blob: 4e5d650578c60439f7485c2aefa98bb5937fa249 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018-2019 The Linux Foundation. All rights reserved. */
#include <linux/ascii85.h>
#include "msm_gem.h"
#include "a6xx_gpu.h"
#include "a6xx_gmu.h"
#include "a6xx_gpu_state.h"
#include "a6xx_gmu.xml.h"
struct a6xx_gpu_state_obj {
const void *handle;
u32 *data;
};
struct a6xx_gpu_state {
struct msm_gpu_state base;
struct a6xx_gpu_state_obj *gmu_registers;
int nr_gmu_registers;
struct a6xx_gpu_state_obj *registers;
int nr_registers;
struct a6xx_gpu_state_obj *shaders;
int nr_shaders;
struct a6xx_gpu_state_obj *clusters;
int nr_clusters;
struct a6xx_gpu_state_obj *dbgahb_clusters;
int nr_dbgahb_clusters;
struct a6xx_gpu_state_obj *indexed_regs;
int nr_indexed_regs;
struct a6xx_gpu_state_obj *debugbus;
int nr_debugbus;
struct a6xx_gpu_state_obj *vbif_debugbus;
struct a6xx_gpu_state_obj *cx_debugbus;
int nr_cx_debugbus;
struct msm_gpu_state_bo *gmu_log;
struct msm_gpu_state_bo *gmu_hfi;
struct msm_gpu_state_bo *gmu_debug;
s32 hfi_queue_history[2][HFI_HISTORY_SZ];
struct list_head objs;
bool gpu_initialized;
};
static inline int CRASHDUMP_WRITE(u64 *in, u32 reg, u32 val)
{
in[0] = val;
in[1] = (((u64) reg) << 44 | (1 << 21) | 1);
return 2;
}
static inline int CRASHDUMP_READ(u64 *in, u32 reg, u32 dwords, u64 target)
{
in[0] = target;
in[1] = (((u64) reg) << 44 | dwords);
return 2;
}
static inline int CRASHDUMP_FINI(u64 *in)
{
in[0] = 0;
in[1] = 0;
return 2;
}
struct a6xx_crashdumper {
void *ptr;
struct drm_gem_object *bo;
u64 iova;
};
struct a6xx_state_memobj {
struct list_head node;
unsigned long long data[];
};
static void *state_kcalloc(struct a6xx_gpu_state *a6xx_state, int nr, size_t objsize)
{
struct a6xx_state_memobj *obj =
kvzalloc((nr * objsize) + sizeof(*obj), GFP_KERNEL);
if (!obj)
return NULL;
list_add_tail(&obj->node, &a6xx_state->objs);
return &obj->data;
}
static void *state_kmemdup(struct a6xx_gpu_state *a6xx_state, void *src,
size_t size)
{
void *dst = state_kcalloc(a6xx_state, 1, size);
if (dst)
memcpy(dst, src, size);
return dst;
}
/*
* Allocate 1MB for the crashdumper scratch region - 8k for the script and
* the rest for the data
*/
#define A6XX_CD_DATA_OFFSET 8192
#define A6XX_CD_DATA_SIZE (SZ_1M - 8192)
static int a6xx_crashdumper_init(struct msm_gpu *gpu,
struct a6xx_crashdumper *dumper)
{
dumper->ptr = msm_gem_kernel_new(gpu->dev,
SZ_1M, MSM_BO_WC, gpu->aspace,
&dumper->bo, &dumper->iova);
if (!IS_ERR(dumper->ptr))
msm_gem_object_set_name(dumper->bo, "crashdump");
return PTR_ERR_OR_ZERO(dumper->ptr);
}
static int a6xx_crashdumper_run(struct msm_gpu *gpu,
struct a6xx_crashdumper *dumper)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
u32 val;
int ret;
if (IS_ERR_OR_NULL(dumper->ptr))
return -EINVAL;
if (!a6xx_gmu_sptprac_is_on(&a6xx_gpu->gmu))
return -EINVAL;
/* Make sure all pending memory writes are posted */
wmb();
gpu_write64(gpu, REG_A6XX_CP_CRASH_SCRIPT_BASE, dumper->iova);
gpu_write(gpu, REG_A6XX_CP_CRASH_DUMP_CNTL, 1);
ret = gpu_poll_timeout(gpu, REG_A6XX_CP_CRASH_DUMP_STATUS, val,
val & 0x02, 100, 10000);
gpu_write(gpu, REG_A6XX_CP_CRASH_DUMP_CNTL, 0);
return ret;
}
/* read a value from the GX debug bus */
static int debugbus_read(struct msm_gpu *gpu, u32 block, u32 offset,
u32 *data)
{
u32 reg = A6XX_DBGC_CFG_DBGBUS_SEL_D_PING_INDEX(offset) |
A6XX_DBGC_CFG_DBGBUS_SEL_D_PING_BLK_SEL(block);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_A, reg);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_B, reg);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_C, reg);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_D, reg);
/* Wait 1 us to make sure the data is flowing */
udelay(1);
data[0] = gpu_read(gpu, REG_A6XX_DBGC_CFG_DBGBUS_TRACE_BUF2);
data[1] = gpu_read(gpu, REG_A6XX_DBGC_CFG_DBGBUS_TRACE_BUF1);
return 2;
}
#define cxdbg_write(ptr, offset, val) \
msm_writel((val), (ptr) + ((offset) << 2))
#define cxdbg_read(ptr, offset) \
msm_readl((ptr) + ((offset) << 2))
/* read a value from the CX debug bus */
static int cx_debugbus_read(void __iomem *cxdbg, u32 block, u32 offset,
u32 *data)
{
u32 reg = A6XX_CX_DBGC_CFG_DBGBUS_SEL_A_PING_INDEX(offset) |
A6XX_CX_DBGC_CFG_DBGBUS_SEL_A_PING_BLK_SEL(block);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_A, reg);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_B, reg);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_C, reg);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_D, reg);
/* Wait 1 us to make sure the data is flowing */
udelay(1);
data[0] = cxdbg_read(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_TRACE_BUF2);
data[1] = cxdbg_read(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_TRACE_BUF1);
return 2;
}
/* Read a chunk of data from the VBIF debug bus */
static int vbif_debugbus_read(struct msm_gpu *gpu, u32 ctrl0, u32 ctrl1,
u32 reg, int count, u32 *data)
{
int i;
gpu_write(gpu, ctrl0, reg);
for (i = 0; i < count; i++) {
gpu_write(gpu, ctrl1, i);
data[i] = gpu_read(gpu, REG_A6XX_VBIF_TEST_BUS_OUT);
}
return count;
}
