blob: 4ccc0b72324de3e6c6e1e530a57f3bb070f92e6d [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "polaris10_smc.h"
#include "smu7_dyn_defaults.h"
#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "pp_debug.h"
#include "cgs_common.h"
#include "atombios.h"
#include "polaris10_smumgr.h"
#include "pppcielanes.h"
#include "smu_ucode_xfer_vi.h"
#include "smu74_discrete.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "gca/gfx_8_0_d.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "polaris10_pwrvirus.h"
#include "smu7_ppsmc.h"
#include "smu7_smumgr.h"
#define POLARIS10_SMC_SIZE 0x20000
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define POWERTUNE_DEFAULT_SET_MAX 1
#define VDDC_VDDCI_DELTA 200
#define MC_CG_ARB_FREQ_F1 0x0b
static const struct polaris10_pt_defaults polaris10_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
* TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
{ 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
};
static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
{VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112},
{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
{VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112},
{VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160},
{VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112},
{VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160},
{VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108},
{VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} };
static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
uint32_t i;
uint16_t vddci;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
*voltage = *mvdd = 0;
/* clock - voltage dependency table is empty table */
if (dep_table->count == 0)
return -EINVAL;
for (i = 0; i < dep_table->count; i++) {
/* find first sclk bigger than request */
if (dep_table->entries[i].clk >= clock) {
*voltage |= (dep_table->entries[i].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i].vddci)
*voltage |= (dep_table->entries[i].vddci *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else {
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
(dep_table->entries[i].vddc -
(uint16_t)VDDC_VDDCI_DELTA));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
VOLTAGE_SCALE;
*voltage |= 1 << PHASES_SHIFT;
return 0;
}
}
/* sclk is bigger than max sclk in the dependence table */
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i-1].vddci) {
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
(dep_table->entries[i].vddc -
(uint16_t)VDDC_VDDCI_DELTA));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
return 0;
}
static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
{
uint32_t tmp;
tmp = raw_setting * 4096 / 100;
return (uint16_t)tmp;
}
static int polaris10_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults;
SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
struct pp_advance_fan_control_parameters *fan_table =
&hwmgr->thermal_controller.advanceFanControlParameters;
int i, j, k;
const uint16_t *pdef1;
const uint16_t *pdef2;
table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
"Target Operating Temp is out of Range!",
);
table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
cac_dtp_table->usTargetOperatingTemp * 256);
table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitHotspot * 256);
table->FanGainEdge = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainEdge));
table->FanGainHotspot = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainHotspot));
pdef1 = defaults->BAPMTI_R;
pdef2 = defaults->BAPMTI_RC;
for (i = 0; i < SMU74_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU74_DTE_SOURCES; j++) {
for (k = 0; k < SMU74_DTE_SINKS; k++) {
table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
pdef1++;
pdef2++;
}
}
}
return 0;
}
static int polaris10_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults;
smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int polaris10_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
uint16_t tdc_limit;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults;
tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
return 0;
}
static int polaris10_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults;
uint32_t temp;
if (smu7_read_smc_sram_dword(hwmgr->smumgr,
fuse_table_offset +
offsetof(SMU74_Discrete_PmFuses, TdcWaterfallCtl),
(uint32_t *)&temp, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
return -EINVAL);
else {
smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
smu_data->power_tune_table.LPMLTemperatureMin =
(uint8_t)((temp >> 16) & 0xff);
smu_data->power_tune_table.LPMLTemperatureMax =
(uint8_t)((temp >> 8) & 0xff);
smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
}
return 0;
}
static int polaris10_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
{
int i;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 16; i++)
smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
return 0;
}
static int polaris10_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
/* TO DO move to hwmgr */
if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
return 0;
}
static int polaris10_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
{
int i;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 16; i++)
smu_data->power_tune_table.GnbLPML[i] = 0;
return 0;
}
static int polaris10_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int polaris10_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
return 0;
}
static int polaris10_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
uint32_t pm_fuse_table_offset;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment)) {
if (smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to get pm_fuse_table_offset Failed!",
return -EINVAL);
if (polaris10_populate_svi_load_line(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate SviLoadLine Failed!",
return -EINVAL);
if (polaris10_populate_tdc_limit(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TDCLimit Failed!", return -EINVAL);
if (polaris10_populate_dw8(hwmgr, pm_fuse_table_offset))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!",
return -EINVAL);
if (0 != polaris10_populate_temperature_scaler(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate LPMLTemperatureScaler Failed!",
return -EINVAL);
if (polaris10_populate_fuzzy_fan(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate Fuzzy Fan Control parameters Failed!",
return -EINVAL);
if (polaris10_populate_gnb_lpml(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Failed!",
return -EINVAL);
if (polaris10_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Min and Max Vid Failed!",
return -EINVAL);
if (polaris10_populate_bapm_vddc_base_leakage_sidd(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
"Sidd Failed!", return -EINVAL);
if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
(uint8_t *)&smu_data->power_tune_table,
(sizeof(struct SMU74_Discrete_PmFuses) - 92), SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to download PmFuseTable Failed!",
return -EINVAL);
}
return 0;
}
/**
* Mvdd table preparation for SMC.
