blob: 429f18fc5503ddede288ff0203068a56ce9df3a8 [file] [log] [blame]
/* Applied Micro X-Gene SoC Ethernet Driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Authors: Iyappan Subramanian <isubramanian@apm.com>
* Ravi Patel <rapatel@apm.com>
* Keyur Chudgar <kchudgar@apm.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/gpio.h>
#include "xgene_enet_main.h"
#include "xgene_enet_hw.h"
#include "xgene_enet_sgmac.h"
#include "xgene_enet_xgmac.h"
#define RES_ENET_CSR 0
#define RES_RING_CSR 1
#define RES_RING_CMD 2
static const struct of_device_id xgene_enet_of_match[];
static const struct acpi_device_id xgene_enet_acpi_match[];
static void xgene_enet_init_bufpool(struct xgene_enet_desc_ring *buf_pool)
{
struct xgene_enet_raw_desc16 *raw_desc;
int i;
for (i = 0; i < buf_pool->slots; i++) {
raw_desc = &buf_pool->raw_desc16[i];
/* Hardware expects descriptor in little endian format */
raw_desc->m0 = cpu_to_le64(i |
SET_VAL(FPQNUM, buf_pool->dst_ring_num) |
SET_VAL(STASH, 3));
}
}
static int xgene_enet_refill_bufpool(struct xgene_enet_desc_ring *buf_pool,
u32 nbuf)
{
struct sk_buff *skb;
struct xgene_enet_raw_desc16 *raw_desc;
struct xgene_enet_pdata *pdata;
struct net_device *ndev;
struct device *dev;
dma_addr_t dma_addr;
u32 tail = buf_pool->tail;
u32 slots = buf_pool->slots - 1;
u16 bufdatalen, len;
int i;
ndev = buf_pool->ndev;
dev = ndev_to_dev(buf_pool->ndev);
pdata = netdev_priv(ndev);
bufdatalen = BUF_LEN_CODE_2K | (SKB_BUFFER_SIZE & GENMASK(11, 0));
len = XGENE_ENET_MAX_MTU;
for (i = 0; i < nbuf; i++) {
raw_desc = &buf_pool->raw_desc16[tail];
skb = netdev_alloc_skb_ip_align(ndev, len);
if (unlikely(!skb))
return -ENOMEM;
dma_addr = dma_map_single(dev, skb->data, len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
netdev_err(ndev, "DMA mapping error\n");
dev_kfree_skb_any(skb);
return -EINVAL;
}
buf_pool->rx_skb[tail] = skb;
raw_desc->m1 = cpu_to_le64(SET_VAL(DATAADDR, dma_addr) |
SET_VAL(BUFDATALEN, bufdatalen) |
SET_BIT(COHERENT));
tail = (tail + 1) & slots;
}
pdata->ring_ops->wr_cmd(buf_pool, nbuf);
buf_pool->tail = tail;
return 0;
}
static u8 xgene_enet_hdr_len(const void *data)
{
const struct ethhdr *eth = data;
return (eth->h_proto == htons(ETH_P_8021Q)) ? VLAN_ETH_HLEN : ETH_HLEN;
}
static void xgene_enet_delete_bufpool(struct xgene_enet_desc_ring *buf_pool)
{
struct device *dev = ndev_to_dev(buf_pool->ndev);
struct xgene_enet_raw_desc16 *raw_desc;
dma_addr_t dma_addr;
int i;
/* Free up the buffers held by hardware */
for (i = 0; i < buf_pool->slots; i++) {
if (buf_pool->rx_skb[i]) {
dev_kfree_skb_any(buf_pool->rx_skb[i]);
raw_desc = &buf_pool->raw_desc16[i];
dma_addr = GET_VAL(DATAADDR, le64_to_cpu(raw_desc->m1));
dma_unmap_single(dev, dma_addr, XGENE_ENET_MAX_MTU,
DMA_FROM_DEVICE);
}
}
}
