| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/ratelimit.h> |
| #include <linux/sched/mm.h> |
| #include <crypto/hash.h> |
| #include "ctree.h" |
| #include "discard.h" |
| #include "volumes.h" |
| #include "disk-io.h" |
| #include "ordered-data.h" |
| #include "transaction.h" |
| #include "backref.h" |
| #include "extent_io.h" |
| #include "dev-replace.h" |
| #include "raid56.h" |
| #include "block-group.h" |
| #include "zoned.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "file-item.h" |
| #include "scrub.h" |
| #include "raid-stripe-tree.h" |
| |
| /* |
| * This is only the first step towards a full-features scrub. It reads all |
| * extent and super block and verifies the checksums. In case a bad checksum |
| * is found or the extent cannot be read, good data will be written back if |
| * any can be found. |
| * |
| * Future enhancements: |
| * - In case an unrepairable extent is encountered, track which files are |
| * affected and report them |
| * - track and record media errors, throw out bad devices |
| * - add a mode to also read unallocated space |
| */ |
| |
| struct scrub_ctx; |
| |
| /* |
| * The following value only influences the performance. |
| * |
| * This determines how many stripes would be submitted in one go, |
| * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). |
| */ |
| #define SCRUB_STRIPES_PER_GROUP 8 |
| |
| /* |
| * How many groups we have for each sctx. |
| * |
| * This would be 8M per device, the same value as the old scrub in-flight bios |
| * size limit. |
| */ |
| #define SCRUB_GROUPS_PER_SCTX 16 |
| |
| #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) |
| |
| /* |
| * The following value times PAGE_SIZE needs to be large enough to match the |
| * largest node/leaf/sector size that shall be supported. |
| */ |
| #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) |
| |
| /* Represent one sector and its needed info to verify the content. */ |
| struct scrub_sector_verification { |
| bool is_metadata; |
| |
| union { |
| /* |
| * Csum pointer for data csum verification. Should point to a |
| * sector csum inside scrub_stripe::csums. |
| * |
| * NULL if this data sector has no csum. |
| */ |
| u8 *csum; |
| |
| /* |
| * Extra info for metadata verification. All sectors inside a |
| * tree block share the same generation. |
| */ |
| u64 generation; |
| }; |
| }; |
| |
| enum scrub_stripe_flags { |
| /* Set when @mirror_num, @dev, @physical and @logical are set. */ |
| SCRUB_STRIPE_FLAG_INITIALIZED, |
| |
| /* Set when the read-repair is finished. */ |
| SCRUB_STRIPE_FLAG_REPAIR_DONE, |
| |
| /* |
| * Set for data stripes if it's triggered from P/Q stripe. |
| * During such scrub, we should not report errors in data stripes, nor |
| * update the accounting. |
| */ |
| SCRUB_STRIPE_FLAG_NO_REPORT, |
| }; |
| |
| #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) |
| |
| /* |
| * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. |
| */ |
| struct scrub_stripe { |
| struct scrub_ctx *sctx; |
| struct btrfs_block_group *bg; |
| |
| struct page *pages[SCRUB_STRIPE_PAGES]; |
| struct scrub_sector_verification *sectors; |
| |
| struct btrfs_device *dev; |
| u64 logical; |
| u64 physical; |
| |
| u16 mirror_num; |
| |
| /* Should be BTRFS_STRIPE_LEN / sectorsize. */ |
| u16 nr_sectors; |
| |
| /* |
| * How many data/meta extents are in this stripe. Only for scrub status |
| * reporting purposes. |
| */ |
| u16 nr_data_extents; |
| u16 nr_meta_extents; |
| |
| atomic_t pending_io; |
| wait_queue_head_t io_wait; |
| wait_queue_head_t repair_wait; |
| |
| /* |
| * Indicate the states of the stripe. Bits are defined in |
| * scrub_stripe_flags enum. |
| */ |
| unsigned long state; |
| |
| /* Indicate which sectors are covered by extent items. */ |
| unsigned long extent_sector_bitmap; |
| |
| /* |
| * The errors hit during the initial read of the stripe. |
| * |
| * Would be utilized for error reporting and repair. |
| * |
| * The remaining init_nr_* records the number of errors hit, only used |
| * by error reporting. |
| */ |
| unsigned long init_error_bitmap; |
| unsigned int init_nr_io_errors; |
| unsigned int init_nr_csum_errors; |
| unsigned int init_nr_meta_errors; |
| |
| /* |
| * The following error bitmaps are all for the current status. |
| * Every time we submit a new read, these bitmaps may be updated. |
| * |
| * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; |
| * |
| * IO and csum errors can happen for both metadata and data. |
| */ |
| unsigned long error_bitmap; |
| unsigned long io_error_bitmap; |
| unsigned long csum_error_bitmap; |
| unsigned long meta_error_bitmap; |
| |
| /* For writeback (repair or replace) error reporting. */ |
| unsigned long write_error_bitmap; |
| |
| /* Writeback can be concurrent, thus we need to protect the bitmap. */ |
| spinlock_t write_error_lock; |
| |
| /* |
| * Checksum for the whole stripe if this stripe is inside a data block |
| * group. |
| */ |
| u8 *csums; |
| |
| struct work_struct work; |
| }; |
| |
| struct scrub_ctx { |
| struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; |
| struct scrub_stripe *raid56_data_stripes; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_path extent_path; |
| struct btrfs_path csum_path; |
| int first_free; |
| int cur_stripe; |
| atomic_t cancel_req; |
| int readonly; |
| |
| /* State of IO submission throttling affecting the associated device */ |
| ktime_t throttle_deadline; |
| u64 throttle_sent; |
| |
| int is_dev_replace; |
| u64 write_pointer; |
| |
| struct mutex wr_lock; |
| struct btrfs_device *wr_tgtdev; |
| |
| /* |
| * statistics |
| */ |
| struct btrfs_scrub_progress stat; |
| spinlock_t stat_lock; |
| |
| /* |
| * Use a ref counter to avoid use-after-free issues. Scrub workers |
| * decrement bios_in_flight and workers_pending and then do a wakeup |
| * on the list_wait wait queue. We must ensure the main scrub task |
| * doesn't free the scrub context before or while the workers are |
| * doing the wakeup() call. |
| */ |
| refcount_t refs; |
| }; |
| |
| struct scrub_warning { |
| struct btrfs_path *path; |
| u64 extent_item_size; |
| const char *errstr; |
| u64 physical; |
| u64 logical; |
| struct btrfs_device *dev; |
| }; |
| |
| static void release_scrub_stripe(struct scrub_stripe *stripe) |
| { |
| if (!stripe) |
| return; |
| |
| for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { |
| if (stripe->pages[i]) |
| __free_page(stripe->pages[i]); |
| stripe->pages[i] = NULL; |
| } |
| kfree(stripe->sectors); |
| kfree(stripe->csums); |
| stripe->sectors = NULL; |
| stripe->csums = NULL; |
| stripe->sctx = NULL; |
| stripe->state = 0; |
| } |
| |
| static int init_scrub_stripe(struct btrfs_fs_info *fs_info, |
| struct scrub_stripe *stripe) |
| { |
| int ret; |
| |
| memset(stripe, 0, sizeof(*stripe)); |
| |
| stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; |
| stripe->state = 0; |
| |
| init_waitqueue_head(&stripe->io_wait); |
| init_waitqueue_head(&stripe->repair_wait); |
| atomic_set(&stripe->pending_io, 0); |
| spin_lock_init(&stripe->write_error_lock); |
| |
| ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0); |
| if (ret < 0) |
| goto error; |
| |
| stripe->sectors = kcalloc(stripe->nr_sectors, |
| sizeof(struct scrub_sector_verification), |
| GFP_KERNEL); |
| if (!stripe->sectors) |
| goto error; |
| |
| stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, |
| fs_info->csum_size, GFP_KERNEL); |
| if (!stripe->csums) |
| goto error; |
| return 0; |
| error: |
| release_scrub_stripe(stripe); |
| return -ENOMEM; |
| } |
| |
| static void wait_scrub_stripe_io(struct scrub_stripe *stripe) |
| { |
| wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); |
| } |
| |
| static void scrub_put_ctx(struct scrub_ctx *sctx); |
| |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| while (atomic_read(&fs_info->scrub_pause_req)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrub_pause_req) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| } |
| |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
| { |
| atomic_inc(&fs_info->scrubs_paused); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| __scrub_blocked_if_needed(fs_info); |
| atomic_dec(&fs_info->scrubs_paused); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| scrub_pause_on(fs_info); |
| scrub_pause_off(fs_info); |
| } |
| |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
| { |
| int i; |
| |
| if (!sctx) |
| return; |
| |
| for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) |
| release_scrub_stripe(&sctx->stripes[i]); |
| |
| kvfree(sctx); |
| } |
| |
| static void scrub_put_ctx(struct scrub_ctx *sctx) |
| { |
| if (refcount_dec_and_test(&sctx->refs)) |
| scrub_free_ctx(sctx); |
| } |
| |
| static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( |
| struct btrfs_fs_info *fs_info, int is_dev_replace) |
| { |
| struct scrub_ctx *sctx; |
| int i; |
| |
| /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use |
| * kvzalloc(). |
| */ |
| sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); |
| if (!sctx) |
| goto nomem; |
| refcount_set(&sctx->refs, 1); |
| sctx->is_dev_replace = is_dev_replace; |
| sctx->fs_info = fs_info; |
| sctx->extent_path.search_commit_root = 1; |
| sctx->extent_path.skip_locking = 1; |
| sctx->csum_path.search_commit_root = 1; |
| sctx->csum_path.skip_locking = 1; |
| for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { |
| int ret; |
| |
| ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); |
| if (ret < 0) |
| goto nomem; |
| sctx->stripes[i].sctx = sctx; |
| } |
| sctx->first_free = 0; |
| atomic_set(&sctx->cancel_req, 0); |
| |
| spin_lock_init(&sctx->stat_lock); |
| sctx->throttle_deadline = 0; |
| |
| mutex_init(&sctx->wr_lock); |
| if (is_dev_replace) { |
| WARN_ON(!fs_info->dev_replace.tgtdev); |
| sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
| } |
| |
| return sctx; |
| |
| nomem: |
| scrub_free_ctx(sctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, |
| u64 root, void *warn_ctx) |
| { |
| u32 nlink; |
| int ret; |
| int i; |
| unsigned nofs_flag; |
| struct extent_buffer *eb; |
| struct btrfs_inode_item *inode_item; |
| struct scrub_warning *swarn = warn_ctx; |
| struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
| struct inode_fs_paths *ipath = NULL; |
| struct btrfs_root *local_root; |
| struct btrfs_key key; |
| |
| local_root = btrfs_get_fs_root(fs_info, root, true); |
| if (IS_ERR(local_root)) { |
| ret = PTR_ERR(local_root); |
| goto err; |
| } |
| |
| /* |
| * this makes the path point to (inum INODE_ITEM ioff) |
| */ |
| key.objectid = inum; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); |
| if (ret) { |
| btrfs_put_root(local_root); |
| btrfs_release_path(swarn->path); |
| goto err; |
| } |
| |
| eb = swarn->path->nodes[0]; |
| inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], |
| struct btrfs_inode_item); |
| nlink = btrfs_inode_nlink(eb, inode_item); |
| btrfs_release_path(swarn->path); |
| |
| /* |
| * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub |
| * uses GFP_NOFS in this context, so we keep it consistent but it does |
| * not seem to be strictly necessary. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| ipath = init_ipath(4096, local_root, swarn->path); |
| memalloc_nofs_restore(nofs_flag); |
| if (IS_ERR(ipath)) { |