*
* @param *hwmgr The address of the hardware manager.
* @param *table The SMC DPM table structure to be populated.
* @return 0
*/
static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
SMU74_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t count, level;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
count = data->mvdd_voltage_table.count;
if (count > SMU_MAX_SMIO_LEVELS)
count = SMU_MAX_SMIO_LEVELS;
for (level = 0; level < count; level++) {
table->SmioTable2.Pattern[level].Voltage =
PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
table->SmioTable2.Pattern[level].Smio =
(uint8_t) level;
table->Smio[level] |=
data->mvdd_voltage_table.entries[level].smio_low;
}
table->SmioMask2 = data->mvdd_voltage_table.mask_low;
table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
}
return 0;
}
static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
uint32_t count, level;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
count = data->vddci_voltage_table.count;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
if (count > SMU_MAX_SMIO_LEVELS)
count = SMU_MAX_SMIO_LEVELS;
for (level = 0; level < count; ++level) {
table->SmioTable1.Pattern[level].Voltage =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
}
}
table->SmioMask1 = data->vddci_voltage_table.mask_low;
return 0;
}
/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
uint32_t count;
uint8_t index;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
table_info->vddc_lookup_table;
/* tables is already swapped, so in order to use the value from it,
* we need to swap it back.
* We are populating vddc CAC data to BapmVddc table
* in split and merged mode
*/
for (count = 0; count < lookup_table->count; count++) {
index = phm_get_voltage_index(lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low);
table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid);
table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high);
}
return 0;
}
/**
* Preparation of voltage tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
polaris10_populate_smc_vddci_table(hwmgr, table);
polaris10_populate_smc_mvdd_table(hwmgr, table);
polaris10_populate_cac_table(hwmgr, table);
return 0;
}
static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_Ulv *state)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
return 0;
}
static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
return polaris10_populate_ulv_level(hwmgr, &table->Ulv);
}
static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
int i;
/* Index (dpm_table->pcie_speed_table.count)
* is reserved for PCIE boot level. */
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
}
smu_data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
/* To Do move to hwmgr */
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr,
SMU74_Discrete_DpmTable *table)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
uint32_t i, ref_clk;
struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
ref_clk = smu7_get_xclk(hwmgr);
if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
for (i = 0; i < NUM_SCLK_RANGE; i++) {
table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting;
table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv;
table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc;
table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper;
table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower;
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
}
return;
}
for (i = 0; i < NUM_SCLK_RANGE; i++) {
smu_data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
smu_data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
}
}
/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, SMU_SclkSetting *sclk_setting)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
const SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
struct pp_atomctrl_clock_dividers_ai dividers;
uint32_t ref_clock;
uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
uint8_t i;
int result;
uint64_t temp;
sclk_setting->SclkFrequency = clock;
/* get the engine clock dividers for this clock value */
result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, &dividers);
if (result == 0) {
sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
