flavour"; } |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or |
| die "can't locate ppc-xlate.pl"; |
| |
| open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!"; |
| |
| my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block |
| |
| my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3)); |
| my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12)); |
| my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19)); |
| my $vrsave="r12"; |
| my ($t4,$t5,$t6) = ($Hl,$H,$Hh); |
| |
| $code=<<___; |
| .machine "any" |
| |
| .text |
| |
| .globl .gcm_init_p10 |
| lis r0,0xfff0 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $H,0,r4 # load H |
| le?xor r7,r7,r7 |
| le?addi r7,r7,0x8 # need a vperm start with 08 |
| le?lvsr 5,0,r7 |
| le?vspltisb 6,0x0f |
| le?vxor 5,5,6 # set a b-endian mask |
| le?vperm $H,$H,$H,5 |
| |
| vspltisb $xC2,-16 # 0xf0 |
| vspltisb $t0,1 # one |
| vaddubm $xC2,$xC2,$xC2 # 0xe0 |
| vxor $zero,$zero,$zero |
| vor $xC2,$xC2,$t0 # 0xe1 |
| vsldoi $xC2,$xC2,$zero,15 # 0xe1... |
| vsldoi $t1,$zero,$t0,1 # ...1 |
| vaddubm $xC2,$xC2,$xC2 # 0xc2... |
| vspltisb $t2,7 |
| vor $xC2,$xC2,$t1 # 0xc2....01 |
| vspltb $t1,$H,0 # most significant byte |
| vsl $H,$H,$t0 # H<<=1 |
| vsrab $t1,$t1,$t2 # broadcast carry bit |
| vand $t1,$t1,$xC2 |
| vxor $H,$H,$t1 # twisted H |
| |
| vsldoi $H,$H,$H,8 # twist even more ... |
| vsldoi $xC2,$zero,$xC2,8 # 0xc2.0 |
| vsldoi $Hl,$zero,$H,8 # ... and split |
| vsldoi $Hh,$H,$zero,8 |
| |
| stvx_u $xC2,0,r3 # save pre-computed table |
| stvx_u $Hl,r8,r3 |
| stvx_u $H, r9,r3 |
| stvx_u $Hh,r10,r3 |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,2,0 |
| .long 0 |
| .size .gcm_init_p10,.-.gcm_init_p10 |
| |
| .globl .gcm_init_htable |
| lis r0,0xfff0 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $H,0,r4 # load H |
| |
| vspltisb $xC2,-16 # 0xf0 |
| vspltisb $t0,1 # one |
| vaddubm $xC2,$xC2,$xC2 # 0xe0 |
| vxor $zero,$zero,$zero |
| vor $xC2,$xC2,$t0 # 0xe1 |
| vsldoi $xC2,$xC2,$zero,15 # 0xe1... |
| vsldoi $t1,$zero,$t0,1 # ...1 |
| vaddubm $xC2,$xC2,$xC2 # 0xc2... |
| vspltisb $t2,7 |
| vor $xC2,$xC2,$t1 # 0xc2....01 |
| vspltb $t1,$H,0 # most significant byte |
| vsl $H,$H,$t0 # H<<=1 |
| vsrab $t1,$t1,$t2 # broadcast carry bit |
| vand $t1,$t1,$xC2 |
| vxor $IN,$H,$t1 # twisted H |
| |
| vsldoi $H,$IN,$IN,8 # twist even more ... |
| vsldoi $xC2,$zero,$xC2,8 # 0xc2.0 |
| vsldoi $Hl,$zero,$H,8 # ... and split |
| vsldoi $Hh,$H,$zero,8 |
| |
| stvx_u $xC2,0,r3 # save pre-computed table |
| stvx_u $Hl,r8,r3 |
| li r8,0x40 |
| stvx_u $H, r9,r3 |
| li r9,0x50 |
| stvx_u $Hh,r10,r3 |
| li r10,0x60 |
| |
| vpmsumd $Xl,$IN,$Hl # H.lo·H.lo |
| vpmsumd $Xm,$IN,$H # H.hi·H.lo+H.lo·H.hi |
| vpmsumd $Xh,$IN,$Hh # H.hi·H.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $IN1,$Xl,$t1 |
| |
| vsldoi $H2,$IN1,$IN1,8 |
| vsldoi $H2l,$zero,$H2,8 |
| vsldoi $H2h,$H2,$zero,8 |
| |
| stvx_u $H2l,r8,r3 # save H^2 |
| li r8,0x70 |
| stvx_u $H2,r9,r3 |
| li r9,0x80 |
| stvx_u $H2h,r10,r3 |
| li r10,0x90 |
| |
| vpmsumd $Xl,$IN,$H2l # H.lo·H^2.lo |
| vpmsumd $Xl1,$IN1,$H2l # H^2.lo·H^2.lo |
| vpmsumd $Xm,$IN,$H2 # H.hi·H^2.lo+H.lo·H^2.hi |
| vpmsumd $Xm1,$IN1,$H2 # H^2.hi·H^2.lo+H^2.lo·H^2.hi |
| vpmsumd $Xh,$IN,$H2h # H.hi·H^2.hi |
| vpmsumd $Xh1,$IN1,$H2h # H^2.hi·H^2.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st reduction phase |
| vpmsumd $t6,$Xl1,$xC2 # 1st reduction phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vsldoi $t4,$Xm1,$zero,8 |
| vsldoi $t5,$zero,$Xm1,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| vxor $Xl1,$Xl1,$t4 |