| btrfs_put_root(local_root); |
| ret = PTR_ERR(ipath); |
| ipath = NULL; |
| goto err; |
| } |
| ret = paths_from_inode(inum, ipath); |
| |
| if (ret < 0) |
| goto err; |
| |
| /* |
| * we deliberately ignore the bit ipath might have been too small to |
| * hold all of the paths here |
| */ |
| for (i = 0; i < ipath->fspath->elem_cnt; ++i) |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", |
| swarn->errstr, swarn->logical, |
| btrfs_dev_name(swarn->dev), |
| swarn->physical, |
| root, inum, offset, |
| fs_info->sectorsize, nlink, |
| (char *)(unsigned long)ipath->fspath->val[i]); |
| |
| btrfs_put_root(local_root); |
| free_ipath(ipath); |
| return 0; |
| |
| err: |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", |
| swarn->errstr, swarn->logical, |
| btrfs_dev_name(swarn->dev), |
| swarn->physical, |
| root, inum, offset, ret); |
| |
| free_ipath(ipath); |
| return 0; |
| } |
| |
| static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, |
| bool is_super, u64 logical, u64 physical) |
| { |
| struct btrfs_fs_info *fs_info = dev->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_key found_key; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct scrub_warning swarn; |
| u64 flags = 0; |
| u32 item_size; |
| int ret; |
| |
| /* Super block error, no need to search extent tree. */ |
| if (is_super) { |
| btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", |
| errstr, btrfs_dev_name(dev), physical); |
| return; |
| } |
| path = btrfs_alloc_path(); |
| if (!path) |
| return; |
| |
| swarn.physical = physical; |
| swarn.logical = logical; |
| swarn.errstr = errstr; |
| swarn.dev = NULL; |
| |
| ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
| &flags); |
| if (ret < 0) |
| goto out; |
| |
| swarn.extent_item_size = found_key.offset; |
| |
| eb = path->nodes[0]; |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| item_size = btrfs_item_size(eb, path->slots[0]); |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| unsigned long ptr = 0; |
| u8 ref_level; |
| u64 ref_root; |
| |
| while (true) { |
| ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
| item_size, &ref_root, |
| &ref_level); |
| if (ret < 0) { |
| btrfs_warn(fs_info, |
| "failed to resolve tree backref for logical %llu: %d", |
| swarn.logical, ret); |
| break; |
| } |
| if (ret > 0) |
| break; |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", |
| errstr, swarn.logical, btrfs_dev_name(dev), |
| swarn.physical, (ref_level ? "node" : "leaf"), |
| ref_level, ref_root); |
| } |
| btrfs_release_path(path); |
| } else { |
| struct btrfs_backref_walk_ctx ctx = { 0 }; |
| |
| btrfs_release_path(path); |
| |
| ctx.bytenr = found_key.objectid; |
| ctx.extent_item_pos = swarn.logical - found_key.objectid; |
| ctx.fs_info = fs_info; |
| |
| swarn.path = path; |
| swarn.dev = dev; |
| |
| iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| } |
| |
| static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) |
| { |
| int ret = 0; |
| u64 length; |
| |
| if (!btrfs_is_zoned(sctx->fs_info)) |
| return 0; |
| |
| if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) |
| return 0; |
| |
| if (sctx->write_pointer < physical) { |
| length = physical - sctx->write_pointer; |
| |
| ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, |
| sctx->write_pointer, length); |
| if (!ret) |
| sctx->write_pointer = physical; |
| } |
| return ret; |
| } |
| |
| static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; |
| |
| return stripe->pages[page_index]; |
| } |
| |
| static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, |
| int sector_nr) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| |
| return offset_in_page(sector_nr << fs_info->sectorsize_bits); |
| } |
| |
| static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; |
| const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); |
| const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); |
| const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| struct btrfs_header *header; |
| |
| /* |
| * Here we don't have a good way to attach the pages (and subpages) |
| * to a dummy extent buffer, thus we have to directly grab the members |
| * from pages. |
| */ |
| header = (struct btrfs_header *)(page_address(first_page) + first_off); |
| memcpy(on_disk_csum, header->csum, fs_info->csum_size); |
| |
| if (logical != btrfs_stack_header_bytenr(header)) { |
| bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); |
| btrfs_warn_rl(fs_info, |
| "tree block %llu mirror %u has bad bytenr, has %llu want %llu", |
| logical, stripe->mirror_num, |
| btrfs_stack_header_bytenr(header), logical); |
| return; |
| } |
| if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, |
| BTRFS_FSID_SIZE) != 0) { |
| bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); |
| btrfs_warn_rl(fs_info, |
| "tree block %llu mirror %u has bad fsid, has %pU want %pU", |
| logical, stripe->mirror_num, |
| header->fsid, fs_info->fs_devices->fsid); |
| return; |
| } |
| if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, |
| BTRFS_UUID_SIZE) != 0) { |
| bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); |
| btrfs_warn_rl(fs_info, |
| "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", |
| logical, stripe->mirror_num, |
| header->chunk_tree_uuid, fs_info->chunk_tree_uuid); |
| return; |
| } |
| |
| /* Now check tree block csum. */ |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| crypto_shash_update(shash, page_address(first_page) + first_off + |
| BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); |
| |
| for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { |
| struct page *page = scrub_stripe_get_page(stripe, i); |
| unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); |
| |
| crypto_shash_update(shash, page_address(page) + page_off, |
| fs_info->sectorsize); |
| } |
| |
| crypto_shash_final(shash, calculated_csum); |
| if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { |
| bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); |
| btrfs_warn_rl(fs_info, |
| "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, |
| logical, stripe->mirror_num, |
| CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), |
| CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); |
| return; |
| } |
| if (stripe->sectors[sector_nr].generation != |
| btrfs_stack_header_generation(header)) { |
| bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); |
| btrfs_warn_rl(fs_info, |
| "tree block %llu mirror %u has bad generation, has %llu want %llu", |
| logical, stripe->mirror_num, |
| btrfs_stack_header_generation(header), |
| stripe->sectors[sector_nr].generation); |
| return; |
| } |
| bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); |
| bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); |
| } |
| |
| static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; |
| const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; |
| struct page *page = scrub_stripe_get_page(stripe, sector_nr); |
| unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); |
| u8 csum_buf[BTRFS_CSUM_SIZE]; |
| int ret; |
| |
| ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); |
| |
| /* Sector not utilized, skip it. */ |
| if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) |
| return; |
| |
| /* IO error, no need to check. */ |
| if (test_bit(sector_nr, &stripe->io_error_bitmap)) |
| return; |
| |
| /* Metadata, verify the full tree block. */ |
| if (sector->is_metadata) { |
| /* |
| * Check if the tree block crosses the stripe boundary. If |
| * crossed the boundary, we cannot verify it but only give a |
| * warning. |
| * |
| * This can only happen on a very old filesystem where chunks |
| * are not ensured to be stripe aligned. |
| */ |
| if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { |
| btrfs_warn_rl(fs_info, |
| "tree block at %llu crosses stripe boundary %llu", |
| stripe->logical + |
| (sector_nr << fs_info->sectorsize_bits), |
| stripe->logical); |
| return; |
| } |
| scrub_verify_one_metadata(stripe, sector_nr); |
| return; |
| } |
| |
| /* |
| * Data is easier, we just verify the data csum (if we have it). For |
| * cases without csum, we have no other choice but to trust it. |
| */ |
| if (!sector->csum) { |
| clear_bit(sector_nr, &stripe->error_bitmap); |
| return; |
| } |
| |
| ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); |
| if (ret < 0) { |
| set_bit(sector_nr, &stripe->csum_error_bitmap); |
| set_bit(sector_nr, &stripe->error_bitmap); |
| } else { |
| clear_bit(sector_nr, &stripe->csum_error_bitmap); |
| clear_bit(sector_nr, &stripe->error_bitmap); |
| } |
| } |
| |
| /* Verify specified sectors of a stripe. */ |
| static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; |
| int sector_nr; |
| |
| for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { |
| scrub_verify_one_sector(stripe, sector_nr); |
| if (stripe->sectors[sector_nr].is_metadata) |
| sector_nr += sectors_per_tree - 1; |
| } |
| } |
| |
| static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) |
| { |
| int i; |
| |
| for (i = 0; i < stripe->nr_sectors; i++) { |
| if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && |
| scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) |
| break; |
| } |
| ASSERT(i < stripe->nr_sectors); |
| return i; |
| } |
| |
| /* |
| * Repair read is different to the regular read: |
| * |
| * - Only reads the failed sectors |
| * - May have extra blocksize limits |
| */ |
| static void scrub_repair_read_endio(struct btrfs_bio *bbio) |
| { |
| struct scrub_stripe *stripe = bbio->private; |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| struct bio_vec *bvec; |
| int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); |
| u32 bio_size = 0; |
| int i; |
| |
| ASSERT(sector_nr < stripe->nr_sectors); |
| |
| bio_for_each_bvec_all(bvec, &bbio->bio, i) |
| bio_size += bvec->bv_len; |
| |
| if (bbio->bio.bi_status) { |
| bitmap_set(&stripe->io_error_bitmap, sector_nr, |
| bio_size >> fs_info->sectorsize_bits); |
| bitmap_set(&stripe->error_bitmap, sector_nr, |
| bio_size >> fs_info->sectorsize_bits); |
| } else { |
| bitmap_clear(&stripe->io_error_bitmap, sector_nr, |
| bio_size >> fs_info->sectorsize_bits); |
| } |
| bio_put(&bbio->bio); |
| if (atomic_dec_and_test(&stripe->pending_io)) |
| wake_up(&stripe->io_wait); |
| } |
| |
| static int calc_next_mirror(int mirror, int num_copies) |
| { |
| ASSERT(mirror <= num_copies); |
| return (mirror + 1 > num_copies) ? 1 : mirror + 1; |
| } |
| |
| static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, |
| int mirror, int blocksize, bool wait) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| struct btrfs_bio *bbio = NULL; |
| const unsigned long old_error_bitmap = stripe->error_bitmap; |
| int i; |
| |
| ASSERT(stripe->mirror_num >= 1); |
| ASSERT(atomic_read(&stripe->pending_io) == 0); |
| |
| for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { |
| struct page *page; |
| int pgoff; |
| int ret; |
| |
| page = scrub_stripe_get_page(stripe, i); |
| pgoff = scrub_stripe_get_page_offset(stripe, i); |
| |
| /* The current sector cannot be merged, submit the bio. */ |
| if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || |
| bbio->bio.bi_iter.bi_size >= blocksize)) { |
| ASSERT(bbio->bio.bi_iter.bi_size); |
| atomic_inc(&stripe->pending_io); |