sclk_setting->PllRange = dividers.ucSclkPllRange;
sclk_setting->Sclk_slew_rate = 0x400;
sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
sclk_setting->Pcc_down_slew_rate = 0xffff;
sclk_setting->SSc_En = dividers.ucSscEnable;
sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
return result;
}
ref_clock = smu7_get_xclk(hwmgr);
for (i = 0; i < NUM_SCLK_RANGE; i++) {
if (clock > smu_data->range_table[i].trans_lower_frequency
&& clock <= smu_data->range_table[i].trans_upper_frequency) {
sclk_setting->PllRange = i;
break;
}
}
sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
temp <<= 0x10;
do_div(temp, ref_clock);
sclk_setting->Fcw_frac = temp & 0xffff;
pcc_target_percent = 10; /* Hardcode 10% for now. */
pcc_target_freq = clock - (clock * pcc_target_percent / 100);
sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
ss_target_percent = 2; /* Hardcode 2% for now. */
sclk_setting->SSc_En = 0;
if (ss_target_percent) {
sclk_setting->SSc_En = 1;
ss_target_freq = clock - (clock * ss_target_percent / 100);
sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
temp <<= 0x10;
do_div(temp, ref_clock);
sclk_setting->Fcw1_frac = temp & 0xffff;
}
return 0;
}
/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
uint32_t clock, uint16_t sclk_al_threshold,
struct SMU74_Discrete_GraphicsLevel *level)
{
int result;
/* PP_Clocks minClocks; */
uint32_t mvdd;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
SMU_SclkSetting curr_sclk_setting = { 0 };
result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
/* populate graphics levels */
result = polaris10_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk, clock,
&level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for "
"VDDC engine clock dependency table",
return result);
level->ActivityLevel = sclk_al_threshold;
level->CcPwrDynRm = 0;
level->CcPwrDynRm1 = 0;
level->EnabledForActivity = 0;
level->EnabledForThrottle = 1;
level->UpHyst = 10;
level->DownHyst = 0;
level->VoltageDownHyst = 0;
level->PowerThrottle = 0;
data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
hwmgr->display_config.min_core_set_clock_in_sr);
/* Default to slow, highest DPM level will be
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
*/
if (data->update_up_hyst)
level->UpHyst = (uint8_t)data->up_hyst;
if (data->update_down_hyst)
level->DownHyst = (uint8_t)data->down_hyst;
level->SclkSetting = curr_sclk_setting;
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
return 0;
}
/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param hwmgr the address of the hardware manager
*/
int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
int result = 0;
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable, GraphicsLevel);
uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) *
SMU74_MAX_LEVELS_GRAPHICS;
struct SMU74_Discrete_GraphicsLevel *levels =
smu_data->smc_state_table.GraphicsLevel;
uint32_t i, max_entry;
uint8_t hightest_pcie_level_enabled = 0,
lowest_pcie_level_enabled = 0,
mid_pcie_level_enabled = 0,
count = 0;
polaris10_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = polaris10_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
(uint16_t)smu_data->activity_target[i],
&(smu_data->smc_state_table.GraphicsLevel[i]));
if (result)
return result;
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
if (i > 1)
levels[i].DeepSleepDivId = 0;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SPLLShutdownSupport))
smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
smu_data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
if (pcie_table != NULL) {
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
max_entry = pcie_entry_cnt - 1;
for (i = 0; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel =
(uint8_t) ((i < max_entry) ? i : max_entry);
} else {
while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (hightest_pcie_level_enabled + 1))) != 0))
hightest_pcie_level_enabled++;
while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << lowest_pcie_level_enabled)) == 0))
lowest_pcie_level_enabled++;
while ((count < hightest_pcie_level_enabled) &&
((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
count++;
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
hightest_pcie_level_enabled ?