#define AXI_ARB_BLOCKS 2
#define XIN_AXI_BLOCKS 5
#define XIN_CORE_BLOCKS 4
#define VBIF_DEBUGBUS_BLOCK_SIZE \
((16 * AXI_ARB_BLOCKS) + \
(18 * XIN_AXI_BLOCKS) + \
(12 * XIN_CORE_BLOCKS))
static void a6xx_get_vbif_debugbus_block(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
struct a6xx_gpu_state_obj *obj)
{
u32 clk, *ptr;
int i;
obj->data = state_kcalloc(a6xx_state, VBIF_DEBUGBUS_BLOCK_SIZE,
sizeof(u32));
if (!obj->data)
return;
obj->handle = NULL;
/* Get the current clock setting */
clk = gpu_read(gpu, REG_A6XX_VBIF_CLKON);
/* Force on the bus so we can read it */
gpu_write(gpu, REG_A6XX_VBIF_CLKON,
clk | A6XX_VBIF_CLKON_FORCE_ON_TESTBUS);
/* We will read from BUS2 first, so disable BUS1 */
gpu_write(gpu, REG_A6XX_VBIF_TEST_BUS1_CTRL0, 0);
/* Enable the VBIF bus for reading */
gpu_write(gpu, REG_A6XX_VBIF_TEST_BUS_OUT_CTRL, 1);
ptr = obj->data;
for (i = 0; i < AXI_ARB_BLOCKS; i++)
ptr += vbif_debugbus_read(gpu,
REG_A6XX_VBIF_TEST_BUS2_CTRL0,
REG_A6XX_VBIF_TEST_BUS2_CTRL1,
1 << (i + 16), 16, ptr);
for (i = 0; i < XIN_AXI_BLOCKS; i++)
ptr += vbif_debugbus_read(gpu,
REG_A6XX_VBIF_TEST_BUS2_CTRL0,
REG_A6XX_VBIF_TEST_BUS2_CTRL1,
1 << i, 18, ptr);
/* Stop BUS2 so we can turn on BUS1 */
gpu_write(gpu, REG_A6XX_VBIF_TEST_BUS2_CTRL0, 0);
for (i = 0; i < XIN_CORE_BLOCKS; i++)
ptr += vbif_debugbus_read(gpu,
REG_A6XX_VBIF_TEST_BUS1_CTRL0,
REG_A6XX_VBIF_TEST_BUS1_CTRL1,
1 << i, 12, ptr);
/* Restore the VBIF clock setting */
gpu_write(gpu, REG_A6XX_VBIF_CLKON, clk);
}
static void a6xx_get_debugbus_block(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_debugbus_block *block,
struct a6xx_gpu_state_obj *obj)
{
int i;
u32 *ptr;
obj->data = state_kcalloc(a6xx_state, block->count, sizeof(u64));
if (!obj->data)
return;
obj->handle = block;
for (ptr = obj->data, i = 0; i < block->count; i++)
ptr += debugbus_read(gpu, block->id, i, ptr);
}
static void a6xx_get_cx_debugbus_block(void __iomem *cxdbg,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_debugbus_block *block,
struct a6xx_gpu_state_obj *obj)
{
int i;
u32 *ptr;
obj->data = state_kcalloc(a6xx_state, block->count, sizeof(u64));
if (!obj->data)
return;
obj->handle = block;
for (ptr = obj->data, i = 0; i < block->count; i++)
ptr += cx_debugbus_read(cxdbg, block->id, i, ptr);
}
static void a6xx_get_debugbus(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state)
{
struct resource *res;
void __iomem *cxdbg = NULL;
int nr_debugbus_blocks;
/* Set up the GX debug bus */
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_CNTLT,
A6XX_DBGC_CFG_DBGBUS_CNTLT_SEGT(0xf));
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_CNTLM,
A6XX_DBGC_CFG_DBGBUS_CNTLM_ENABLE(0xf));
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_0, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_1, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_2, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_3, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_BYTEL_0, 0x76543210);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_BYTEL_1, 0xFEDCBA98);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_0, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_1, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_2, 0);
gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_3, 0);
/* Set up the CX debug bus - it lives elsewhere in the system so do a
* temporary ioremap for the registers
*/
res = platform_get_resource_byname(gpu->pdev, IORESOURCE_MEM,
"cx_dbgc");
if (res)
cxdbg = ioremap(res->start, resource_size(res));
if (cxdbg) {
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_CNTLT,
A6XX_DBGC_CFG_DBGBUS_CNTLT_SEGT(0xf));
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_CNTLM,
A6XX_DBGC_CFG_DBGBUS_CNTLM_ENABLE(0xf));
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_0, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_1, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_2, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_3, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_BYTEL_0,
0x76543210);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_BYTEL_1,
0xFEDCBA98);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_0, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_1, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_2, 0);
cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_3, 0);
}
nr_debugbus_blocks = ARRAY_SIZE(a6xx_debugbus_blocks) +
(a6xx_has_gbif(to_adreno_gpu(gpu)) ? 1 : 0);
if (adreno_is_a650_family(to_adreno_gpu(gpu)))
nr_debugbus_blocks += ARRAY_SIZE(a650_debugbus_blocks);
a6xx_state->debugbus = state_kcalloc(a6xx_state, nr_debugbus_blocks,
sizeof(*a6xx_state->debugbus));
if (a6xx_state->debugbus) {
int i;
for (i = 0; i < ARRAY_SIZE(a6xx_debugbus_blocks); i++)
a6xx_get_debugbus_block(gpu,
a6xx_state,
&a6xx_debugbus_blocks[i],
&a6xx_state->debugbus[i]);
a6xx_state->nr_debugbus = ARRAY_SIZE(a6xx_debugbus_blocks);
/*
* GBIF has same debugbus as of other GPU blocks, fall back to
* default path if GPU uses GBIF, also GBIF uses exactly same
* ID as of VBIF.