static irqreturn_t xgene_enet_rx_irq(const int irq, void *data)
{
struct xgene_enet_desc_ring *rx_ring = data;
if (napi_schedule_prep(&rx_ring->napi)) {
disable_irq_nosync(irq);
__napi_schedule(&rx_ring->napi);
}
return IRQ_HANDLED;
}
static int xgene_enet_tx_completion(struct xgene_enet_desc_ring *cp_ring,
struct xgene_enet_raw_desc *raw_desc)
{
struct xgene_enet_pdata *pdata = netdev_priv(cp_ring->ndev);
struct sk_buff *skb;
struct device *dev;
skb_frag_t *frag;
dma_addr_t *frag_dma_addr;
u16 skb_index;
u8 status;
int i, ret = 0;
u8 mss_index;
skb_index = GET_VAL(USERINFO, le64_to_cpu(raw_desc->m0));
skb = cp_ring->cp_skb[skb_index];
frag_dma_addr = &cp_ring->frag_dma_addr[skb_index * MAX_SKB_FRAGS];
dev = ndev_to_dev(cp_ring->ndev);
dma_unmap_single(dev, GET_VAL(DATAADDR, le64_to_cpu(raw_desc->m1)),
skb_headlen(skb),
DMA_TO_DEVICE);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
dma_unmap_page(dev, frag_dma_addr[i], skb_frag_size(frag),
DMA_TO_DEVICE);
}
if (GET_BIT(ET, le64_to_cpu(raw_desc->m3))) {
mss_index = GET_VAL(MSS, le64_to_cpu(raw_desc->m3));
spin_lock(&pdata->mss_lock);
pdata->mss_refcnt[mss_index]--;
spin_unlock(&pdata->mss_lock);
}
/* Checking for error */
status = GET_VAL(LERR, le64_to_cpu(raw_desc->m0));
if (unlikely(status > 2)) {
xgene_enet_parse_error(cp_ring, netdev_priv(cp_ring->ndev),
status);
ret = -EIO;
}
if (likely(skb)) {
dev_kfree_skb_any(skb);
} else {
netdev_err(cp_ring->ndev, "completion skb is NULL\n");
ret = -EIO;
}
return ret;
}
static int xgene_enet_setup_mss(struct net_device *ndev, u32 mss)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
bool mss_index_found = false;
int mss_index;
int i;
spin_lock(&pdata->mss_lock);
/* Reuse the slot if MSS matches */
for (i = 0; !mss_index_found && i < NUM_MSS_REG; i++) {
if (pdata->mss[i] == mss) {
pdata->mss_refcnt[i]++;
mss_index = i;
mss_index_found = true;
}
}
/* Overwrite the slot with ref_count = 0 */
for (i = 0; !mss_index_found && i < NUM_MSS_REG; i++) {
if (!pdata->mss_refcnt[i]) {
pdata->mss_refcnt[i]++;
pdata->mac_ops->set_mss(pdata, mss, i);
pdata->mss[i] = mss;
mss_index = i;
mss_index_found = true;
}
}
spin_unlock(&pdata->mss_lock);
/* No slots with ref_count = 0 available, return busy */
if (!mss_index_found)
return -EBUSY;
return mss_index;
}
static int xgene_enet_work_msg(struct sk_buff *skb, u64 *hopinfo)
{
struct net_device *ndev = skb->dev;
struct iphdr *iph;
u8 l3hlen = 0, l4hlen = 0;
u8 ethhdr, proto = 0, csum_enable = 0;
u32 hdr_len, mss = 0;
u32 i, len, nr_frags;
int mss_index;
ethhdr = xgene_enet_hdr_len(skb->data);
if (unlikely(skb->protocol != htons(ETH_P_IP)) &&
unlikely(skb->protocol != htons(ETH_P_8021Q)))
goto out;
if (unlikely(!(skb->dev->features & NETIF_F_IP_CSUM)))
goto out;
iph = ip_hdr(skb);
if (unlikely(ip_is_fragment(iph)))
goto out;