(lowest_pcie_level_enabled + 1 + count) :
hightest_pcie_level_enabled;
/* set pcieDpmLevel to hightest_pcie_level_enabled */
for (i = 2; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
/* set pcieDpmLevel to lowest_pcie_level_enabled */
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
/* set pcieDpmLevel to mid_pcie_level_enabled */
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
}
/* level count will send to smc once at init smc table and never change */
result = smu7_copy_bytes_to_smc(smumgr, array, (uint8_t *)levels,
(uint32_t)array_size, SMC_RAM_END);
return result;
}
static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int result = 0;
struct cgs_display_info info = {0, 0, NULL};
uint32_t mclk_stutter_mode_threshold = 40000;
cgs_get_active_displays_info(hwmgr->device, &info);
if (table_info->vdd_dep_on_mclk) {
result = polaris10_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk, clock,
&mem_level->MinVoltage, &mem_level->MinMvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find MinVddc voltage value from memory "
"VDDC voltage dependency table", return result);
}
mem_level->MclkFrequency = clock;
mem_level->EnabledForThrottle = 1;
mem_level->EnabledForActivity = 0;
mem_level->UpHyst = 0;
mem_level->DownHyst = 100;
mem_level->VoltageDownHyst = 0;
mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
mem_level->StutterEnable = false;
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
data->display_timing.num_existing_displays = info.display_count;
if (mclk_stutter_mode_threshold &&
(clock <= mclk_stutter_mode_threshold) &&
(SMUM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE) & 0x1))
mem_level->StutterEnable = true;
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
}
return result;
}
/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param hwmgr the address of the hardware manager
*/
int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
int result;
/* populate MCLK dpm table to SMU7 */
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable, MemoryLevel);
uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) *
SMU74_MAX_LEVELS_MEMORY;
struct SMU74_Discrete_MemoryLevel *levels =
smu_data->smc_state_table.MemoryLevel;
uint32_t i;
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero",
return -EINVAL);
result = polaris10_populate_single_memory_level(hwmgr,
dpm_table->mclk_table.dpm_levels[i].value,
&levels[i]);
if (i == dpm_table->mclk_table.count - 1) {
levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
levels[i].EnabledForActivity = 1;
}
if (result)
return result;
}
/* In order to prevent MC activity from stutter mode to push DPM up,
* the UVD change complements this by putting the MCLK in
* a higher state by default such that we are not affected by
* up threshold or and MCLK DPM latency.
*/
levels[0].ActivityLevel = 0x1f;
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
smu_data->smc_state_table.MemoryDpmLevelCount =
(uint8_t)dpm_table->mclk_table.count;
hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
/* level count will send to smc once at init smc table and never change */
result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
(uint32_t)array_size, SMC_RAM_END);
return result;
}
/**
* Populates the SMC MVDD structure using the provided memory clock.
*
* @param hwmgr the address of the hardware manager
* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
* @param voltage the SMC VOLTAGE structure to be populated
*/
static int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr,
uint32_t mclk, SMIO_Pattern *smio_pat)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i = 0;
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
/* find mvdd value which clock is more than request */
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
"MVDD Voltage is outside the supported range.",
return -EINVAL);
} else
return -EINVAL;
return 0;
}
static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
SMU74_Discrete_DpmTable *table)
{
int result = 0;
uint32_t sclk_frequency;
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
SMIO_Pattern vol_level;
uint32_t mvdd;
uint16_t us_mvdd;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
/* Get MinVoltage and Frequency from DPM0,
* already converted to SMC_UL */
sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
result = polaris10_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk,
sclk_frequency,
&table->ACPILevel.MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDC voltage value "
"in Clock Dependency Table",
);
result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting));
PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result);
table->ACPILevel.DeepSleepDivId = 0;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
result = polaris10_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk,
table->MemoryACPILevel.MclkFrequency,
&table->MemoryACPILevel.MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDCI voltage value "
"in Clock Dependency Table",
);
us_mvdd = 0;
if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
(data->mclk_dpm_key_disabled))
us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
else {
if (!polaris10_populate_mvdd_value(hwmgr,
data->dpm_table.mclk_table.dpm_levels[0].value,
&vol_level))
us_mvdd = vol_level.Voltage;
}
if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level))
table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
else
table->MemoryACPILevel.MinMvdd = 0;
table->MemoryACPILevel.StutterEnable = false;
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
table->MemoryACPILevel.ActivityLevel =
PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
return result;
}
static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU74_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->VceLevelCount = (uint8_t)(mm_table->count);