*/
if (a6xx_has_gbif(to_adreno_gpu(gpu))) {
a6xx_get_debugbus_block(gpu, a6xx_state,
&a6xx_gbif_debugbus_block,
&a6xx_state->debugbus[i]);
a6xx_state->nr_debugbus += 1;
}
if (adreno_is_a650_family(to_adreno_gpu(gpu))) {
for (i = 0; i < ARRAY_SIZE(a650_debugbus_blocks); i++)
a6xx_get_debugbus_block(gpu,
a6xx_state,
&a650_debugbus_blocks[i],
&a6xx_state->debugbus[i]);
}
}
/* Dump the VBIF debugbus on applicable targets */
if (!a6xx_has_gbif(to_adreno_gpu(gpu))) {
a6xx_state->vbif_debugbus =
state_kcalloc(a6xx_state, 1,
sizeof(*a6xx_state->vbif_debugbus));
if (a6xx_state->vbif_debugbus)
a6xx_get_vbif_debugbus_block(gpu, a6xx_state,
a6xx_state->vbif_debugbus);
}
if (cxdbg) {
a6xx_state->cx_debugbus =
state_kcalloc(a6xx_state,
ARRAY_SIZE(a6xx_cx_debugbus_blocks),
sizeof(*a6xx_state->cx_debugbus));
if (a6xx_state->cx_debugbus) {
int i;
for (i = 0; i < ARRAY_SIZE(a6xx_cx_debugbus_blocks); i++)
a6xx_get_cx_debugbus_block(cxdbg,
a6xx_state,
&a6xx_cx_debugbus_blocks[i],
&a6xx_state->cx_debugbus[i]);
a6xx_state->nr_cx_debugbus =
ARRAY_SIZE(a6xx_cx_debugbus_blocks);
}
iounmap(cxdbg);
}
}
#define RANGE(reg, a) ((reg)[(a) + 1] - (reg)[(a)] + 1)
/* Read a data cluster from behind the AHB aperture */
static void a6xx_get_dbgahb_cluster(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_dbgahb_cluster *dbgahb,
struct a6xx_gpu_state_obj *obj,
struct a6xx_crashdumper *dumper)
{
u64 *in = dumper->ptr;
u64 out = dumper->iova + A6XX_CD_DATA_OFFSET;
size_t datasize;
int i, regcount = 0;
for (i = 0; i < A6XX_NUM_CONTEXTS; i++) {
int j;
in += CRASHDUMP_WRITE(in, REG_A6XX_HLSQ_DBG_READ_SEL,
(dbgahb->statetype + i * 2) << 8);
for (j = 0; j < dbgahb->count; j += 2) {
int count = RANGE(dbgahb->registers, j);
u32 offset = REG_A6XX_HLSQ_DBG_AHB_READ_APERTURE +
dbgahb->registers[j] - (dbgahb->base >> 2);
in += CRASHDUMP_READ(in, offset, count, out);
out += count * sizeof(u32);
if (i == 0)
regcount += count;
}
}
CRASHDUMP_FINI(in);
datasize = regcount * A6XX_NUM_CONTEXTS * sizeof(u32);
if (WARN_ON(datasize > A6XX_CD_DATA_SIZE))
return;
if (a6xx_crashdumper_run(gpu, dumper))
return;
obj->handle = dbgahb;
obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET,
datasize);
}
static void a6xx_get_dbgahb_clusters(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
struct a6xx_crashdumper *dumper)
{
int i;
a6xx_state->dbgahb_clusters = state_kcalloc(a6xx_state,
ARRAY_SIZE(a6xx_dbgahb_clusters),
sizeof(*a6xx_state->dbgahb_clusters));
if (!a6xx_state->dbgahb_clusters)
return;
a6xx_state->nr_dbgahb_clusters = ARRAY_SIZE(a6xx_dbgahb_clusters);
for (i = 0; i < ARRAY_SIZE(a6xx_dbgahb_clusters); i++)
a6xx_get_dbgahb_cluster(gpu, a6xx_state,
&a6xx_dbgahb_clusters[i],
&a6xx_state->dbgahb_clusters[i], dumper);
}
/* Read a data cluster from the CP aperture with the crashdumper */
static void a6xx_get_cluster(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_cluster *cluster,
struct a6xx_gpu_state_obj *obj,
struct a6xx_crashdumper *dumper)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
u64 *in = dumper->ptr;
u64 out = dumper->iova + A6XX_CD_DATA_OFFSET;
size_t datasize;
int i, regcount = 0;
u32 id = cluster->id;
/* Skip registers that are not present on older generation */
if (!adreno_is_a660_family(adreno_gpu) &&
cluster->registers == a660_fe_cluster)
return;
if (adreno_is_a650_family(adreno_gpu) &&
cluster->registers == a6xx_ps_cluster)
id = CLUSTER_VPC_PS;
/* Some clusters need a selector register to be programmed too */
if (cluster->sel_reg)
in += CRASHDUMP_WRITE(in, cluster->sel_reg, cluster->sel_val);
for (i = 0; i < A6XX_NUM_CONTEXTS; i++) {
int j;
in += CRASHDUMP_WRITE(in, REG_A6XX_CP_APERTURE_CNTL_CD,
(id << 8) | (i << 4) | i);
for (j = 0; j < cluster->count; j += 2) {
int count = RANGE(cluster->registers, j);
in += CRASHDUMP_READ(in, cluster->registers[j],
count, out);
out += count * sizeof(u32);
if (i == 0)
regcount += count;
}
}
CRASHDUMP_FINI(in);
datasize = regcount * A6XX_NUM_CONTEXTS * sizeof(u32);
if (WARN_ON(datasize > A6XX_CD_DATA_SIZE))
return;
if (a6xx_crashdumper_run(gpu, dumper))