| btrfs_submit_bio(bbio, mirror); |
| if (wait) |
| wait_scrub_stripe_io(stripe); |
| bbio = NULL; |
| } |
| |
| if (!bbio) { |
| bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, |
| fs_info, scrub_repair_read_endio, stripe); |
| bbio->bio.bi_iter.bi_sector = (stripe->logical + |
| (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; |
| } |
| |
| ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); |
| ASSERT(ret == fs_info->sectorsize); |
| } |
| if (bbio) { |
| ASSERT(bbio->bio.bi_iter.bi_size); |
| atomic_inc(&stripe->pending_io); |
| btrfs_submit_bio(bbio, mirror); |
| if (wait) |
| wait_scrub_stripe_io(stripe); |
| } |
| } |
| |
| static void scrub_stripe_report_errors(struct scrub_ctx *sctx, |
| struct scrub_stripe *stripe) |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_device *dev = NULL; |
| u64 physical = 0; |
| int nr_data_sectors = 0; |
| int nr_meta_sectors = 0; |
| int nr_nodatacsum_sectors = 0; |
| int nr_repaired_sectors = 0; |
| int sector_nr; |
| |
| if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) |
| return; |
| |
| /* |
| * Init needed infos for error reporting. |
| * |
| * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() |
| * thus no need for dev/physical, error reporting still needs dev and physical. |
| */ |
| if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { |
| u64 mapped_len = fs_info->sectorsize; |
| struct btrfs_io_context *bioc = NULL; |
| int stripe_index = stripe->mirror_num - 1; |
| int ret; |
| |
| /* For scrub, our mirror_num should always start at 1. */ |
| ASSERT(stripe->mirror_num >= 1); |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| stripe->logical, &mapped_len, &bioc, |
| NULL, NULL); |
| /* |
| * If we failed, dev will be NULL, and later detailed reports |
| * will just be skipped. |
| */ |
| if (ret < 0) |
| goto skip; |
| physical = bioc->stripes[stripe_index].physical; |
| dev = bioc->stripes[stripe_index].dev; |
| btrfs_put_bioc(bioc); |
| } |
| |
| skip: |
| for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { |
| bool repaired = false; |
| |
| if (stripe->sectors[sector_nr].is_metadata) { |
| nr_meta_sectors++; |
| } else { |
| nr_data_sectors++; |
| if (!stripe->sectors[sector_nr].csum) |
| nr_nodatacsum_sectors++; |
| } |
| |
| if (test_bit(sector_nr, &stripe->init_error_bitmap) && |
| !test_bit(sector_nr, &stripe->error_bitmap)) { |
| nr_repaired_sectors++; |
| repaired = true; |
| } |
| |
| /* Good sector from the beginning, nothing need to be done. */ |
| if (!test_bit(sector_nr, &stripe->init_error_bitmap)) |
| continue; |
| |
| /* |
| * Report error for the corrupted sectors. If repaired, just |
| * output the message of repaired message. |
| */ |
| if (repaired) { |
| if (dev) { |
| btrfs_err_rl_in_rcu(fs_info, |
| "fixed up error at logical %llu on dev %s physical %llu", |
| stripe->logical, btrfs_dev_name(dev), |
| physical); |
| } else { |
| btrfs_err_rl_in_rcu(fs_info, |
| "fixed up error at logical %llu on mirror %u", |
| stripe->logical, stripe->mirror_num); |
| } |
| continue; |
| } |
| |
| /* The remaining are all for unrepaired. */ |
| if (dev) { |
| btrfs_err_rl_in_rcu(fs_info, |
| "unable to fixup (regular) error at logical %llu on dev %s physical %llu", |
| stripe->logical, btrfs_dev_name(dev), |
| physical); |
| } else { |
| btrfs_err_rl_in_rcu(fs_info, |
| "unable to fixup (regular) error at logical %llu on mirror %u", |
| stripe->logical, stripe->mirror_num); |
| } |
| |
| if (test_bit(sector_nr, &stripe->io_error_bitmap)) |
| if (__ratelimit(&rs) && dev) |
| scrub_print_common_warning("i/o error", dev, false, |
| stripe->logical, physical); |
| if (test_bit(sector_nr, &stripe->csum_error_bitmap)) |
| if (__ratelimit(&rs) && dev) |
| scrub_print_common_warning("checksum error", dev, false, |
| stripe->logical, physical); |
| if (test_bit(sector_nr, &stripe->meta_error_bitmap)) |
| if (__ratelimit(&rs) && dev) |
| scrub_print_common_warning("header error", dev, false, |
| stripe->logical, physical); |
| } |
| |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; |
| sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; |
| sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; |
| sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; |
| sctx->stat.no_csum += nr_nodatacsum_sectors; |
| sctx->stat.read_errors += stripe->init_nr_io_errors; |
| sctx->stat.csum_errors += stripe->init_nr_csum_errors; |
| sctx->stat.verify_errors += stripe->init_nr_meta_errors; |
| sctx->stat.uncorrectable_errors += |
| bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); |
| sctx->stat.corrected_errors += nr_repaired_sectors; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, |
| unsigned long write_bitmap, bool dev_replace); |
| |
| /* |
| * The main entrance for all read related scrub work, including: |
| * |
| * - Wait for the initial read to finish |
| * - Verify and locate any bad sectors |
| * - Go through the remaining mirrors and try to read as large blocksize as |
| * possible |
| * - Go through all mirrors (including the failed mirror) sector-by-sector |
| * - Submit writeback for repaired sectors |
| * |
| * Writeback for dev-replace does not happen here, it needs extra |
| * synchronization for zoned devices. |
| */ |
| static void scrub_stripe_read_repair_worker(struct work_struct *work) |
| { |
| struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); |
| struct scrub_ctx *sctx = stripe->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, |
| stripe->bg->length); |
| int mirror; |
| int i; |
| |
| ASSERT(stripe->mirror_num > 0); |
| |
| wait_scrub_stripe_io(stripe); |
| scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); |
| /* Save the initial failed bitmap for later repair and report usage. */ |
| stripe->init_error_bitmap = stripe->error_bitmap; |
| stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, |
| stripe->nr_sectors); |
| stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, |
| stripe->nr_sectors); |
| stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, |
| stripe->nr_sectors); |
| |
| if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) |
| goto out; |
| |
| /* |
| * Try all remaining mirrors. |
| * |
| * Here we still try to read as large block as possible, as this is |
| * faster and we have extra safety nets to rely on. |
| */ |
| for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); |
| mirror != stripe->mirror_num; |
| mirror = calc_next_mirror(mirror, num_copies)) { |
| const unsigned long old_error_bitmap = stripe->error_bitmap; |
| |
| scrub_stripe_submit_repair_read(stripe, mirror, |
| BTRFS_STRIPE_LEN, false); |
| wait_scrub_stripe_io(stripe); |
| scrub_verify_one_stripe(stripe, old_error_bitmap); |
| if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) |
| goto out; |
| } |
| |
| /* |
| * Last safety net, try re-checking all mirrors, including the failed |
| * one, sector-by-sector. |
| * |
| * As if one sector failed the drive's internal csum, the whole read |
| * containing the offending sector would be marked as error. |
| * Thus here we do sector-by-sector read. |
| * |
| * This can be slow, thus we only try it as the last resort. |
| */ |
| |
| for (i = 0, mirror = stripe->mirror_num; |
| i < num_copies; |
| i++, mirror = calc_next_mirror(mirror, num_copies)) { |
| const unsigned long old_error_bitmap = stripe->error_bitmap; |
| |
| scrub_stripe_submit_repair_read(stripe, mirror, |
| fs_info->sectorsize, true); |
| wait_scrub_stripe_io(stripe); |
| scrub_verify_one_stripe(stripe, old_error_bitmap); |
| if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) |
| goto out; |
| } |
| out: |
| /* |
| * Submit the repaired sectors. For zoned case, we cannot do repair |
| * in-place, but queue the bg to be relocated. |
| */ |
| if (btrfs_is_zoned(fs_info)) { |
| if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) |
| btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); |
| } else if (!sctx->readonly) { |
| unsigned long repaired; |
| |
| bitmap_andnot(&repaired, &stripe->init_error_bitmap, |
| &stripe->error_bitmap, stripe->nr_sectors); |
| scrub_write_sectors(sctx, stripe, repaired, false); |
| wait_scrub_stripe_io(stripe); |
| } |
| |
| scrub_stripe_report_errors(sctx, stripe); |
| set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); |
| wake_up(&stripe->repair_wait); |
| } |
| |
| static void scrub_read_endio(struct btrfs_bio *bbio) |
| { |
| struct scrub_stripe *stripe = bbio->private; |
| struct bio_vec *bvec; |
| int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); |
| int num_sectors; |
| u32 bio_size = 0; |
| int i; |
| |
| ASSERT(sector_nr < stripe->nr_sectors); |
| bio_for_each_bvec_all(bvec, &bbio->bio, i) |
| bio_size += bvec->bv_len; |
| num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; |
| |
| if (bbio->bio.bi_status) { |
| bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors); |
| bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors); |
| } else { |
| bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors); |
| } |
| bio_put(&bbio->bio); |
| if (atomic_dec_and_test(&stripe->pending_io)) { |
| wake_up(&stripe->io_wait); |
| INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); |
| queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); |
| } |
| } |
| |
| static void scrub_write_endio(struct btrfs_bio *bbio) |
| { |
| struct scrub_stripe *stripe = bbio->private; |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| struct bio_vec *bvec; |
| int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); |
| u32 bio_size = 0; |
| int i; |
| |
| bio_for_each_bvec_all(bvec, &bbio->bio, i) |
| bio_size += bvec->bv_len; |
| |
| if (bbio->bio.bi_status) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&stripe->write_error_lock, flags); |
| bitmap_set(&stripe->write_error_bitmap, sector_nr, |
| bio_size >> fs_info->sectorsize_bits); |
| spin_unlock_irqrestore(&stripe->write_error_lock, flags); |
| } |
| bio_put(&bbio->bio); |
| |
| if (atomic_dec_and_test(&stripe->pending_io)) |
| wake_up(&stripe->io_wait); |
| } |
| |
| static void scrub_submit_write_bio(struct scrub_ctx *sctx, |
| struct scrub_stripe *stripe, |
| struct btrfs_bio *bbio, bool dev_replace) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u32 bio_len = bbio->bio.bi_iter.bi_size; |
| u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - |
| stripe->logical; |
| |
| fill_writer_pointer_gap(sctx, stripe->physical + bio_off); |
| atomic_inc(&stripe->pending_io); |
| btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); |
| if (!btrfs_is_zoned(fs_info)) |
| return; |
| /* |
| * For zoned writeback, queue depth must be 1, thus we must wait for |
| * the write to finish before the next write. |
| */ |
| wait_scrub_stripe_io(stripe); |
| |
| /* |
| * And also need to update the write pointer if write finished |
| * successfully. |
| */ |
| if (!test_bit(bio_off >> fs_info->sectorsize_bits, |
| &stripe->write_error_bitmap)) |
| sctx->write_pointer += bio_len; |
| } |
| |
| /* |
| * Submit the write bio(s) for the sectors specified by @write_bitmap. |
| * |
| * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: |
| * |
| * - Only needs logical bytenr and mirror_num |
| * Just like the scrub read path |
| * |
| * - Would only result in writes to the specified mirror |