table->VceBootLevel = 0;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
table->VceLevel[count].MinVoltage = 0;
table->VceLevel[count].MinVoltage |=
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->VceLevel[count].MinVoltage |=
(vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/*retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for VCE engine clock",
return result);
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
}
return result;
}
static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU74_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].MinVoltage = 0;
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
uint32_t dram_timing;
uint32_t dram_timing2;
uint32_t burst_time;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
eng_clock, mem_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.", return result);
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
arb_regs->McArbBurstTime = (uint8_t)burst_time;
return 0;
}
static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
struct SMU74_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
int result = 0;
for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
result = polaris10_populate_memory_timing_parameters(hwmgr,
hw_data->dpm_table.sclk_table.dpm_levels[i].value,
hw_data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (result == 0)
result = atomctrl_set_ac_timing_ai(hwmgr, hw_data->dpm_table.mclk_table.dpm_levels[j].value, j);
if (result != 0)
return result;
}
}
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->smu7_data.arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU74_Discrete_MCArbDramTimingTable),
SMC_RAM_END);
return result;
}
static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->UvdLevelCount = (uint8_t)(mm_table->count);
table->UvdBootLevel = 0;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].MinVoltage = 0;
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].VclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Vclk clock", return result);
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Dclk clock", return result);
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
}
return result;
}
static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
/* find boot level from dpm table */
result = phm_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(table->GraphicsBootLevel));
result = phm_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(table->MemoryBootLevel));
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
VOLTAGE_SCALE;
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE;
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
return 0;
}
static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint8_t count, level;
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
for (level = 0; level < count; level++) {
if (table_info->vdd_dep_on_sclk->entries[level].clk >=
hw_data->vbios_boot_state.sclk_bootup_value) {
smu_data->smc_state_table.GraphicsBootLevel = level;
break;
}
}
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
for (level = 0; level < count; level++) {
if (table_info->vdd_dep_on_mclk->entries[level].clk >=
hw_data->vbios_boot_state.mclk_bootup_value) {
smu_data->smc_state_table.MemoryBootLevel = level;
break;
}
}
return 0;
}
static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
/* Read SMU_Eefuse to read and calculate RO and determine
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
*/
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (67 * 4));
efuse &= 0xFF000000;
efuse = efuse >> 24;
if (hwmgr->chip_id == CHIP_POLARIS10) {
min = 1000;
max = 2300;
} else {
min = 1100;
max = 2100;
}
ro = efuse * (max - min) / 255 + min;
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
for (i = 0; i < sclk_table->count; i++) {
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
sclk_table->entries[i].cks_enable << i;
if (hwmgr->chip_id == CHIP_POLARIS10) {
volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * 136418 - (ro - 70) * 1000000) / \
(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * 3232 - (ro - 65) * 1000000) / \
(2522480 - sclk_table->entries[i].clk/100 * 115764/100));
} else {
volt_without_cks = (uint32_t)((2416794800U + (sclk_table->entries[i].clk/100) * 1476925/10 - (ro - 50) * 1000000) / \
(2625416 - (sclk_table->entries[i].clk/100) * (12586807/10000)));
volt_with_cks = (uint32_t)((2999656000U - sclk_table->entries[i].clk/100 * 392803 - (ro - 44) * 1000000) / \
(3422454 - sclk_table->entries[i].clk/100 * (18886376/10000)));
}
if (volt_without_cks >= volt_with_cks)
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
}
smu_data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 6;
/* Populate CKS Lookup Table */
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
stretch_amount2 = 0;
else if (stretch_amount == 3 || stretch_amount == 4)
stretch_amount2 = 1;
else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
PP_ASSERT_WITH_CODE(false,
"Stretch Amount in PPTable not supported\n",
return -EINVAL);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
value &= 0xFFFFFFFE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
return 0;
}
/**
* Populates the SMC VRConfig field in DPM table.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr,
struct SMU74_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
uint16_t config;
config = VR_MERGED_WITH_VDDC;
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
/* Set Vddc Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_1;
table->VRConfig |= config;
} else {
PP_ASSERT_WITH_CODE(false,
"VDDC should be on SVI2 control in merged mode!",
);
}
/* Set Vddci Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
config = VR_SVI2_PLANE_2; /* only in merged mode */
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
config = VR_SMIO_PATTERN_1;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
}