return;
obj->handle = cluster;
obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET,
datasize);
}
static void a6xx_get_clusters(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
struct a6xx_crashdumper *dumper)
{
int i;
a6xx_state->clusters = state_kcalloc(a6xx_state,
ARRAY_SIZE(a6xx_clusters), sizeof(*a6xx_state->clusters));
if (!a6xx_state->clusters)
return;
a6xx_state->nr_clusters = ARRAY_SIZE(a6xx_clusters);
for (i = 0; i < ARRAY_SIZE(a6xx_clusters); i++)
a6xx_get_cluster(gpu, a6xx_state, &a6xx_clusters[i],
&a6xx_state->clusters[i], dumper);
}
/* Read a shader / debug block from the HLSQ aperture with the crashdumper */
static void a6xx_get_shader_block(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_shader_block *block,
struct a6xx_gpu_state_obj *obj,
struct a6xx_crashdumper *dumper)
{
u64 *in = dumper->ptr;
size_t datasize = block->size * A6XX_NUM_SHADER_BANKS * sizeof(u32);
int i;
if (WARN_ON(datasize > A6XX_CD_DATA_SIZE))
return;
for (i = 0; i < A6XX_NUM_SHADER_BANKS; i++) {
in += CRASHDUMP_WRITE(in, REG_A6XX_HLSQ_DBG_READ_SEL,
(block->type << 8) | i);
in += CRASHDUMP_READ(in, REG_A6XX_HLSQ_DBG_AHB_READ_APERTURE,
block->size, dumper->iova + A6XX_CD_DATA_OFFSET);
}
CRASHDUMP_FINI(in);
if (a6xx_crashdumper_run(gpu, dumper))
return;
obj->handle = block;
obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET,
datasize);
}
static void a6xx_get_shaders(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
struct a6xx_crashdumper *dumper)
{
int i;
a6xx_state->shaders = state_kcalloc(a6xx_state,
ARRAY_SIZE(a6xx_shader_blocks), sizeof(*a6xx_state->shaders));
if (!a6xx_state->shaders)
return;
a6xx_state->nr_shaders = ARRAY_SIZE(a6xx_shader_blocks);
for (i = 0; i < ARRAY_SIZE(a6xx_shader_blocks); i++)
a6xx_get_shader_block(gpu, a6xx_state, &a6xx_shader_blocks[i],
&a6xx_state->shaders[i], dumper);
}
/* Read registers from behind the HLSQ aperture with the crashdumper */
static void a6xx_get_crashdumper_hlsq_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_registers *regs,
struct a6xx_gpu_state_obj *obj,
struct a6xx_crashdumper *dumper)
{
u64 *in = dumper->ptr;
u64 out = dumper->iova + A6XX_CD_DATA_OFFSET;
int i, regcount = 0;
in += CRASHDUMP_WRITE(in, REG_A6XX_HLSQ_DBG_READ_SEL, regs->val1);
for (i = 0; i < regs->count; i += 2) {
u32 count = RANGE(regs->registers, i);
u32 offset = REG_A6XX_HLSQ_DBG_AHB_READ_APERTURE +
regs->registers[i] - (regs->val0 >> 2);
in += CRASHDUMP_READ(in, offset, count, out);
out += count * sizeof(u32);
regcount += count;
}
CRASHDUMP_FINI(in);
if (WARN_ON((regcount * sizeof(u32)) > A6XX_CD_DATA_SIZE))
return;
if (a6xx_crashdumper_run(gpu, dumper))
return;
obj->handle = regs;
obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET,
regcount * sizeof(u32));
}
/* Read a block of registers using the crashdumper */
static void a6xx_get_crashdumper_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_registers *regs,
struct a6xx_gpu_state_obj *obj,
struct a6xx_crashdumper *dumper)
{
u64 *in = dumper->ptr;
u64 out = dumper->iova + A6XX_CD_DATA_OFFSET;
int i, regcount = 0;
/* Skip unsupported registers on older generations */
if (!adreno_is_a660_family(to_adreno_gpu(gpu)) &&
(regs->registers == a660_registers))
return;
/* Some blocks might need to program a selector register first */
if (regs->val0)
in += CRASHDUMP_WRITE(in, regs->val0, regs->val1);
for (i = 0; i < regs->count; i += 2) {
u32 count = RANGE(regs->registers, i);
in += CRASHDUMP_READ(in, regs->registers[i], count, out);
out += count * sizeof(u32);
regcount += count;
}
CRASHDUMP_FINI(in);
if (WARN_ON((regcount * sizeof(u32)) > A6XX_CD_DATA_SIZE))
return;
if (a6xx_crashdumper_run(gpu, dumper))
return;
obj->handle = regs;
obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET,
regcount * sizeof(u32));
}
/* Read a block of registers via AHB */
static void a6xx_get_ahb_gpu_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_registers *regs,
struct a6xx_gpu_state_obj *obj)
{
int i, regcount = 0, index = 0;
/* Skip unsupported registers on older generations */