| * Unlike the regular writeback path, which would write back to all stripes |
| * |
| * - Handle dev-replace and read-repair writeback differently |
| */ |
| static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, |
| unsigned long write_bitmap, bool dev_replace) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| struct btrfs_bio *bbio = NULL; |
| int sector_nr; |
| |
| for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { |
| struct page *page = scrub_stripe_get_page(stripe, sector_nr); |
| unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); |
| int ret; |
| |
| /* We should only writeback sectors covered by an extent. */ |
| ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); |
| |
| /* Cannot merge with previous sector, submit the current one. */ |
| if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { |
| scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); |
| bbio = NULL; |
| } |
| if (!bbio) { |
| bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, |
| fs_info, scrub_write_endio, stripe); |
| bbio->bio.bi_iter.bi_sector = (stripe->logical + |
| (sector_nr << fs_info->sectorsize_bits)) >> |
| SECTOR_SHIFT; |
| } |
| ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); |
| ASSERT(ret == fs_info->sectorsize); |
| } |
| if (bbio) |
| scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); |
| } |
| |
| /* |
| * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 |
| * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. |
| */ |
| static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, |
| unsigned int bio_size) |
| { |
| const int time_slice = 1000; |
| s64 delta; |
| ktime_t now; |
| u32 div; |
| u64 bwlimit; |
| |
| bwlimit = READ_ONCE(device->scrub_speed_max); |
| if (bwlimit == 0) |
| return; |
| |
| /* |
| * Slice is divided into intervals when the IO is submitted, adjust by |
| * bwlimit and maximum of 64 intervals. |
| */ |
| div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); |
| div = min_t(u32, 64, div); |
| |
| /* Start new epoch, set deadline */ |
| now = ktime_get(); |
| if (sctx->throttle_deadline == 0) { |
| sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); |
| sctx->throttle_sent = 0; |
| } |
| |
| /* Still in the time to send? */ |
| if (ktime_before(now, sctx->throttle_deadline)) { |
| /* If current bio is within the limit, send it */ |
| sctx->throttle_sent += bio_size; |
| if (sctx->throttle_sent <= div_u64(bwlimit, div)) |
| return; |
| |
| /* We're over the limit, sleep until the rest of the slice */ |
| delta = ktime_ms_delta(sctx->throttle_deadline, now); |
| } else { |
| /* New request after deadline, start new epoch */ |
| delta = 0; |
| } |
| |
| if (delta) { |
| long timeout; |
| |
| timeout = div_u64(delta * HZ, 1000); |
| schedule_timeout_interruptible(timeout); |
| } |
| |
| /* Next call will start the deadline period */ |
| sctx->throttle_deadline = 0; |
| } |
| |
| /* |
| * Given a physical address, this will calculate it's |
| * logical offset. if this is a parity stripe, it will return |
| * the most left data stripe's logical offset. |
| * |
| * return 0 if it is a data stripe, 1 means parity stripe. |
| */ |
| static int get_raid56_logic_offset(u64 physical, int num, |
| struct btrfs_chunk_map *map, u64 *offset, |
| u64 *stripe_start) |
| { |
| int i; |
| int j = 0; |
| u64 last_offset; |
| const int data_stripes = nr_data_stripes(map); |
| |
| last_offset = (physical - map->stripes[num].physical) * data_stripes; |
| if (stripe_start) |
| *stripe_start = last_offset; |
| |
| *offset = last_offset; |
| for (i = 0; i < data_stripes; i++) { |
| u32 stripe_nr; |
| u32 stripe_index; |
| u32 rot; |
| |
| *offset = last_offset + btrfs_stripe_nr_to_offset(i); |
| |
| stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; |
| |
| /* Work out the disk rotation on this stripe-set */ |
| rot = stripe_nr % map->num_stripes; |
| /* calculate which stripe this data locates */ |
| rot += i; |
| stripe_index = rot % map->num_stripes; |
| if (stripe_index == num) |
| return 0; |
| if (stripe_index < num) |
| j++; |
| } |
| *offset = last_offset + btrfs_stripe_nr_to_offset(j); |
| return 1; |
| } |
| |
| /* |
| * Return 0 if the extent item range covers any byte of the range. |
| * Return <0 if the extent item is before @search_start. |
| * Return >0 if the extent item is after @start_start + @search_len. |
| */ |
| static int compare_extent_item_range(struct btrfs_path *path, |
| u64 search_start, u64 search_len) |
| { |
| struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; |
| u64 len; |
| struct btrfs_key key; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || |
| key.type == BTRFS_METADATA_ITEM_KEY); |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| len = fs_info->nodesize; |
| else |
| len = key.offset; |
| |
| if (key.objectid + len <= search_start) |
| return -1; |
| if (key.objectid >= search_start + search_len) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Locate one extent item which covers any byte in range |
| * [@search_start, @search_start + @search_length) |
| * |
| * If the path is not initialized, we will initialize the search by doing |
| * a btrfs_search_slot(). |
| * If the path is already initialized, we will use the path as the initial |
| * slot, to avoid duplicated btrfs_search_slot() calls. |
| * |
| * NOTE: If an extent item starts before @search_start, we will still |
| * return the extent item. This is for data extent crossing stripe boundary. |
| * |
| * Return 0 if we found such extent item, and @path will point to the extent item. |
| * Return >0 if no such extent item can be found, and @path will be released. |
| * Return <0 if hit fatal error, and @path will be released. |
| */ |
| static int find_first_extent_item(struct btrfs_root *extent_root, |
| struct btrfs_path *path, |
| u64 search_start, u64 search_len) |
| { |
| struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| struct btrfs_key key; |
| int ret; |
| |
| /* Continue using the existing path */ |
| if (path->nodes[0]) |
| goto search_forward; |
| |
| if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = search_start; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| ASSERT(ret > 0); |
| /* |
| * Here we intentionally pass 0 as @min_objectid, as there could be |
| * an extent item starting before @search_start. |
| */ |
| ret = btrfs_previous_extent_item(extent_root, path, 0); |
| if (ret < 0) |
| return ret; |
| /* |
| * No matter whether we have found an extent item, the next loop will |
| * properly do every check on the key. |
| */ |
| search_forward: |
| while (true) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid >= search_start + search_len) |
| break; |
| if (key.type != BTRFS_METADATA_ITEM_KEY && |
| key.type != BTRFS_EXTENT_ITEM_KEY) |
| goto next; |
| |
| ret = compare_extent_item_range(path, search_start, search_len); |
| if (ret == 0) |
| return ret; |
| if (ret > 0) |
| break; |
| next: |
| ret = btrfs_next_item(extent_root, path); |
| if (ret) { |
| /* Either no more items or a fatal error. */ |
| btrfs_release_path(path); |
| return ret; |
| } |
| } |
| btrfs_release_path(path); |
| return 1; |
| } |
| |
| static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, |
| u64 *size_ret, u64 *flags_ret, u64 *generation_ret) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_item *ei; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || |
| key.type == BTRFS_EXTENT_ITEM_KEY); |
| *extent_start_ret = key.objectid; |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| *size_ret = path->nodes[0]->fs_info->nodesize; |
| else |
| *size_ret = key.offset; |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); |
| *flags_ret = btrfs_extent_flags(path->nodes[0], ei); |
| *generation_ret = btrfs_extent_generation(path->nodes[0], ei); |
| } |
| |
| static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, |
| u64 physical, u64 physical_end) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| int ret = 0; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return 0; |
| |
| mutex_lock(&sctx->wr_lock); |
| if (sctx->write_pointer < physical_end) { |
| ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, |
| physical, |
| sctx->write_pointer); |
| if (ret) |
| btrfs_err(fs_info, |
| "zoned: failed to recover write pointer"); |
| } |
| mutex_unlock(&sctx->wr_lock); |
| btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); |
| |
| return ret; |
| } |
| |
| static void fill_one_extent_info(struct btrfs_fs_info *fs_info, |
| struct scrub_stripe *stripe, |
| u64 extent_start, u64 extent_len, |
| u64 extent_flags, u64 extent_gen) |
| { |
| for (u64 cur_logical = max(stripe->logical, extent_start); |
| cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, |
| extent_start + extent_len); |
| cur_logical += fs_info->sectorsize) { |
| const int nr_sector = (cur_logical - stripe->logical) >> |
| fs_info->sectorsize_bits; |
| struct scrub_sector_verification *sector = |
| &stripe->sectors[nr_sector]; |
| |
| set_bit(nr_sector, &stripe->extent_sector_bitmap); |
| if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| sector->is_metadata = true; |
| sector->generation = extent_gen; |
| } |
| } |
| } |
| |
| static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) |
| { |
| stripe->extent_sector_bitmap = 0; |
| stripe->init_error_bitmap = 0; |
| stripe->init_nr_io_errors = 0; |
| stripe->init_nr_csum_errors = 0; |
| stripe->init_nr_meta_errors = 0; |
| stripe->error_bitmap = 0; |
| stripe->io_error_bitmap = 0; |
| stripe->csum_error_bitmap = 0; |
| stripe->meta_error_bitmap = 0; |
| } |
| |
| /* |
| * Locate one stripe which has at least one extent in its range. |
| * |
| * Return 0 if found such stripe, and store its info into @stripe. |
| * Return >0 if there is no such stripe in the specified range. |
| * Return <0 for error. |
| */ |
| static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, |
| struct btrfs_path *extent_path, |
| struct btrfs_path *csum_path, |
| struct btrfs_device *dev, u64 physical, |
| int mirror_num, u64 logical_start, |
| u32 logical_len, |
| struct scrub_stripe *stripe) |
| { |
| struct btrfs_fs_info *fs_info = bg->fs_info; |
| struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); |
| struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); |
| const u64 logical_end = logical_start + logical_len; |
| u64 cur_logical = logical_start; |
| u64 stripe_end; |
| u64 extent_start; |
| u64 extent_len; |
| u64 extent_flags; |
| u64 extent_gen; |
| int ret; |
| |
| memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * |
| stripe->nr_sectors); |
| scrub_stripe_reset_bitmaps(stripe); |
| |
| /* The range must be inside the bg. */ |
| ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); |
| |
| ret = find_first_extent_item(extent_root, extent_path, logical_start, |
| logical_len); |
| /* Either error or not found. */ |
| if (ret) |
| goto out; |
| get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, |
| &extent_gen); |
| if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| stripe->nr_meta_extents++; |
| if (extent_flags & BTRFS_EXTENT_FLAG_DATA) |
| stripe->nr_data_extents++; |
| cur_logical = max(extent_start, cur_logical); |
| |
| /* |
| * Round down to stripe boundary. |
| * |
| * The extra calculation against bg->start is to handle block groups |
| * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. |
| */ |
| stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + |
| bg->start; |
| stripe->physical = physical + stripe->logical - logical_start; |
| stripe->dev = dev; |
| stripe->bg = bg; |
| stripe->mirror_num = mirror_num; |
| stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; |
| |
| /* Fill the first extent info into stripe->sectors[] array. */ |
| fill_one_extent_info(fs_info, stripe, extent_start, extent_len, |
| extent_flags, extent_gen); |
| cur_logical = extent_start + extent_len; |
| |
| /* Fill the extent info for the remaining sectors. */ |
| while (cur_logical <= stripe_end) { |
| ret = find_first_extent_item(extent_root, extent_path, cur_logical, |
| stripe_end - cur_logical + 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| get_extent_info(extent_path, &extent_start, &extent_len, |
| &extent_flags, &extent_gen); |
| if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| stripe->nr_meta_extents++; |
| if (extent_flags & BTRFS_EXTENT_FLAG_DATA) |
| stripe->nr_data_extents++; |
| fill_one_extent_info(fs_info, stripe, extent_start, extent_len, |
| extent_flags, extent_gen); |
| cur_logical = extent_start + extent_len; |
| } |
| |
| /* Now fill the data csum. */ |
| if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { |
| int sector_nr; |
| unsigned long csum_bitmap = 0; |
| |
| /* Csum space should have already been allocated. */ |
| ASSERT(stripe->csums); |
| |
| /* |
| * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN |
| * should contain at most 16 sectors. |
| */ |
| ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); |
| |
| ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, |
| stripe->logical, stripe_end, |
| stripe->csums, &csum_bitmap); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| ret = 0; |
| |
| for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { |
| stripe->sectors[sector_nr].csum = stripe->csums + |
| sector_nr * fs_info->csum_size; |
| } |
| } |
| set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); |
| out: |
| return ret; |
| } |
| |
| static void scrub_reset_stripe(struct scrub_stripe *stripe) |
| { |
| scrub_stripe_reset_bitmaps(stripe); |
| |
| stripe->nr_meta_extents = 0; |
| stripe->nr_data_extents = 0; |
| stripe->state = 0; |
| |
| for (int i = 0; i < stripe->nr_sectors; i++) { |
| stripe->sectors[i].is_metadata = false; |
| stripe->sectors[i].csum = NULL; |
| stripe->sectors[i].generation = 0; |
| } |
| } |
| |
| static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx, |
| struct scrub_stripe *stripe) |
| { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| struct btrfs_bio *bbio = NULL; |
| unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start + |
| stripe->bg->length - stripe->logical) >> |
| fs_info->sectorsize_bits; |
| u64 stripe_len = BTRFS_STRIPE_LEN; |
| int mirror = stripe->mirror_num; |
| int i; |
| |
| atomic_inc(&stripe->pending_io); |
| |
| for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) { |
| struct page *page = scrub_stripe_get_page(stripe, i); |
| unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i); |
| |
| /* We're beyond the chunk boundary, no need to read anymore. */ |
| if (i >= nr_sectors) |
| break; |
| |
| /* The current sector cannot be merged, submit the bio. */ |
| if (bbio && |
| ((i > 0 && |
| !test_bit(i - 1, &stripe->extent_sector_bitmap)) || |
| bbio->bio.bi_iter.bi_size >= stripe_len)) { |
| ASSERT(bbio->bio.bi_iter.bi_size); |
| atomic_inc(&stripe->pending_io); |
| btrfs_submit_bio(bbio, mirror); |
| bbio = NULL; |
| } |
| |
| if (!bbio) { |
| struct btrfs_io_stripe io_stripe = {}; |
| struct btrfs_io_context *bioc = NULL; |
| const u64 logical = stripe->logical + |
| (i << fs_info->sectorsize_bits); |
| int err; |
| |
| bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, |
| fs_info, scrub_read_endio, stripe); |
| bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; |
| |
| io_stripe.is_scrub = true; |
| err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, |
| &stripe_len, &bioc, &io_stripe, |
| &mirror); |
| btrfs_put_bioc(bioc); |
| if (err) { |
| btrfs_bio_end_io(bbio, |
| errno_to_blk_status(err)); |
| return; |
| } |
| } |
| |
| __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); |
| } |
| |
| if (bbio) { |
| ASSERT(bbio->bio.bi_iter.bi_size); |
| atomic_inc(&stripe->pending_io); |
| btrfs_submit_bio(bbio, mirror); |
| } |
| |
| if (atomic_dec_and_test(&stripe->pending_io)) { |
| wake_up(&stripe->io_wait); |
| INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); |
| queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); |
| } |
| } |
| |
| static void scrub_submit_initial_read(struct scrub_ctx *sctx, |
| struct scrub_stripe *stripe) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_bio *bbio; |
| unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start + |
| stripe->bg->length - stripe->logical) >> |
| fs_info->sectorsize_bits; |
| int mirror = stripe->mirror_num; |
| |
| ASSERT(stripe->bg); |
| ASSERT(stripe->mirror_num > 0); |
| ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); |
| |
| if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { |
| scrub_submit_extent_sector_read(sctx, stripe); |
| return; |
| } |
| |
| bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, |
| scrub_read_endio, stripe); |
| |
| bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; |
| /* Read the whole range inside the chunk boundary. */ |
| for (unsigned int cur = 0; cur < nr_sectors; cur++) { |
| struct page *page = scrub_stripe_get_page(stripe, cur); |
| unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur); |
| int ret; |
| |
| ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); |
| /* We should have allocated enough bio vectors. */ |
| ASSERT(ret == fs_info->sectorsize); |
| } |
| atomic_inc(&stripe->pending_io); |
| |
| /* |
| * For dev-replace, either user asks to avoid the source dev, or |
| * the device is missing, we try the next mirror instead. |
| */ |
| if (sctx->is_dev_replace && |
| (fs_info->dev_replace.cont_reading_from_srcdev_mode == |
| BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || |
| !stripe->dev->bdev)) { |
| int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, |
| stripe->bg->length); |
| |
| mirror = calc_next_mirror(mirror, num_copies); |
| } |
| btrfs_submit_bio(bbio, mirror); |
| } |
| |
| static bool stripe_has_metadata_error(struct scrub_stripe *stripe) |
| { |
| int i; |
| |
| for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { |
| if (stripe->sectors[i].is_metadata) { |
| struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| |
| btrfs_err(fs_info, |
| "stripe %llu has unrepaired metadata sector at %llu", |
| stripe->logical, |
| stripe->logical + (i << fs_info->sectorsize_bits)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void submit_initial_group_read(struct scrub_ctx *sctx, |
| unsigned int first_slot, |
| unsigned int nr_stripes) |
| { |
| struct blk_plug plug; |
| |
| ASSERT(first_slot < SCRUB_TOTAL_STRIPES); |
| ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); |
| |
| scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, |
| btrfs_stripe_nr_to_offset(nr_stripes)); |
| blk_start_plug(&plug); |
| for (int i = 0; i < nr_stripes; i++) { |
| struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; |
| |
| /* Those stripes should be initialized. */ |
| ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); |
| scrub_submit_initial_read(sctx, stripe); |
| } |
| blk_finish_plug(&plug); |
| } |
| |
| static int flush_scrub_stripes(struct scrub_ctx *sctx) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct scrub_stripe *stripe; |
| const int nr_stripes = sctx->cur_stripe; |
| int ret = 0; |
| |
| if (!nr_stripes) |
| return 0; |
| |
| ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); |
| |
| /* Submit the stripes which are populated but not submitted. */ |
| if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { |
| const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); |
| |
| submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); |
| } |
| |
| for (int i = 0; i < nr_stripes; i++) { |
| stripe = &sctx->stripes[i]; |
| |
| wait_event(stripe->repair_wait, |
| test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); |
| } |
| |
| /* Submit for dev-replace. */ |
| if (sctx->is_dev_replace) { |
| /* |
| * For dev-replace, if we know there is something wrong with |
| * metadata, we should immediately abort. |
| */ |
| for (int i = 0; i < nr_stripes; i++) { |
| if (stripe_has_metadata_error(&sctx->stripes[i])) { |
| ret = -EIO; |
| goto out; |
| } |
| } |
| for (int i = 0; i < nr_stripes; i++) { |
| unsigned long good; |
| |
| stripe = &sctx->stripes[i]; |
| |
| ASSERT(stripe->dev == fs_info->dev_replace.srcdev); |
| |
| bitmap_andnot(&good, &stripe->extent_sector_bitmap, |
| &stripe->error_bitmap, stripe->nr_sectors); |
| scrub_write_sectors(sctx, stripe, good, true); |
| } |
| } |
| |
| /* Wait for the above writebacks to finish. */ |
| for (int i = 0; i < nr_stripes; i++) { |
| stripe = &sctx->stripes[i]; |
| |
| wait_scrub_stripe_io(stripe); |
| scrub_reset_stripe(stripe); |
| } |
| out: |
| sctx->cur_stripe = 0; |
| return ret; |
| } |
| |
| static void raid56_scrub_wait_endio(struct bio *bio) |
| { |
| complete(bio->bi_private); |
| } |
| |
| static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, |
| struct btrfs_device *dev, int mirror_num, |
| u64 logical, u32 length, u64 physical, |
| u64 *found_logical_ret) |
| { |
| struct scrub_stripe *stripe; |
| int ret; |
| |
| /* |
| * There should always be one slot left, as caller filling the last |
| * slot should flush them all. |
| */ |
| ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); |
| |
| /* @found_logical_ret must be specified. */ |
| ASSERT(found_logical_ret); |
| |
| stripe = &sctx->stripes[sctx->cur_stripe]; |
| scrub_reset_stripe(stripe); |
| ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, |
| &sctx->csum_path, dev, physical, |
| mirror_num, logical, length, stripe); |
| /* Either >0 as no more extents or <0 for error. */ |
| if (ret) |
| return ret; |
| *found_logical_ret = stripe->logical; |
| sctx->cur_stripe++; |
| |
| /* We filled one group, submit it. */ |
| if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { |
| const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; |
| |
| submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); |
| } |
| |
| /* Last slot used, flush them all. */ |
| if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) |
| return flush_scrub_stripes(sctx); |
| return 0; |
| } |
| |
| static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev, |
| struct btrfs_block_group *bg, |
| struct btrfs_chunk_map *map, |
| u64 full_stripe_start) |
| { |
| DECLARE_COMPLETION_ONSTACK(io_done); |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_raid_bio *rbio; |
| struct btrfs_io_context *bioc = NULL; |
| struct btrfs_path extent_path = { 0 }; |
| struct btrfs_path csum_path = { 0 }; |
| struct bio *bio; |
| struct scrub_stripe *stripe; |
| bool all_empty = true; |
| const int data_stripes = nr_data_stripes(map); |
| unsigned long extent_bitmap = 0; |
| u64 length = btrfs_stripe_nr_to_offset(data_stripes); |
| int ret; |
| |
| ASSERT(sctx->raid56_data_stripes); |
| |
| /* |