/* Set Mvdd Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, smu_data->smu7_data.soft_regs_start +
offsetof(SMU74_SoftRegisters, AllowMvddSwitch), 0x1);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
}
return 0;
}
static int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
int result = 0;
struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
uint32_t tmp, i;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
return result;
result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
if (0 == result) {
table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
table->AVFSGB_VDROOP_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24;
table->AVFSGB_VDROOP_TABLE[0].m2_shift = 12;
table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
table->AVFSGB_VDROOP_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24;
table->AVFSGB_VDROOP_TABLE[1].m2_shift = 12;
table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
for (i = 0; i < NUM_VFT_COLUMNS; i++) {
AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100);
}
result = smu7_read_smc_sram_dword(smumgr,
SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma),
&tmp, SMC_RAM_END);
smu7_copy_bytes_to_smc(smumgr,
tmp,
(uint8_t *)&AVFS_meanNsigma,
sizeof(AVFS_meanNsigma_t),
SMC_RAM_END);
result = smu7_read_smc_sram_dword(smumgr,
SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable),
&tmp, SMC_RAM_END);
smu7_copy_bytes_to_smc(smumgr,
tmp,
(uint8_t *)&AVFS_SclkOffset,
sizeof(AVFS_Sclk_Offset_t),
SMC_RAM_END);
data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
}
return result;
}
/**
* Initialize the ARB DRAM timing table's index field.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int polaris10_init_arb_table_index(struct pp_smumgr *smumgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
uint32_t tmp;
int result;
/* This is a read-modify-write on the first byte of the ARB table.
* The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
* is the field 'current'.
* This solution is ugly, but we never write the whole table only
* individual fields in it.
* In reality this field should not be in that structure
* but in a soft register.
*/
result = smu7_read_smc_sram_dword(smumgr,
smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
if (result)
return result;
tmp &= 0x00FFFFFF;
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
return smu7_write_smc_sram_dword(smumgr,
smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
}
static void polaris10_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (table_info &&
table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
table_info->cac_dtp_table->usPowerTuneDataSetID)
smu_data->power_tune_defaults =
&polaris10_power_tune_data_set_array
[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
else
smu_data->power_tune_defaults = &polaris10_power_tune_data_set_array[0];
}
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
uint8_t i;
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
pp_atomctrl_clock_dividers_vi dividers;
polaris10_initialize_power_tune_defaults(hwmgr);
if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
polaris10_populate_smc_voltage_tables(hwmgr, table);
table->SystemFlags = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition))
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc))
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (hw_data->is_memory_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
result = polaris10_populate_ulv_state(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ULV state!", return result);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
}
result = polaris10_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Link Level!", return result);
result = polaris10_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Graphics Level!", return result);
result = polaris10_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Memory Level!", return result);
result = polaris10_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACPI Level!", return result);
result = polaris10_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level!", return result);
result = polaris10_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point
* (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
*/
result = polaris10_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to Write ARB settings for the initial state.", return result);
result = polaris10_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize UVD Level!", return result);
result = polaris10_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot Level!", return result);
result = polaris10_populate_smc_initailial_state(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot State!", return result);
result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate BAPM Parameters!", return result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = polaris10_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate Clock Stretcher Data Table!",
return result);
}
result = polaris10_populate_avfs_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;);
table->CurrSclkPllRange = 0xff;
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
table_info->cac_dtp_table->usTargetOperatingTemp *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->TemperatureLimitLow =
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = 0;
table->PCIeGenInterval = 1;
table->VRConfig = 0;
result = polaris10_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate VRConfig setting!", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
} else {
table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
}
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
&gpio_pin)) {
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
} else {
table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
}
/* Thermal Output GPIO */