if (!adreno_is_a660_family(to_adreno_gpu(gpu)) &&
(regs->registers == a660_registers))
return;
for (i = 0; i < regs->count; i += 2)
regcount += RANGE(regs->registers, i);
obj->handle = (const void *) regs;
obj->data = state_kcalloc(a6xx_state, regcount, sizeof(u32));
if (!obj->data)
return;
for (i = 0; i < regs->count; i += 2) {
u32 count = RANGE(regs->registers, i);
int j;
for (j = 0; j < count; j++)
obj->data[index++] = gpu_read(gpu,
regs->registers[i] + j);
}
}
/* Read a block of GMU registers */
static void _a6xx_get_gmu_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
const struct a6xx_registers *regs,
struct a6xx_gpu_state_obj *obj,
bool rscc)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int i, regcount = 0, index = 0;
for (i = 0; i < regs->count; i += 2)
regcount += RANGE(regs->registers, i);
obj->handle = (const void *) regs;
obj->data = state_kcalloc(a6xx_state, regcount, sizeof(u32));
if (!obj->data)
return;
for (i = 0; i < regs->count; i += 2) {
u32 count = RANGE(regs->registers, i);
int j;
for (j = 0; j < count; j++) {
u32 offset = regs->registers[i] + j;
u32 val;
if (rscc)
val = gmu_read_rscc(gmu, offset);
else
val = gmu_read(gmu, offset);
obj->data[index++] = val;
}
}
}
static void a6xx_get_gmu_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
a6xx_state->gmu_registers = state_kcalloc(a6xx_state,
3, sizeof(*a6xx_state->gmu_registers));
if (!a6xx_state->gmu_registers)
return;
a6xx_state->nr_gmu_registers = 3;
/* Get the CX GMU registers from AHB */
_a6xx_get_gmu_registers(gpu, a6xx_state, &a6xx_gmu_reglist[0],
&a6xx_state->gmu_registers[0], false);
_a6xx_get_gmu_registers(gpu, a6xx_state, &a6xx_gmu_reglist[1],
&a6xx_state->gmu_registers[1], true);
if (!a6xx_gmu_gx_is_on(&a6xx_gpu->gmu))
return;
/* Set the fence to ALLOW mode so we can access the registers */
gpu_write(gpu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
_a6xx_get_gmu_registers(gpu, a6xx_state, &a6xx_gmu_reglist[2],
&a6xx_state->gmu_registers[2], false);
}
static struct msm_gpu_state_bo *a6xx_snapshot_gmu_bo(
struct a6xx_gpu_state *a6xx_state, struct a6xx_gmu_bo *bo)
{
struct msm_gpu_state_bo *snapshot;
if (!bo->size)
return NULL;
snapshot = state_kcalloc(a6xx_state, 1, sizeof(*snapshot));
if (!snapshot)
return NULL;
snapshot->iova = bo->iova;
snapshot->size = bo->size;
snapshot->data = kvzalloc(snapshot->size, GFP_KERNEL);
if (!snapshot->data)
return NULL;
memcpy(snapshot->data, bo->virt, bo->size);
return snapshot;
}
static void a6xx_snapshot_gmu_hfi_history(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
unsigned i, j;
BUILD_BUG_ON(ARRAY_SIZE(gmu->queues) != ARRAY_SIZE(a6xx_state->hfi_queue_history));
for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
struct a6xx_hfi_queue *queue = &gmu->queues[i];
for (j = 0; j < HFI_HISTORY_SZ; j++) {
unsigned idx = (j + queue->history_idx) % HFI_HISTORY_SZ;
a6xx_state->hfi_queue_history[i][j] = queue->history[idx];
}
}
}
#define A6XX_GBIF_REGLIST_SIZE 1
static void a6xx_get_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
struct a6xx_crashdumper *dumper)
{
int i, count = ARRAY_SIZE(a6xx_ahb_reglist) +
ARRAY_SIZE(a6xx_reglist) +
ARRAY_SIZE(a6xx_hlsq_reglist) + A6XX_GBIF_REGLIST_SIZE;
int index = 0;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
a6xx_state->registers = state_kcalloc(a6xx_state,
count, sizeof(*a6xx_state->registers));
if (!a6xx_state->registers)
return;
a6xx_state->nr_registers = count;
for (i = 0; i < ARRAY_SIZE(a6xx_ahb_reglist); i++)
a6xx_get_ahb_gpu_registers(gpu,
a6xx_state, &a6xx_ahb_reglist[i],
&a6xx_state->registers[index++]);
if (a6xx_has_gbif(adreno_gpu))
a6xx_get_ahb_gpu_registers(gpu,
a6xx_state, &a6xx_gbif_reglist,
&a6xx_state->registers[index++]);
else
a6xx_get_ahb_gpu_registers(gpu,
a6xx_state, &a6xx_vbif_reglist,
&a6xx_state->registers[index++]);
if (!dumper) {
/*
* We can't use the crashdumper when the SMMU is stalled,
* because the GPU has no memory access until we resume
* translation (but we don't want to do that until after
* we have captured as much useful GPU state as possible).