if (likely(iph->protocol == IPPROTO_TCP)) {
l4hlen = tcp_hdrlen(skb) >> 2;
csum_enable = 1;
proto = TSO_IPPROTO_TCP;
if (ndev->features & NETIF_F_TSO) {
hdr_len = ethhdr + ip_hdrlen(skb) + tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
if (skb_is_nonlinear(skb)) {
len = skb_headlen(skb);
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < 2 && i < nr_frags; i++)
len += skb_shinfo(skb)->frags[i].size;
/* HW requires header must reside in 3 buffer */
if (unlikely(hdr_len > len)) {
if (skb_linearize(skb))
return 0;
}
}
if (!mss || ((skb->len - hdr_len) <= mss))
goto out;
mss_index = xgene_enet_setup_mss(ndev, mss);
if (unlikely(mss_index < 0))
return -EBUSY;
*hopinfo |= SET_BIT(ET) | SET_VAL(MSS, mss_index);
}
} else if (iph->protocol == IPPROTO_UDP) {
l4hlen = UDP_HDR_SIZE;
csum_enable = 1;
}
out:
l3hlen = ip_hdrlen(skb) >> 2;
*hopinfo |= SET_VAL(TCPHDR, l4hlen) |
SET_VAL(IPHDR, l3hlen) |
SET_VAL(ETHHDR, ethhdr) |
SET_VAL(EC, csum_enable) |
SET_VAL(IS, proto) |
SET_BIT(IC) |
SET_BIT(TYPE_ETH_WORK_MESSAGE);
return 0;
}
static u16 xgene_enet_encode_len(u16 len)
{
return (len == BUFLEN_16K) ? 0 : len;
}
static void xgene_set_addr_len(__le64 *desc, u32 idx, dma_addr_t addr, u32 len)
{
desc[idx ^ 1] = cpu_to_le64(SET_VAL(DATAADDR, addr) |
SET_VAL(BUFDATALEN, len));
}
static __le64 *xgene_enet_get_exp_bufs(struct xgene_enet_desc_ring *ring)
{
__le64 *exp_bufs;
exp_bufs = &ring->exp_bufs[ring->exp_buf_tail * MAX_EXP_BUFFS];
memset(exp_bufs, 0, sizeof(__le64) * MAX_EXP_BUFFS);
ring->exp_buf_tail = (ring->exp_buf_tail + 1) & ((ring->slots / 2) - 1);
return exp_bufs;
}
static dma_addr_t *xgene_get_frag_dma_array(struct xgene_enet_desc_ring *ring)
{
return &ring->cp_ring->frag_dma_addr[ring->tail * MAX_SKB_FRAGS];
}
static int xgene_enet_setup_tx_desc(struct xgene_enet_desc_ring *tx_ring,
struct sk_buff *skb)
{
struct device *dev = ndev_to_dev(tx_ring->ndev);
struct xgene_enet_pdata *pdata = netdev_priv(tx_ring->ndev);
struct xgene_enet_raw_desc *raw_desc;
__le64 *exp_desc = NULL, *exp_bufs = NULL;
dma_addr_t dma_addr, pbuf_addr, *frag_dma_addr;
skb_frag_t *frag;
u16 tail = tx_ring->tail;
u64 hopinfo = 0;
u32 len, hw_len;
u8 ll = 0, nv = 0, idx = 0;
bool split = false;
u32 size, offset, ell_bytes = 0;
u32 i, fidx, nr_frags, count = 1;
int ret;
raw_desc = &tx_ring->raw_desc[tail];
tail = (tail + 1) & (tx_ring->slots - 1);
memset(raw_desc, 0, sizeof(struct xgene_enet_raw_desc));
ret = xgene_enet_work_msg(skb, &hopinfo);
if (ret)
return ret;
raw_desc->m3 = cpu_to_le64(SET_VAL(HENQNUM, tx_ring->dst_ring_num) |
hopinfo);
len = skb_headlen(skb);
hw_len = xgene_enet_encode_len(len);
dma_addr = dma_map_single(dev, skb->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
netdev_err(tx_ring->ndev, "DMA mapping error\n");
return -EINVAL;
}