if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
&gpio_pin)) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
/* For porlarity read GPIOPAD_A with assigned Gpio pin
* since VBIOS will program this register to set 'inactive state',
* driver can then determine 'active state' from this and
* program SMU with correct polarity
*/
table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)
& (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
/* if required, combine VRHot/PCC with thermal out GPIO */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)
&& phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal))
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
} else {
table->ThermOutGpio = 17;
table->ThermOutPolarity = 1;
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
}
/* Populate BIF_SCLK levels into SMC DPM table */
for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, smu_data->bif_sclk_table[i], &dividers);
PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result);
if (i == 0)
table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
else
table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
}
for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++)
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController),
SMC_RAM_END);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload dpm data to SMC memory!", return result);
result = polaris10_init_arb_table_index(hwmgr->smumgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload arb data to SMC memory!", return result);
result = polaris10_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate PM fuses to SMC memory!", return result);
return 0;
}
static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
return polaris10_program_memory_timing_parameters(hwmgr);
return 0;
}
int polaris10_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
{
int ret;
struct pp_smumgr *smumgr = (struct pp_smumgr *)(hwmgr->smumgr);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
return 0;
ret = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetGBDroopSettings, data->avfs_vdroop_override_setting);
ret = (smum_send_msg_to_smc(smumgr, PPSMC_MSG_EnableAvfs) == 0) ?
0 : -1;
if (!ret)
/* If this param is not changed, this function could fire unnecessarily */
smu_data->avfs.avfs_btc_status = AVFS_BTC_COMPLETED_PREVIOUSLY;
return ret;
}
/**
* Set up the fan table to control the fan using the SMC.
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data
* @param pOutput the pointer to output data
* @param pStorage the pointer to temporary storage
* @param Result the last failure code
* @return result from set temperature range routine
*/
int polaris10_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
SMU74_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
uint32_t duty100;
uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
uint16_t fdo_min, slope1, slope2;
uint32_t reference_clock;
int res;
uint64_t tmp64;
if (smu_data->smu7_data.fan_table_start == 0) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_FDO_CTRL1, FMAX_DUTY100);
if (duty100 == 0) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
usPWMMin * duty100;
do_div(tmp64, 10000);
fdo_min = (uint16_t)tmp64;
t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
fan_table.TempMin = cpu_to_be16((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMin) / 100);
fan_table.TempMed = cpu_to_be16((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMed) / 100);
fan_table.TempMax = cpu_to_be16((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMax) / 100);
fan_table.Slope1 = cpu_to_be16(slope1);
fan_table.Slope2 = cpu_to_be16(slope2);
fan_table.FdoMin = cpu_to_be16(fdo_min);
fan_table.HystDown = cpu_to_be16(hwmgr->
thermal_controller.advanceFanControlParameters.ucTHyst);
fan_table.HystUp = cpu_to_be16(1);
fan_table.HystSlope = cpu_to_be16(1);
fan_table.TempRespLim = cpu_to_be16(5);
reference_clock = smu7_get_xclk(hwmgr);
fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
thermal_controller.advanceFanControlParameters.ulCycleDelay *
reference_clock) / 1600);
fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
hwmgr->device, CGS_IND_REG__SMC,
CG_MULT_THERMAL_CTRL, TEMP_SEL);
res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.fan_table_start,
(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
SMC_RAM_END);
if (!res && hwmgr->thermal_controller.
advanceFanControlParameters.ucMinimumPWMLimit)
res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetFanMinPwm,
hwmgr->thermal_controller.
advanceFanControlParameters.ucMinimumPWMLimit);
if (!res && hwmgr->thermal_controller.
advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetFanSclkTarget,
hwmgr->thermal_controller.
advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
if (res)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
static int polaris10_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
smu_data->smc_state_table.UvdBootLevel = 0;
if (table_info->mm_dep_table->count > 0)
smu_data->smc_state_table.UvdBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable,
UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0x00FFFFFF;
mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_UVDDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
return 0;
}
static int polaris10_update_vce_smc_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smu_data->smc_state_table.VceBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
else
smu_data->smc_state_table.VceBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFF00FFFF;
mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
return 0;
}
static int polaris10_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
static int polaris10_update_bif_smc_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
int max_entry, i;
max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ?