* So instead collect registers via the CPU:
*/
for (i = 0; i < ARRAY_SIZE(a6xx_reglist); i++)
a6xx_get_ahb_gpu_registers(gpu,
a6xx_state, &a6xx_reglist[i],
&a6xx_state->registers[index++]);
return;
}
for (i = 0; i < ARRAY_SIZE(a6xx_reglist); i++)
a6xx_get_crashdumper_registers(gpu,
a6xx_state, &a6xx_reglist[i],
&a6xx_state->registers[index++],
dumper);
for (i = 0; i < ARRAY_SIZE(a6xx_hlsq_reglist); i++)
a6xx_get_crashdumper_hlsq_registers(gpu,
a6xx_state, &a6xx_hlsq_reglist[i],
&a6xx_state->registers[index++],
dumper);
}
static u32 a6xx_get_cp_roq_size(struct msm_gpu *gpu)
{
/* The value at [16:31] is in 4dword units. Convert it to dwords */
return gpu_read(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2) >> 14;
}
/* Read a block of data from an indexed register pair */
static void a6xx_get_indexed_regs(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state,
struct a6xx_indexed_registers *indexed,
struct a6xx_gpu_state_obj *obj)
{
int i;
obj->handle = (const void *) indexed;
if (indexed->count_fn)
indexed->count = indexed->count_fn(gpu);
obj->data = state_kcalloc(a6xx_state, indexed->count, sizeof(u32));
if (!obj->data)
return;
/* All the indexed banks start at address 0 */
gpu_write(gpu, indexed->addr, 0);
/* Read the data - each read increments the internal address by 1 */
for (i = 0; i < indexed->count; i++)
obj->data[i] = gpu_read(gpu, indexed->data);
}
static void a6xx_get_indexed_registers(struct msm_gpu *gpu,
struct a6xx_gpu_state *a6xx_state)
{
u32 mempool_size;
int count = ARRAY_SIZE(a6xx_indexed_reglist) + 1;
int i;
a6xx_state->indexed_regs = state_kcalloc(a6xx_state, count,
sizeof(*a6xx_state->indexed_regs));
if (!a6xx_state->indexed_regs)
return;
for (i = 0; i < ARRAY_SIZE(a6xx_indexed_reglist); i++)
a6xx_get_indexed_regs(gpu, a6xx_state, &a6xx_indexed_reglist[i],
&a6xx_state->indexed_regs[i]);
if (adreno_is_a650_family(to_adreno_gpu(gpu))) {
u32 val;
val = gpu_read(gpu, REG_A6XX_CP_CHICKEN_DBG);
gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, val | 4);
/* Get the contents of the CP mempool */
a6xx_get_indexed_regs(gpu, a6xx_state, &a6xx_cp_mempool_indexed,
&a6xx_state->indexed_regs[i]);
gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, val);
a6xx_state->nr_indexed_regs = count;
return;
}
/* Set the CP mempool size to 0 to stabilize it while dumping */
mempool_size = gpu_read(gpu, REG_A6XX_CP_MEM_POOL_SIZE);
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 0);
/* Get the contents of the CP mempool */
a6xx_get_indexed_regs(gpu, a6xx_state, &a6xx_cp_mempool_indexed,
&a6xx_state->indexed_regs[i]);
/*
* Offset 0x2000 in the mempool is the size - copy the saved size over
* so the data is consistent
*/
a6xx_state->indexed_regs[i].data[0x2000] = mempool_size;
/* Restore the size in the hardware */
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, mempool_size);
a6xx_state->nr_indexed_regs = count;
}
struct msm_gpu_state *a6xx_gpu_state_get(struct msm_gpu *gpu)
{
struct a6xx_crashdumper _dumper = { 0 }, *dumper = NULL;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gpu_state *a6xx_state = kzalloc(sizeof(*a6xx_state),
GFP_KERNEL);
bool stalled = !!(gpu_read(gpu, REG_A6XX_RBBM_STATUS3) &
A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT);
if (!a6xx_state)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&a6xx_state->objs);
/* Get the generic state from the adreno core */
adreno_gpu_state_get(gpu, &a6xx_state->base);
if (!adreno_has_gmu_wrapper(adreno_gpu)) {
a6xx_get_gmu_registers(gpu, a6xx_state);
a6xx_state->gmu_log = a6xx_snapshot_gmu_bo(a6xx_state, &a6xx_gpu->gmu.log);
a6xx_state->gmu_hfi = a6xx_snapshot_gmu_bo(a6xx_state, &a6xx_gpu->gmu.hfi);
a6xx_state->gmu_debug = a6xx_snapshot_gmu_bo(a6xx_state, &a6xx_gpu->gmu.debug);
a6xx_snapshot_gmu_hfi_history(gpu, a6xx_state);
}
/* If GX isn't on the rest of the data isn't going to be accessible */
if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_gx_is_on(&a6xx_gpu->gmu))
return &a6xx_state->base;