/* Hardware expects descriptor in little endian format */
raw_desc->m1 = cpu_to_le64(SET_VAL(DATAADDR, dma_addr) |
SET_VAL(BUFDATALEN, hw_len) |
SET_BIT(COHERENT));
if (!skb_is_nonlinear(skb))
goto out;
/* scatter gather */
nv = 1;
exp_desc = (void *)&tx_ring->raw_desc[tail];
tail = (tail + 1) & (tx_ring->slots - 1);
memset(exp_desc, 0, sizeof(struct xgene_enet_raw_desc));
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = nr_frags; i < 4 ; i++)
exp_desc[i ^ 1] = cpu_to_le64(LAST_BUFFER);
frag_dma_addr = xgene_get_frag_dma_array(tx_ring);
for (i = 0, fidx = 0; split || (fidx < nr_frags); i++) {
if (!split) {
frag = &skb_shinfo(skb)->frags[fidx];
size = skb_frag_size(frag);
offset = 0;
pbuf_addr = skb_frag_dma_map(dev, frag, 0, size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, pbuf_addr))
return -EINVAL;
frag_dma_addr[fidx] = pbuf_addr;
fidx++;
if (size > BUFLEN_16K)
split = true;
}
if (size > BUFLEN_16K) {
len = BUFLEN_16K;
size -= BUFLEN_16K;
} else {
len = size;
split = false;
}
dma_addr = pbuf_addr + offset;
hw_len = xgene_enet_encode_len(len);
switch (i) {
case 0:
case 1:
case 2:
xgene_set_addr_len(exp_desc, i, dma_addr, hw_len);
break;
case 3:
if (split || (fidx != nr_frags)) {
exp_bufs = xgene_enet_get_exp_bufs(tx_ring);
xgene_set_addr_len(exp_bufs, idx, dma_addr,
hw_len);
idx++;
ell_bytes += len;
} else {
xgene_set_addr_len(exp_desc, i, dma_addr,
hw_len);
}
break;
default:
xgene_set_addr_len(exp_bufs, idx, dma_addr, hw_len);
idx++;
ell_bytes += len;
break;
}
if (split)
offset += BUFLEN_16K;
}
count++;
if (idx) {
ll = 1;
dma_addr = dma_map_single(dev, exp_bufs,
sizeof(u64) * MAX_EXP_BUFFS,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
dev_kfree_skb_any(skb);
return -EINVAL;
}
i = ell_bytes >> LL_BYTES_LSB_LEN;
exp_desc[2] = cpu_to_le64(SET_VAL(DATAADDR, dma_addr) |
SET_VAL(LL_BYTES_MSB, i) |
SET_VAL(LL_LEN, idx));
raw_desc->m2 = cpu_to_le64(SET_VAL(LL_BYTES_LSB, ell_bytes));
}
out:
raw_desc->m0 = cpu_to_le64(SET_VAL(LL, ll) | SET_VAL(NV, nv) |
SET_VAL(USERINFO, tx_ring->tail));
tx_ring->cp_ring->cp_skb[tx_ring->tail] = skb;
pdata->tx_level[tx_ring->cp_ring->index] += count;
tx_ring->tail = tail;
return count;
}
static netdev_tx_t xgene_enet_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct xgene_enet_desc_ring *tx_ring;
int index = skb->queue_mapping;
u32 tx_level = pdata->tx_level[index];
int count;
tx_ring = pdata->tx_ring[index];
if (tx_level < pdata->txc_level[index])
tx_level += ((typeof(pdata->tx_level[index]))~0U);
if ((tx_level - pdata->txc_level[index]) > pdata->tx_qcnt_hi) {
netif_stop_subqueue(ndev, index);
return NETDEV_TX_BUSY;
}
if (skb_padto(skb, XGENE_MIN_ENET_FRAME_SIZE))
return NETDEV_TX_OK;
count = xgene_enet_setup_tx_desc(tx_ring, skb);
if (count == -EBUSY)
return NETDEV_TX_BUSY;