| * For data stripe search, we cannot re-use the same extent/csum paths, |
| * as the data stripe bytenr may be smaller than previous extent. Thus |
| * we have to use our own extent/csum paths. |
| */ |
| extent_path.search_commit_root = 1; |
| extent_path.skip_locking = 1; |
| csum_path.search_commit_root = 1; |
| csum_path.skip_locking = 1; |
| |
| for (int i = 0; i < data_stripes; i++) { |
| int stripe_index; |
| int rot; |
| u64 physical; |
| |
| stripe = &sctx->raid56_data_stripes[i]; |
| rot = div_u64(full_stripe_start - bg->start, |
| data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; |
| stripe_index = (i + rot) % map->num_stripes; |
| physical = map->stripes[stripe_index].physical + |
| btrfs_stripe_nr_to_offset(rot); |
| |
| scrub_reset_stripe(stripe); |
| set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); |
| ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, |
| map->stripes[stripe_index].dev, physical, 1, |
| full_stripe_start + btrfs_stripe_nr_to_offset(i), |
| BTRFS_STRIPE_LEN, stripe); |
| if (ret < 0) |
| goto out; |
| /* |
| * No extent in this data stripe, need to manually mark them |
| * initialized to make later read submission happy. |
| */ |
| if (ret > 0) { |
| stripe->logical = full_stripe_start + |
| btrfs_stripe_nr_to_offset(i); |
| stripe->dev = map->stripes[stripe_index].dev; |
| stripe->mirror_num = 1; |
| set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); |
| } |
| } |
| |
| /* Check if all data stripes are empty. */ |
| for (int i = 0; i < data_stripes; i++) { |
| stripe = &sctx->raid56_data_stripes[i]; |
| if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { |
| all_empty = false; |
| break; |
| } |
| } |
| if (all_empty) { |
| ret = 0; |
| goto out; |
| } |
| |
| for (int i = 0; i < data_stripes; i++) { |
| stripe = &sctx->raid56_data_stripes[i]; |
| scrub_submit_initial_read(sctx, stripe); |
| } |
| for (int i = 0; i < data_stripes; i++) { |
| stripe = &sctx->raid56_data_stripes[i]; |
| |
| wait_event(stripe->repair_wait, |
| test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); |
| } |
| /* For now, no zoned support for RAID56. */ |
| ASSERT(!btrfs_is_zoned(sctx->fs_info)); |
| |
| /* |
| * Now all data stripes are properly verified. Check if we have any |
| * unrepaired, if so abort immediately or we could further corrupt the |
| * P/Q stripes. |
| * |
| * During the loop, also populate extent_bitmap. |
| */ |
| for (int i = 0; i < data_stripes; i++) { |
| unsigned long error; |
| |
| stripe = &sctx->raid56_data_stripes[i]; |
| |
| /* |
| * We should only check the errors where there is an extent. |
| * As we may hit an empty data stripe while it's missing. |
| */ |
| bitmap_and(&error, &stripe->error_bitmap, |
| &stripe->extent_sector_bitmap, stripe->nr_sectors); |
| if (!bitmap_empty(&error, stripe->nr_sectors)) { |
| btrfs_err(fs_info, |
| "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", |
| full_stripe_start, i, stripe->nr_sectors, |
| &error); |
| ret = -EIO; |
| goto out; |
| } |
| bitmap_or(&extent_bitmap, &extent_bitmap, |
| &stripe->extent_sector_bitmap, stripe->nr_sectors); |
| } |
| |
| /* Now we can check and regenerate the P/Q stripe. */ |
| bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); |
| bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; |
| bio->bi_private = &io_done; |
| bio->bi_end_io = raid56_scrub_wait_endio; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, |
| &length, &bioc, NULL, NULL); |
| if (ret < 0) { |
| btrfs_put_bioc(bioc); |
| btrfs_bio_counter_dec(fs_info); |
| goto out; |
| } |
| rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, |
| BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); |
| btrfs_put_bioc(bioc); |
| if (!rbio) { |
| ret = -ENOMEM; |
| btrfs_bio_counter_dec(fs_info); |
| goto out; |
| } |
| /* Use the recovered stripes as cache to avoid read them from disk again. */ |
| for (int i = 0; i < data_stripes; i++) { |
| stripe = &sctx->raid56_data_stripes[i]; |
| |
| raid56_parity_cache_data_pages(rbio, stripe->pages, |
| full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); |
| } |
| raid56_parity_submit_scrub_rbio(rbio); |
| wait_for_completion_io(&io_done); |
| ret = blk_status_to_errno(bio->bi_status); |
| bio_put(bio); |
| btrfs_bio_counter_dec(fs_info); |
| |
| btrfs_release_path(&extent_path); |
| btrfs_release_path(&csum_path); |
| out: |
| return ret; |
| } |
| |
| /* |
| * Scrub one range which can only has simple mirror based profile. |
| * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in |
| * RAID0/RAID10). |
| * |
| * Since we may need to handle a subset of block group, we need @logical_start |
| * and @logical_length parameter. |
| */ |
| static int scrub_simple_mirror(struct scrub_ctx *sctx, |
| struct btrfs_block_group *bg, |
| struct btrfs_chunk_map *map, |
| u64 logical_start, u64 logical_length, |
| struct btrfs_device *device, |
| u64 physical, int mirror_num) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| const u64 logical_end = logical_start + logical_length; |
| u64 cur_logical = logical_start; |
| int ret; |
| |
| /* The range must be inside the bg */ |
| ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); |
| |
| /* Go through each extent items inside the logical range */ |
| while (cur_logical < logical_end) { |
| u64 found_logical = U64_MAX; |
| u64 cur_physical = physical + cur_logical - logical_start; |
| |
| /* Canceled? */ |
| if (atomic_read(&fs_info->scrub_cancel_req) || |
| atomic_read(&sctx->cancel_req)) { |
| ret = -ECANCELED; |
| break; |
| } |
| /* Paused? */ |
| if (atomic_read(&fs_info->scrub_pause_req)) { |
| /* Push queued extents */ |
| scrub_blocked_if_needed(fs_info); |
| } |
| /* Block group removed? */ |
| spin_lock(&bg->lock); |
| if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { |
| spin_unlock(&bg->lock); |
| ret = 0; |
| break; |
| } |
| spin_unlock(&bg->lock); |
| |
| ret = queue_scrub_stripe(sctx, bg, device, mirror_num, |
| cur_logical, logical_end - cur_logical, |
| cur_physical, &found_logical); |
| if (ret > 0) { |
| /* No more extent, just update the accounting */ |
| sctx->stat.last_physical = physical + logical_length; |
| ret = 0; |
| break; |
| } |
| if (ret < 0) |
| break; |
| |
| /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ |
| ASSERT(found_logical != U64_MAX); |
| cur_logical = found_logical + BTRFS_STRIPE_LEN; |
| |
| /* Don't hold CPU for too long time */ |
| cond_resched(); |
| } |
| return ret; |
| } |
| |
| /* Calculate the full stripe length for simple stripe based profiles */ |
| static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) |
| { |
| ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)); |
| |
| return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); |
| } |
| |
| /* Get the logical bytenr for the stripe */ |
| static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, |
| struct btrfs_block_group *bg, |
| int stripe_index) |
| { |
| ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)); |
| ASSERT(stripe_index < map->num_stripes); |
| |
| /* |
| * (stripe_index / sub_stripes) gives how many data stripes we need to |
| * skip. |
| */ |
| return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + |
| bg->start; |
| } |
| |
| /* Get the mirror number for the stripe */ |
| static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) |
| { |
| ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)); |
| ASSERT(stripe_index < map->num_stripes); |
| |
| /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ |
| return stripe_index % map->sub_stripes + 1; |
| } |
| |
| static int scrub_simple_stripe(struct scrub_ctx *sctx, |
| struct btrfs_block_group *bg, |
| struct btrfs_chunk_map *map, |
| struct btrfs_device *device, |
| int stripe_index) |
| { |
| const u64 logical_increment = simple_stripe_full_stripe_len(map); |
| const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); |
| const u64 orig_physical = map->stripes[stripe_index].physical; |
| const int mirror_num = simple_stripe_mirror_num(map, stripe_index); |
| u64 cur_logical = orig_logical; |
| u64 cur_physical = orig_physical; |
| int ret = 0; |
| |
| while (cur_logical < bg->start + bg->length) { |
| /* |
| * Inside each stripe, RAID0 is just SINGLE, and RAID10 is |
| * just RAID1, so we can reuse scrub_simple_mirror() to scrub |
| * this stripe. |
| */ |
| ret = scrub_simple_mirror(sctx, bg, map, cur_logical, |
| BTRFS_STRIPE_LEN, device, cur_physical, |
| mirror_num); |
| if (ret) |
| return ret; |
| /* Skip to next stripe which belongs to the target device */ |
| cur_logical += logical_increment; |
| /* For physical offset, we just go to next stripe */ |
| cur_physical += BTRFS_STRIPE_LEN; |
| } |
| return ret; |
| } |
| |
| static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, |
| struct btrfs_block_group *bg, |
| struct btrfs_chunk_map *map, |
| struct btrfs_device *scrub_dev, |
| int stripe_index) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| const u64 chunk_logical = bg->start; |
| int ret; |
| int ret2; |
| u64 physical = map->stripes[stripe_index].physical; |
| const u64 dev_stripe_len = btrfs_calc_stripe_length(map); |
| const u64 physical_end = physical + dev_stripe_len; |
| u64 logical; |
| u64 logic_end; |
| /* The logical increment after finishing one stripe */ |
| u64 increment; |
| /* Offset inside the chunk */ |
| u64 offset; |
| u64 stripe_logical; |
| int stop_loop = 0; |
| |
| /* Extent_path should be released by now. */ |
| ASSERT(sctx->extent_path.nodes[0] == NULL); |
| |
| scrub_blocked_if_needed(fs_info); |
| |
| if (sctx->is_dev_replace && |
| btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { |
| mutex_lock(&sctx->wr_lock); |
| sctx->write_pointer = physical; |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| /* Prepare the extra data stripes used by RAID56. */ |
| if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| ASSERT(sctx->raid56_data_stripes == NULL); |
| |
| sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), |
| sizeof(struct scrub_stripe), |
| GFP_KERNEL); |
| if (!sctx->raid56_data_stripes) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| for (int i = 0; i < nr_data_stripes(map); i++) { |
| ret = init_scrub_stripe(fs_info, |
| &sctx->raid56_data_stripes[i]); |
| if (ret < 0) |
| goto out; |
| sctx->raid56_data_stripes[i].bg = bg; |
| sctx->raid56_data_stripes[i].sctx = sctx; |
| } |
| } |
| /* |
| * There used to be a big double loop to handle all profiles using the |
| * same routine, which grows larger and more gross over time. |
| * |
| * So here we handle each profile differently, so simpler profiles |
| * have simpler scrubbing function. |
| */ |
| if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| /* |
| * Above check rules out all complex profile, the remaining |
| * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple |
| * mirrored duplication without stripe. |
| * |
| * Only @physical and @mirror_num needs to calculated using |
| * @stripe_index. |
| */ |
| ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, |
| scrub_dev, map->stripes[stripe_index].physical, |
| stripe_index + 1); |
| offset = 0; |
| goto out; |
| } |
| if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { |
| ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); |
| offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); |