/* Get the banks of indexed registers */
a6xx_get_indexed_registers(gpu, a6xx_state);
/*
* Try to initialize the crashdumper, if we are not dumping state
* with the SMMU stalled. The crashdumper needs memory access to
* write out GPU state, so we need to skip this when the SMMU is
* stalled in response to an iova fault
*/
if (!stalled && !gpu->needs_hw_init &&
!a6xx_crashdumper_init(gpu, &_dumper)) {
dumper = &_dumper;
}
a6xx_get_registers(gpu, a6xx_state, dumper);
if (dumper) {
a6xx_get_shaders(gpu, a6xx_state, dumper);
a6xx_get_clusters(gpu, a6xx_state, dumper);
a6xx_get_dbgahb_clusters(gpu, a6xx_state, dumper);
msm_gem_kernel_put(dumper->bo, gpu->aspace);
}
if (snapshot_debugbus)
a6xx_get_debugbus(gpu, a6xx_state);
a6xx_state->gpu_initialized = !gpu->needs_hw_init;
return &a6xx_state->base;
}
static void a6xx_gpu_state_destroy(struct kref *kref)
{
struct a6xx_state_memobj *obj, *tmp;
struct msm_gpu_state *state = container_of(kref,
struct msm_gpu_state, ref);
struct a6xx_gpu_state *a6xx_state = container_of(state,
struct a6xx_gpu_state, base);
if (a6xx_state->gmu_log)
kvfree(a6xx_state->gmu_log->data);
if (a6xx_state->gmu_hfi)
kvfree(a6xx_state->gmu_hfi->data);
if (a6xx_state->gmu_debug)
kvfree(a6xx_state->gmu_debug->data);
list_for_each_entry_safe(obj, tmp, &a6xx_state->objs, node) {
list_del(&obj->node);
kvfree(obj);
}
adreno_gpu_state_destroy(state);
kfree(a6xx_state);
}
int a6xx_gpu_state_put(struct msm_gpu_state *state)
{
if (IS_ERR_OR_NULL(state))
return 1;
return kref_put(&state->ref, a6xx_gpu_state_destroy);
}
static void a6xx_show_registers(const u32 *registers, u32 *data, size_t count,
struct drm_printer *p)
{
int i, index = 0;
if (!data)
return;
for (i = 0; i < count; i += 2) {
u32 count = RANGE(registers, i);
u32 offset = registers[i];
int j;
for (j = 0; j < count; index++, offset++, j++) {
if (data[index] == 0xdeafbead)
continue;
drm_printf(p, " - { offset: 0x%06x, value: 0x%08x }\n",
offset << 2, data[index]);
}
}
}
static void print_ascii85(struct drm_printer *p, size_t len, u32 *data)
{
char out[ASCII85_BUFSZ];
long i, l, datalen = 0;
for (i = 0; i < len >> 2; i++) {
if (data[i])
datalen = (i + 1) << 2;
}
if (datalen == 0)
return;
drm_puts(p, " data: !!ascii85 |\n");
drm_puts(p, " ");
l = ascii85_encode_len(datalen);
for (i = 0; i < l; i++)
drm_puts(p, ascii85_encode(data[i], out));
drm_puts(p, "\n");
}
static void print_name(struct drm_printer *p, const char *fmt, const char *name)
{
drm_puts(p, fmt);
drm_puts(p, name);
drm_puts(p, "\n");
}
static void a6xx_show_shader(struct a6xx_gpu_state_obj *obj,
struct drm_printer *p)
{
const struct a6xx_shader_block *block = obj->handle;
int i;
if (!obj->handle)
return;
print_name(p, " - type: ", block->name);
for (i = 0; i < A6XX_NUM_SHADER_BANKS; i++) {
drm_printf(p, " - bank: %d\n", i);
drm_printf(p, " size: %d\n", block->size);
if (!obj->data)
continue;
print_ascii85(p, block->size << 2,
obj->data + (block->size * i));
}
}
static void a6xx_show_cluster_data(const u32 *registers, int size, u32 *data,
struct drm_printer *p)
{
int ctx, index = 0;
for (ctx = 0; ctx < A6XX_NUM_CONTEXTS; ctx++) {
int j;
drm_printf(p, " - context: %d\n", ctx);
for (j = 0; j < size; j += 2) {
u32 count = RANGE(registers, j);
u32 offset = registers[j];
int k;
for (k = 0; k < count; index++, offset++, k++) {
if (data[index] == 0xdeafbead)
continue;
drm_printf(p, " - { offset: 0x%06x, value: 0x%08x }\n",
offset << 2, data[index]);
}
}
}
}
static void a6xx_show_dbgahb_cluster(struct a6xx_gpu_state_obj *obj,
struct drm_printer *p)
{
const struct a6xx_dbgahb_cluster *dbgahb = obj->handle;
if (dbgahb) {
print_name(p, " - cluster-name: ", dbgahb->name);
a6xx_show_cluster_data(dbgahb->registers, dbgahb->count,
obj->data, p);
}
}
static void a6xx_show_cluster(struct a6xx_gpu_state_obj *obj,
struct drm_printer *p)
{
const struct a6xx_cluster *cluster = obj->handle;
if (cluster) {
print_name(p, " - cluster-name: ", cluster->name);
a6xx_show_cluster_data(cluster->registers, cluster->count,
obj->data, p);
}
}