if (count <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
skb_tx_timestamp(skb);
tx_ring->tx_packets++;
tx_ring->tx_bytes += skb->len;
pdata->ring_ops->wr_cmd(tx_ring, count);
return NETDEV_TX_OK;
}
static void xgene_enet_skip_csum(struct sk_buff *skb)
{
struct iphdr *iph = ip_hdr(skb);
if (!ip_is_fragment(iph) ||
(iph->protocol != IPPROTO_TCP && iph->protocol != IPPROTO_UDP)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
static int xgene_enet_rx_frame(struct xgene_enet_desc_ring *rx_ring,
struct xgene_enet_raw_desc *raw_desc)
{
struct net_device *ndev;
struct device *dev;
struct xgene_enet_desc_ring *buf_pool;
u32 datalen, skb_index;
struct sk_buff *skb;
u8 status;
int ret = 0;
ndev = rx_ring->ndev;
dev = ndev_to_dev(rx_ring->ndev);
buf_pool = rx_ring->buf_pool;
dma_unmap_single(dev, GET_VAL(DATAADDR, le64_to_cpu(raw_desc->m1)),
XGENE_ENET_MAX_MTU, DMA_FROM_DEVICE);
skb_index = GET_VAL(USERINFO, le64_to_cpu(raw_desc->m0));
skb = buf_pool->rx_skb[skb_index];
buf_pool->rx_skb[skb_index] = NULL;
/* checking for error */
status = (GET_VAL(ELERR, le64_to_cpu(raw_desc->m0)) << LERR_LEN) ||
GET_VAL(LERR, le64_to_cpu(raw_desc->m0));
if (unlikely(status > 2)) {
dev_kfree_skb_any(skb);
xgene_enet_parse_error(rx_ring, netdev_priv(rx_ring->ndev),
status);
ret = -EIO;
goto out;
}
/* strip off CRC as HW isn't doing this */
datalen = GET_VAL(BUFDATALEN, le64_to_cpu(raw_desc->m1));
datalen = (datalen & DATALEN_MASK) - 4;
prefetch(skb->data - NET_IP_ALIGN);
skb_put(skb, datalen);
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, ndev);
if (likely((ndev->features & NETIF_F_IP_CSUM) &&
skb->protocol == htons(ETH_P_IP))) {
xgene_enet_skip_csum(skb);
}
rx_ring->rx_packets++;
rx_ring->rx_bytes += datalen;
napi_gro_receive(&rx_ring->napi, skb);
out:
if (--rx_ring->nbufpool == 0) {
ret = xgene_enet_refill_bufpool(buf_pool, NUM_BUFPOOL);
rx_ring->nbufpool = NUM_BUFPOOL;
}
return ret;
}
static bool is_rx_desc(struct xgene_enet_raw_desc *raw_desc)
{
return GET_VAL(FPQNUM, le64_to_cpu(raw_desc->m0)) ? true : false;
}
static int xgene_enet_process_ring(struct xgene_enet_desc_ring *ring,
int budget)
{
struct net_device *ndev = ring->ndev;
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct xgene_enet_raw_desc *raw_desc, *exp_desc;
u16 head = ring->head;
u16 slots = ring->slots - 1;
int ret, desc_count, count = 0, processed = 0;
bool is_completion;
do {
raw_desc = &ring->raw_desc[head];
desc_count = 0;
is_completion = false;
exp_desc = NULL;
if (unlikely(xgene_enet_is_desc_slot_empty(raw_desc)))
break;
/* read fpqnum field after dataaddr field */
dma_rmb();
if (GET_BIT(NV, le64_to_cpu(raw_desc->m0))) {
head = (head + 1) & slots;
exp_desc = &ring->raw_desc[head];
if (unlikely(xgene_enet_is_desc_slot_empty(exp_desc))) {
head = (head - 1) & slots;
break;
}
dma_rmb();