| vxor $Xh1,$Xh1,$t5 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vsldoi $Xl1,$Xl1,$Xl1,8 |
| vxor $Xl,$Xl,$t2 |
| vxor $Xl1,$Xl1,$t6 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase |
| vsldoi $t5,$Xl1,$Xl1,8 # 2nd reduction phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vpmsumd $Xl1,$Xl1,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $t5,$t5,$Xh1 |
| vxor $Xl,$Xl,$t1 |
| vxor $Xl1,$Xl1,$t5 |
| |
| vsldoi $H,$Xl,$Xl,8 |
| vsldoi $H2,$Xl1,$Xl1,8 |
| vsldoi $Hl,$zero,$H,8 |
| vsldoi $Hh,$H,$zero,8 |
| vsldoi $H2l,$zero,$H2,8 |
| vsldoi $H2h,$H2,$zero,8 |
| |
| stvx_u $Hl,r8,r3 # save H^3 |
| li r8,0xa0 |
| stvx_u $H,r9,r3 |
| li r9,0xb0 |
| stvx_u $Hh,r10,r3 |
| li r10,0xc0 |
| stvx_u $H2l,r8,r3 # save H^4 |
| stvx_u $H2,r9,r3 |
| stvx_u $H2h,r10,r3 |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,2,0 |
| .long 0 |
| .size .gcm_init_htable,.-.gcm_init_htable |
| |
| .globl .gcm_gmult_p10 |
| lis r0,0xfff8 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $IN,0,$Xip # load Xi |
| |
| lvx_u $Hl,r8,$Htbl # load pre-computed table |
| le?lvsl $lemask,r0,r0 |
| lvx_u $H, r9,$Htbl |
| le?vspltisb $t0,0x07 |
| lvx_u $Hh,r10,$Htbl |
| le?vxor $lemask,$lemask,$t0 |
| lvx_u $xC2,0,$Htbl |
| le?vperm $IN,$IN,$IN,$lemask |
| vxor $zero,$zero,$zero |
| |
| vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo |
| vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi |
| vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd phase |
| vpmsumd $Xl,$Xl,$xC2 |
| vxor $t1,$t1,$Xh |
| vxor $Xl,$Xl,$t1 |
| |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| stvx_u $Xl,0,$Xip # write out Xi |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,2,0 |
| .long 0 |
| .size .gcm_gmult_p10,.-.gcm_gmult_p10 |
| |
| .globl .gcm_ghash_p10 |
| lis r0,0xfff8 |
| li r8,0x10 |
| mfspr $vrsave,256 |
| li r9,0x20 |
| mtspr 256,r0 |
| li r10,0x30 |
| lvx_u $Xl,0,$Xip # load Xi |
| |
| lvx_u $Hl,r8,$Htbl # load pre-computed table |
| le?lvsl $lemask,r0,r0 |
| lvx_u $H, r9,$Htbl |
| le?vspltisb $t0,0x07 |
| lvx_u $Hh,r10,$Htbl |
| le?vxor $lemask,$lemask,$t0 |
| lvx_u $xC2,0,$Htbl |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| vxor $zero,$zero,$zero |
| |
| lvx_u $IN,0,$inp |
| addi $inp,$inp,16 |
| subi $len,$len,16 |
| le?vperm $IN,$IN,$IN,$lemask |
| vxor $IN,$IN,$Xl |
| b Loop |
| |
| .align 5 |
| Loop: |
| subic $len,$len,16 |
| vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo |
| subfe. r0,r0,r0 # borrow?-1:0 |
| vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi |
| and r0,r0,$len |
| vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi |
| add $inp,$inp,r0 |
| |
| vpmsumd $t2,$Xl,$xC2 # 1st phase |
| |
| vsldoi $t0,$Xm,$zero,8 |
| vsldoi $t1,$zero,$Xm,8 |
| vxor $Xl,$Xl,$t0 |
| vxor $Xh,$Xh,$t1 |
| |
| vsldoi $Xl,$Xl,$Xl,8 |
| vxor $Xl,$Xl,$t2 |
| lvx_u $IN,0,$inp |
| addi $inp,$inp,16 |
| |
| vsldoi $t1,$Xl,$Xl,8 # 2nd phase |
| vpmsumd $Xl,$Xl,$xC2 |
| le?vperm $IN,$IN,$IN,$lemask |
| vxor $t1,$t1,$Xh |
| vxor $IN,$IN,$t1 |
| vxor $IN,$IN,$Xl |
| beq Loop # did $len-=16 borrow? |
| |
| vxor $Xl,$Xl,$t1 |
| le?vperm $Xl,$Xl,$Xl,$lemask |
| stvx_u $Xl,0,$Xip # write out Xi |
| |
| mtspr 256,$vrsave |
| blr |
| .long 0 |
| .byte 0,12,0x14,0,0,0,4,0 |
| .long 0 |
| .size .gcm_ghash_p10,.-.gcm_ghash_p10 |
| |
| .asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 2 |
| ___ |
| |
| foreach (split("\n",$code)) { |
| if ($flavour =~ /le$/o) { # little-endian |
| s/le\?//o or |
| s/be\?/#be#/o; |
| } else { |
| s/le\?/#le#/o or |
| s/be\?//o; |
| } |
| print $_,"\n"; |
| } |
| |
| close STDOUT; # enforce flush |