| goto out; |
| } |
| |
| /* Only RAID56 goes through the old code */ |
| ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| ret = 0; |
| |
| /* Calculate the logical end of the stripe */ |
| get_raid56_logic_offset(physical_end, stripe_index, |
| map, &logic_end, NULL); |
| logic_end += chunk_logical; |
| |
| /* Initialize @offset in case we need to go to out: label */ |
| get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); |
| increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); |
| |
| /* |
| * Due to the rotation, for RAID56 it's better to iterate each stripe |
| * using their physical offset. |
| */ |
| while (physical < physical_end) { |
| ret = get_raid56_logic_offset(physical, stripe_index, map, |
| &logical, &stripe_logical); |
| logical += chunk_logical; |
| if (ret) { |
| /* it is parity strip */ |
| stripe_logical += chunk_logical; |
| ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, |
| map, stripe_logical); |
| if (ret) |
| goto out; |
| goto next; |
| } |
| |
| /* |
| * Now we're at a data stripe, scrub each extents in the range. |
| * |
| * At this stage, if we ignore the repair part, inside each data |
| * stripe it is no different than SINGLE profile. |
| * We can reuse scrub_simple_mirror() here, as the repair part |
| * is still based on @mirror_num. |
| */ |
| ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, |
| scrub_dev, physical, 1); |
| if (ret < 0) |
| goto out; |
| next: |
| logical += increment; |
| physical += BTRFS_STRIPE_LEN; |
| spin_lock(&sctx->stat_lock); |
| if (stop_loop) |
| sctx->stat.last_physical = |
| map->stripes[stripe_index].physical + dev_stripe_len; |
| else |
| sctx->stat.last_physical = physical; |
| spin_unlock(&sctx->stat_lock); |
| if (stop_loop) |
| break; |
| } |
| out: |
| ret2 = flush_scrub_stripes(sctx); |
| if (!ret) |
| ret = ret2; |
| btrfs_release_path(&sctx->extent_path); |
| btrfs_release_path(&sctx->csum_path); |
| |
| if (sctx->raid56_data_stripes) { |
| for (int i = 0; i < nr_data_stripes(map); i++) |
| release_scrub_stripe(&sctx->raid56_data_stripes[i]); |
| kfree(sctx->raid56_data_stripes); |
| sctx->raid56_data_stripes = NULL; |
| } |
| |
| if (sctx->is_dev_replace && ret >= 0) { |
| int ret2; |
| |
| ret2 = sync_write_pointer_for_zoned(sctx, |
| chunk_logical + offset, |
| map->stripes[stripe_index].physical, |
| physical_end); |
| if (ret2) |
| ret = ret2; |
| } |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, |
| struct btrfs_block_group *bg, |
| struct btrfs_device *scrub_dev, |
| u64 dev_offset, |
| u64 dev_extent_len) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_chunk_map *map; |
| int i; |
| int ret = 0; |
| |
| map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); |
| if (!map) { |
| /* |
| * Might have been an unused block group deleted by the cleaner |
| * kthread or relocation. |
| */ |
| spin_lock(&bg->lock); |
| if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) |
| ret = -EINVAL; |
| spin_unlock(&bg->lock); |
| |
| return ret; |
| } |
| if (map->start != bg->start) |
| goto out; |
| if (map->chunk_len < dev_extent_len) |
| goto out; |
| |
| for (i = 0; i < map->num_stripes; ++i) { |
| if (map->stripes[i].dev->bdev == scrub_dev->bdev && |
| map->stripes[i].physical == dev_offset) { |
| ret = scrub_stripe(sctx, bg, map, scrub_dev, i); |
| if (ret) |
| goto out; |
| } |
| } |
| out: |
| btrfs_free_chunk_map(map); |
| |
| return ret; |
| } |
| |
| static int finish_extent_writes_for_zoned(struct btrfs_root *root, |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_trans_handle *trans; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return 0; |
| |
| btrfs_wait_block_group_reservations(cache); |
| btrfs_wait_nocow_writers(cache); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| return btrfs_commit_transaction(trans); |
| } |
| |
| static noinline_for_stack |
| int scrub_enumerate_chunks(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev, u64 start, u64 end) |
| { |
| struct btrfs_dev_extent *dev_extent = NULL; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| u64 chunk_offset; |
| int ret = 0; |
| int ro_set; |
| int slot; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_block_group *cache; |
| struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| key.objectid = scrub_dev->devid; |
| key.offset = 0ull; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| while (1) { |
| u64 dev_extent_len; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } else { |
| ret = 0; |
| } |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(l, &found_key, slot); |
| |
| if (found_key.objectid != scrub_dev->devid) |
| break; |
| |
| if (found_key.type != BTRFS_DEV_EXTENT_KEY) |
| break; |
| |
| if (found_key.offset >= end) |
| break; |
| |
| if (found_key.offset < key.offset) |
| break; |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| dev_extent_len = btrfs_dev_extent_length(l, dev_extent); |
| |
| if (found_key.offset + dev_extent_len <= start) |
| goto skip; |
| |
| chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| |
| /* |
| * get a reference on the corresponding block group to prevent |
| * the chunk from going away while we scrub it |
| */ |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| |
| /* some chunks are removed but not committed to disk yet, |
| * continue scrubbing */ |
| if (!cache) |
| goto skip; |
| |
| ASSERT(cache->start <= chunk_offset); |
| /* |
| * We are using the commit root to search for device extents, so |
| * that means we could have found a device extent item from a |
| * block group that was deleted in the current transaction. The |
| * logical start offset of the deleted block group, stored at |
| * @chunk_offset, might be part of the logical address range of |
| * a new block group (which uses different physical extents). |
| * In this case btrfs_lookup_block_group() has returned the new |
| * block group, and its start address is less than @chunk_offset. |
| * |
| * We skip such new block groups, because it's pointless to |
| * process them, as we won't find their extents because we search |
| * for them using the commit root of the extent tree. For a device |
| * replace it's also fine to skip it, we won't miss copying them |
| * to the target device because we have the write duplication |
| * setup through the regular write path (by btrfs_map_block()), |
| * and we have committed a transaction when we started the device |
| * replace, right after setting up the device replace state. |
| */ |
| if (cache->start < chunk_offset) { |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| |
| if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { |
| if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| } |
| |
| /* |
| * Make sure that while we are scrubbing the corresponding block |
| * group doesn't get its logical address and its device extents |
| * reused for another block group, which can possibly be of a |
| * different type and different profile. We do this to prevent |
| * false error detections and crashes due to bogus attempts to |
| * repair extents. |
| */ |
| spin_lock(&cache->lock); |
| if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| btrfs_freeze_block_group(cache); |
| spin_unlock(&cache->lock); |
| |
| /* |
| * we need call btrfs_inc_block_group_ro() with scrubs_paused, |
| * to avoid deadlock caused by: |
| * btrfs_inc_block_group_ro() |
| * -> btrfs_wait_for_commit() |
| * -> btrfs_commit_transaction() |
| * -> btrfs_scrub_pause() |
| */ |
| scrub_pause_on(fs_info); |
| |
| /* |
| * Don't do chunk preallocation for scrub. |
| * |
| * This is especially important for SYSTEM bgs, or we can hit |
| * -EFBIG from btrfs_finish_chunk_alloc() like: |
| * 1. The only SYSTEM bg is marked RO. |
| * Since SYSTEM bg is small, that's pretty common. |
| * 2. New SYSTEM bg will be allocated |
| * Due to regular version will allocate new chunk. |
| * 3. New SYSTEM bg is empty and will get cleaned up |
| * Before cleanup really happens, it's marked RO again. |
| * 4. Empty SYSTEM bg get scrubbed |
| * We go back to 2. |
| * |
| * This can easily boost the amount of SYSTEM chunks if cleaner |
| * thread can't be triggered fast enough, and use up all space |
| * of btrfs_super_block::sys_chunk_array |
| * |
| * While for dev replace, we need to try our best to mark block |
| * group RO, to prevent race between: |
| * - Write duplication |
| * Contains latest data |
| * - Scrub copy |
| * Contains data from commit tree |
| * |
| * If target block group is not marked RO, nocow writes can |
| * be overwritten by scrub copy, causing data corruption. |
| * So for dev-replace, it's not allowed to continue if a block |
| * group is not RO. |
| */ |
| ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); |
| if (!ret && sctx->is_dev_replace) { |
| ret = finish_extent_writes_for_zoned(root, cache); |
| if (ret) { |
| btrfs_dec_block_group_ro(cache); |
| scrub_pause_off(fs_info); |
| btrfs_put_block_group(cache); |
| break; |
| } |
| } |
| |
| if (ret == 0) { |
| ro_set = 1; |
| } else if (ret == -ENOSPC && !sctx->is_dev_replace && |
| !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { |
| /* |
| * btrfs_inc_block_group_ro return -ENOSPC when it |
| * failed in creating new chunk for metadata. |
| * It is not a problem for scrub, because |
| * metadata are always cowed, and our scrub paused |
| * commit_transactions. |
| * |
| * For RAID56 chunks, we have to mark them read-only |
| * for scrub, as later we would use our own cache |
| * out of RAID56 realm. |
| * Thus we want the RAID56 bg to be marked RO to |
| * prevent RMW from screwing up out cache. |
| */ |
| ro_set = 0; |
| } else if (ret == -ETXTBSY) { |
| btrfs_warn(fs_info, |
| "skipping scrub of block group %llu due to active swapfile", |
| cache->start); |
| scrub_pause_off(fs_info); |
| ret = 0; |
| goto skip_unfreeze; |
| } else { |
| btrfs_warn(fs_info, |
| "failed setting block group ro: %d", ret); |
| btrfs_unfreeze_block_group(cache); |
| btrfs_put_block_group(cache); |
| scrub_pause_off(fs_info); |
| break; |
| } |
| |
| /* |
| * Now the target block is marked RO, wait for nocow writes to |
| * finish before dev-replace. |
| * COW is fine, as COW never overwrites extents in commit tree. |
| */ |
| if (sctx->is_dev_replace) { |
| btrfs_wait_nocow_writers(cache); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, |
| cache->length); |
| } |
| |
| scrub_pause_off(fs_info); |
| down_write(&dev_replace->rwsem); |
| dev_replace->cursor_right = found_key.offset + dev_extent_len; |
| dev_replace->cursor_left = found_key.offset; |
| dev_replace->item_needs_writeback = 1; |
| up_write(&dev_replace->rwsem); |
| |
| ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, |
| dev_extent_len); |
| if (sctx->is_dev_replace && |
| !btrfs_finish_block_group_to_copy(dev_replace->srcdev, |
| cache, found_key.offset)) |
| ro_set = 0; |
| |
| down_write(&dev_replace->rwsem); |
| dev_replace->cursor_left = dev_replace->cursor_right; |
| dev_replace->item_needs_writeback = 1; |
| up_write(&dev_replace->rwsem); |
| |
| if (ro_set) |
| btrfs_dec_block_group_ro(cache); |
| |
| /* |
| * We might have prevented the cleaner kthread from deleting |
| * this block group if it was already unused because we raced |
| * and set it to RO mode first. So add it back to the unused |