static void a6xx_show_indexed_regs(struct a6xx_gpu_state_obj *obj,
struct drm_printer *p)
{
const struct a6xx_indexed_registers *indexed = obj->handle;
if (!indexed)
return;
print_name(p, " - regs-name: ", indexed->name);
drm_printf(p, " dwords: %d\n", indexed->count);
print_ascii85(p, indexed->count << 2, obj->data);
}
static void a6xx_show_debugbus_block(const struct a6xx_debugbus_block *block,
u32 *data, struct drm_printer *p)
{
if (block) {
print_name(p, " - debugbus-block: ", block->name);
/*
* count for regular debugbus data is in quadwords,
* but print the size in dwords for consistency
*/
drm_printf(p, " count: %d\n", block->count << 1);
print_ascii85(p, block->count << 3, data);
}
}
static void a6xx_show_debugbus(struct a6xx_gpu_state *a6xx_state,
struct drm_printer *p)
{
int i;
for (i = 0; i < a6xx_state->nr_debugbus; i++) {
struct a6xx_gpu_state_obj *obj = &a6xx_state->debugbus[i];
a6xx_show_debugbus_block(obj->handle, obj->data, p);
}
if (a6xx_state->vbif_debugbus) {
struct a6xx_gpu_state_obj *obj = a6xx_state->vbif_debugbus;
drm_puts(p, " - debugbus-block: A6XX_DBGBUS_VBIF\n");
drm_printf(p, " count: %d\n", VBIF_DEBUGBUS_BLOCK_SIZE);
/* vbif debugbus data is in dwords. Confusing, huh? */
print_ascii85(p, VBIF_DEBUGBUS_BLOCK_SIZE << 2, obj->data);
}
for (i = 0; i < a6xx_state->nr_cx_debugbus; i++) {
struct a6xx_gpu_state_obj *obj = &a6xx_state->cx_debugbus[i];
a6xx_show_debugbus_block(obj->handle, obj->data, p);
}
}
void a6xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p)
{
struct a6xx_gpu_state *a6xx_state = container_of(state,
struct a6xx_gpu_state, base);
int i;
if (IS_ERR_OR_NULL(state))
return;
drm_printf(p, "gpu-initialized: %d\n", a6xx_state->gpu_initialized);
adreno_show(gpu, state, p);
drm_puts(p, "gmu-log:\n");
if (a6xx_state->gmu_log) {
struct msm_gpu_state_bo *gmu_log = a6xx_state->gmu_log;
drm_printf(p, " iova: 0x%016llx\n", gmu_log->iova);
drm_printf(p, " size: %zu\n", gmu_log->size);
adreno_show_object(p, &gmu_log->data, gmu_log->size,
&gmu_log->encoded);
}
drm_puts(p, "gmu-hfi:\n");
if (a6xx_state->gmu_hfi) {
struct msm_gpu_state_bo *gmu_hfi = a6xx_state->gmu_hfi;
unsigned i, j;
drm_printf(p, " iova: 0x%016llx\n", gmu_hfi->iova);
drm_printf(p, " size: %zu\n", gmu_hfi->size);
for (i = 0; i < ARRAY_SIZE(a6xx_state->hfi_queue_history); i++) {
drm_printf(p, " queue-history[%u]:", i);
for (j = 0; j < HFI_HISTORY_SZ; j++) {
drm_printf(p, " %d", a6xx_state->hfi_queue_history[i][j]);
}
drm_printf(p, "\n");
}
adreno_show_object(p, &gmu_hfi->data, gmu_hfi->size,
&gmu_hfi->encoded);
}
drm_puts(p, "gmu-debug:\n");
if (a6xx_state->gmu_debug) {
struct msm_gpu_state_bo *gmu_debug = a6xx_state->gmu_debug;
drm_printf(p, " iova: 0x%016llx\n", gmu_debug->iova);
drm_printf(p, " size: %zu\n", gmu_debug->size);
adreno_show_object(p, &gmu_debug->data, gmu_debug->size,
&gmu_debug->encoded);
}
drm_puts(p, "registers:\n");
for (i = 0; i < a6xx_state->nr_registers; i++) {
struct a6xx_gpu_state_obj *obj = &a6xx_state->registers[i];
const struct a6xx_registers *regs = obj->handle;
if (!obj->handle)
continue;
a6xx_show_registers(regs->registers, obj->data, regs->count, p);
}
drm_puts(p, "registers-gmu:\n");
for (i = 0; i < a6xx_state->nr_gmu_registers; i++) {
struct a6xx_gpu_state_obj *obj = &a6xx_state->gmu_registers[i];
const struct a6xx_registers *regs = obj->handle;
if (!obj->handle)
continue;
a6xx_show_registers(regs->registers, obj->data, regs->count, p);
}
drm_puts(p, "indexed-registers:\n");
for (i = 0; i < a6xx_state->nr_indexed_regs; i++)
a6xx_show_indexed_regs(&a6xx_state->indexed_regs[i], p);
drm_puts(p, "shader-blocks:\n");
for (i = 0; i < a6xx_state->nr_shaders; i++)
a6xx_show_shader(&a6xx_state->shaders[i], p);
drm_puts(p, "clusters:\n");
for (i = 0; i < a6xx_state->nr_clusters; i++)
a6xx_show_cluster(&a6xx_state->clusters[i], p);
for (i = 0; i < a6xx_state->nr_dbgahb_clusters; i++)
a6xx_show_dbgahb_cluster(&a6xx_state->dbgahb_clusters[i], p);
drm_puts(p, "debugbus:\n");
a6xx_show_debugbus(a6xx_state, p);
}