SMU74_MAX_LEVELS_LINK :
pcie_table->count;
/* Setup BIF_SCLK levels */
for (i = 0; i < max_entry; i++)
smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
return 0;
}
int polaris10_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
switch (type) {
case SMU_UVD_TABLE:
polaris10_update_uvd_smc_table(hwmgr);
break;
case SMU_VCE_TABLE:
polaris10_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
polaris10_update_samu_smc_table(hwmgr);
break;
case SMU_BIF_TABLE:
polaris10_update_bif_smc_table(hwmgr);
default:
break;
}
return 0;
}
int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (hwmgr->gfx_arbiter.sclk_threshold !=
data->low_sclk_interrupt_threshold)) {
data->low_sclk_interrupt_threshold =
hwmgr->gfx_arbiter.sclk_threshold;
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
SMC_RAM_END);
}
PP_ASSERT_WITH_CODE((result == 0),
"Failed to update SCLK threshold!", return result);
result = polaris10_program_mem_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE((result == 0),
"Failed to program memory timing parameters!",
);
return result;
}
uint32_t polaris10_get_offsetof(uint32_t type, uint32_t member)
{
switch (type) {
case SMU_SoftRegisters:
switch (member) {
case HandshakeDisables:
return offsetof(SMU74_SoftRegisters, HandshakeDisables);
case VoltageChangeTimeout:
return offsetof(SMU74_SoftRegisters, VoltageChangeTimeout);
case AverageGraphicsActivity:
return offsetof(SMU74_SoftRegisters, AverageGraphicsActivity);
case PreVBlankGap:
return offsetof(SMU74_SoftRegisters, PreVBlankGap);
case VBlankTimeout:
return offsetof(SMU74_SoftRegisters, VBlankTimeout);
case UcodeLoadStatus:
return offsetof(SMU74_SoftRegisters, UcodeLoadStatus);
}
case SMU_Discrete_DpmTable:
switch (member) {
case UvdBootLevel:
return offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold);
}
}
printk("cant't get the offset of type %x member %x \n", type, member);
return 0;
}
uint32_t polaris10_get_mac_definition(uint32_t value)
{
switch (value) {
case SMU_MAX_LEVELS_GRAPHICS:
return SMU74_MAX_LEVELS_GRAPHICS;
case SMU_MAX_LEVELS_MEMORY:
return SMU74_MAX_LEVELS_MEMORY;
case SMU_MAX_LEVELS_LINK:
return SMU74_MAX_LEVELS_LINK;
case SMU_MAX_ENTRIES_SMIO:
return SMU74_MAX_ENTRIES_SMIO;
case SMU_MAX_LEVELS_VDDC:
return SMU74_MAX_LEVELS_VDDC;
case SMU_MAX_LEVELS_VDDGFX:
return SMU74_MAX_LEVELS_VDDGFX;
case SMU_MAX_LEVELS_VDDCI:
return SMU74_MAX_LEVELS_VDDCI;
case SMU_MAX_LEVELS_MVDD:
return SMU74_MAX_LEVELS_MVDD;
case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
return SMU7_UVD_MCLK_HANDSHAKE_DISABLE;
}
printk("cant't get the mac of %x \n", value);
return 0;
}
/**
* Get the location of various tables inside the FW image.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
uint32_t tmp;
int result;
bool error = false;
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, DpmTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->smu7_data.dpm_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, SoftRegisters),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.soft_regs_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, mcRegisterTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.mc_reg_table_start = tmp;
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, FanTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.fan_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, mcArbDramTimingTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.arb_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU74_Firmware_Header, Version),
&tmp, SMC_RAM_END);
if (!result)
hwmgr->microcode_version_info.SMC = tmp;
error |= (0 != result);
return error ? -1 : 0;
}
bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr)
{
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
? true : false;
}