| * list, otherwise it might not ever be deleted unless a manual |
| * balance is triggered or it becomes used and unused again. |
| */ |
| spin_lock(&cache->lock); |
| if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && |
| !cache->ro && cache->reserved == 0 && cache->used == 0) { |
| spin_unlock(&cache->lock); |
| if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) |
| btrfs_discard_queue_work(&fs_info->discard_ctl, |
| cache); |
| else |
| btrfs_mark_bg_unused(cache); |
| } else { |
| spin_unlock(&cache->lock); |
| } |
| skip_unfreeze: |
| btrfs_unfreeze_block_group(cache); |
| btrfs_put_block_group(cache); |
| if (ret) |
| break; |
| if (sctx->is_dev_replace && |
| atomic64_read(&dev_replace->num_write_errors) > 0) { |
| ret = -EIO; |
| break; |
| } |
| if (sctx->stat.malloc_errors > 0) { |
| ret = -ENOMEM; |
| break; |
| } |
| skip: |
| key.offset = found_key.offset + dev_extent_len; |
| btrfs_release_path(path); |
| } |
| |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, |
| struct page *page, u64 physical, u64 generation) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct bio_vec bvec; |
| struct bio bio; |
| struct btrfs_super_block *sb = page_address(page); |
| int ret; |
| |
| bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); |
| bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; |
| __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); |
| ret = submit_bio_wait(&bio); |
| bio_uninit(&bio); |
| |
| if (ret < 0) |
| return ret; |
| ret = btrfs_check_super_csum(fs_info, sb); |
| if (ret != 0) { |
| btrfs_err_rl(fs_info, |
| "super block at physical %llu devid %llu has bad csum", |
| physical, dev->devid); |
| return -EIO; |
| } |
| if (btrfs_super_generation(sb) != generation) { |
| btrfs_err_rl(fs_info, |
| "super block at physical %llu devid %llu has bad generation %llu expect %llu", |
| physical, dev->devid, |
| btrfs_super_generation(sb), generation); |
| return -EUCLEAN; |
| } |
| |
| return btrfs_validate_super(fs_info, sb, -1); |
| } |
| |
| static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev) |
| { |
| int i; |
| u64 bytenr; |
| u64 gen; |
| int ret = 0; |
| struct page *page; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| |
| if (BTRFS_FS_ERROR(fs_info)) |
| return -EROFS; |
| |
| page = alloc_page(GFP_KERNEL); |
| if (!page) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| /* Seed devices of a new filesystem has their own generation. */ |
| if (scrub_dev->fs_devices != fs_info->fs_devices) |
| gen = scrub_dev->generation; |
| else |
| gen = btrfs_get_last_trans_committed(fs_info); |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| if (bytenr + BTRFS_SUPER_INFO_SIZE > |
| scrub_dev->commit_total_bytes) |
| break; |
| if (!btrfs_check_super_location(scrub_dev, bytenr)) |
| continue; |
| |
| ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); |
| if (ret) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.super_errors++; |
| spin_unlock(&sctx->stat_lock); |
| } |
| } |
| __free_page(page); |
| return 0; |
| } |
| |
| static void scrub_workers_put(struct btrfs_fs_info *fs_info) |
| { |
| if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, |
| &fs_info->scrub_lock)) { |
| struct workqueue_struct *scrub_workers = fs_info->scrub_workers; |
| |
| fs_info->scrub_workers = NULL; |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| if (scrub_workers) |
| destroy_workqueue(scrub_workers); |
| } |
| } |
| |
| /* |
| * get a reference count on fs_info->scrub_workers. start worker if necessary |
| */ |
| static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) |
| { |
| struct workqueue_struct *scrub_workers = NULL; |
| unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; |
| int max_active = fs_info->thread_pool_size; |
| int ret = -ENOMEM; |
| |
| if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) |
| return 0; |
| |
| scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); |
| if (!scrub_workers) |
| return -ENOMEM; |
| |
| mutex_lock(&fs_info->scrub_lock); |
| if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { |
| ASSERT(fs_info->scrub_workers == NULL); |
| fs_info->scrub_workers = scrub_workers; |
| refcount_set(&fs_info->scrub_workers_refcnt, 1); |
| mutex_unlock(&fs_info->scrub_lock); |
| return 0; |
| } |
| /* Other thread raced in and created the workers for us */ |
| refcount_inc(&fs_info->scrub_workers_refcnt); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| ret = 0; |
| |
| destroy_workqueue(scrub_workers); |
| return ret; |
| } |
| |
| int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, |
| u64 end, struct btrfs_scrub_progress *progress, |
| int readonly, int is_dev_replace) |
| { |
| struct btrfs_dev_lookup_args args = { .devid = devid }; |
| struct scrub_ctx *sctx; |
| int ret; |
| struct btrfs_device *dev; |
| unsigned int nofs_flag; |
| bool need_commit = false; |
| |
| if (btrfs_fs_closing(fs_info)) |
| return -EAGAIN; |
| |
| /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ |
| ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); |
| |
| /* |
| * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible |
| * value (max nodesize / min sectorsize), thus nodesize should always |
| * be fine. |
| */ |
| ASSERT(fs_info->nodesize <= |
| SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); |
| |
| /* Allocate outside of device_list_mutex */ |
| sctx = scrub_setup_ctx(fs_info, is_dev_replace); |
| if (IS_ERR(sctx)) |
| return PTR_ERR(sctx); |
| |
| ret = scrub_workers_get(fs_info); |
| if (ret) |
| goto out_free_ctx; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && |
| !is_dev_replace)) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!is_dev_replace && !readonly && |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| btrfs_err_in_rcu(fs_info, |
| "scrub on devid %llu: filesystem on %s is not writable", |
| devid, btrfs_dev_name(dev)); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| mutex_lock(&fs_info->scrub_lock); |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -EIO; |
| goto out; |
| } |
| |
| down_read(&fs_info->dev_replace.rwsem); |
| if (dev->scrub_ctx || |
| (!is_dev_replace && |
| btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { |
| up_read(&fs_info->dev_replace.rwsem); |
| mutex_unlock(&fs_info->scrub_lock); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -EINPROGRESS; |
| goto out; |
| } |
| up_read(&fs_info->dev_replace.rwsem); |
| |
| sctx->readonly = readonly; |
| dev->scrub_ctx = sctx; |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| /* |
| * checking @scrub_pause_req here, we can avoid |
| * race between committing transaction and scrubbing. |
| */ |
| __scrub_blocked_if_needed(fs_info); |
| atomic_inc(&fs_info->scrubs_running); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| /* |
| * In order to avoid deadlock with reclaim when there is a transaction |
| * trying to pause scrub, make sure we use GFP_NOFS for all the |
| * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() |
| * invoked by our callees. The pausing request is done when the |
| * transaction commit starts, and it blocks the transaction until scrub |
| * is paused (done at specific points at scrub_stripe() or right above |
| * before incrementing fs_info->scrubs_running). |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| if (!is_dev_replace) { |
| u64 old_super_errors; |
| |
| spin_lock(&sctx->stat_lock); |
| old_super_errors = sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| |
| btrfs_info(fs_info, "scrub: started on devid %llu", devid); |
| /* |
| * by holding device list mutex, we can |
| * kick off writing super in log tree sync. |
| */ |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| ret = scrub_supers(sctx, dev); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| spin_lock(&sctx->stat_lock); |
| /* |
| * Super block errors found, but we can not commit transaction |
| * at current context, since btrfs_commit_transaction() needs |
| * to pause the current running scrub (hold by ourselves). |
| */ |
| if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) |
| need_commit = true; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| if (!ret) |
| ret = scrub_enumerate_chunks(sctx, dev, start, end); |
| memalloc_nofs_restore(nofs_flag); |
| |
| atomic_dec(&fs_info->scrubs_running); |
| wake_up(&fs_info->scrub_pause_wait); |
| |
| if (progress) |
| memcpy(progress, &sctx->stat, sizeof(*progress)); |
| |
| if (!is_dev_replace) |
| btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", |
| ret ? "not finished" : "finished", devid, ret); |
| |
| mutex_lock(&fs_info->scrub_lock); |
| dev->scrub_ctx = NULL; |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| scrub_workers_put(fs_info); |
| scrub_put_ctx(sctx); |
| |
| /* |
| * We found some super block errors before, now try to force a |
| * transaction commit, as scrub has finished. |
| */ |
| if (need_commit) { |
| struct btrfs_trans_handle *trans; |
| |
| trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_err(fs_info, |
| "scrub: failed to start transaction to fix super block errors: %d", ret); |
| return ret; |
| } |
| ret = btrfs_commit_transaction(trans); |
| if (ret < 0) |
| btrfs_err(fs_info, |
| "scrub: failed to commit transaction to fix super block errors: %d", ret); |
| } |
| return ret; |
| out: |
| scrub_workers_put(fs_info); |
| out_free_ctx: |
| scrub_free_ctx(sctx); |
| |
| return ret; |
| } |
| |
| void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| atomic_inc(&fs_info->scrub_pause_req); |
| while (atomic_read(&fs_info->scrubs_paused) != |
| atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrubs_paused) == |
| atomic_read(&fs_info->scrubs_running)); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| mutex_unlock(&fs_info->scrub_lock); |
| } |
| |
| void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) |
| { |
| atomic_dec(&fs_info->scrub_pause_req); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| if (!atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| return -ENOTCONN; |
| } |
| |
| atomic_inc(&fs_info->scrub_cancel_req); |
| while (atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrubs_running) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| atomic_dec(&fs_info->scrub_cancel_req); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| return 0; |
| } |
| |
| int btrfs_scrub_cancel_dev(struct btrfs_device *dev) |
| { |
| struct btrfs_fs_info *fs_info = dev->fs_info; |
| struct scrub_ctx *sctx; |
| |
| mutex_lock(&fs_info->scrub_lock); |
| sctx = dev->scrub_ctx; |
| if (!sctx) { |
| mutex_unlock(&fs_info->scrub_lock); |
| return -ENOTCONN; |
| } |
| atomic_inc(&sctx->cancel_req); |
| while (dev->scrub_ctx) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| dev->scrub_ctx == NULL); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| return 0; |
| } |
| |
| int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, |
| struct btrfs_scrub_progress *progress) |
| { |
| struct btrfs_dev_lookup_args args = { .devid = devid }; |
| struct btrfs_device *dev; |
| struct scrub_ctx *sctx = NULL; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (dev) |
| sctx = dev->scrub_ctx; |
| if (sctx) |
| memcpy(progress, &sctx->stat, sizeof(*progress)); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; |
| } |