count++;
desc_count++;
}
if (is_rx_desc(raw_desc)) {
ret = xgene_enet_rx_frame(ring, raw_desc);
} else {
ret = xgene_enet_tx_completion(ring, raw_desc);
is_completion = true;
}
xgene_enet_mark_desc_slot_empty(raw_desc);
if (exp_desc)
xgene_enet_mark_desc_slot_empty(exp_desc);
head = (head + 1) & slots;
count++;
desc_count++;
processed++;
if (is_completion)
pdata->txc_level[ring->index] += desc_count;
if (ret)
break;
} while (--budget);
if (likely(count)) {
pdata->ring_ops->wr_cmd(ring, -count);
ring->head = head;
if (__netif_subqueue_stopped(ndev, ring->index))
netif_start_subqueue(ndev, ring->index);
}
return processed;
}
static int xgene_enet_napi(struct napi_struct *napi, const int budget)
{
struct xgene_enet_desc_ring *ring;
int processed;
ring = container_of(napi, struct xgene_enet_desc_ring, napi);
processed = xgene_enet_process_ring(ring, budget);
if (processed != budget) {
napi_complete(napi);
enable_irq(ring->irq);
}
return processed;
}
static void xgene_enet_timeout(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct netdev_queue *txq;
int i;
pdata->mac_ops->reset(pdata);
for (i = 0; i < pdata->txq_cnt; i++) {
txq = netdev_get_tx_queue(ndev, i);
txq->trans_start = jiffies;
netif_tx_start_queue(txq);
}
}
static void xgene_enet_set_irq_name(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct xgene_enet_desc_ring *ring;
int i;
for (i = 0; i < pdata->rxq_cnt; i++) {
ring = pdata->rx_ring[i];
if (!pdata->cq_cnt) {
snprintf(ring->irq_name, IRQ_ID_SIZE, "%s-rx-txc",
ndev->name);
} else {
snprintf(ring->irq_name, IRQ_ID_SIZE, "%s-rx-%d",
ndev->name, i);
}
}
for (i = 0; i < pdata->cq_cnt; i++) {
ring = pdata->tx_ring[i]->cp_ring;
snprintf(ring->irq_name, IRQ_ID_SIZE, "%s-txc-%d",
ndev->name, i);
}
}
static int xgene_enet_register_irq(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct device *dev = ndev_to_dev(ndev);
struct xgene_enet_desc_ring *ring;
int ret = 0, i;
xgene_enet_set_irq_name(ndev);
for (i = 0; i < pdata->rxq_cnt; i++) {
ring = pdata->rx_ring[i];
irq_set_status_flags(ring->irq, IRQ_DISABLE_UNLAZY);
ret = devm_request_irq(dev, ring->irq, xgene_enet_rx_irq,
0, ring->irq_name, ring);
if (ret) {
netdev_err(ndev, "Failed to request irq %s\n",
ring->irq_name);
}
}
for (i = 0; i < pdata->cq_cnt; i++) {
ring = pdata->tx_ring[i]->cp_ring;
irq_set_status_flags(ring->irq, IRQ_DISABLE_UNLAZY);
ret = devm_request_irq(dev, ring->irq, xgene_enet_rx_irq,
0, ring->irq_name, ring);
if (ret) {
netdev_err(ndev, "Failed to request irq %s\n",
ring->irq_name);
}
}
return ret;
}
static void xgene_enet_free_irq(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata;
struct xgene_enet_desc_ring *ring;
struct device *dev;
int i;
pdata = netdev_priv(ndev);
dev = ndev_to_dev(ndev);
for (i = 0; i < pdata->rxq_cnt; i++) {
ring = pdata->rx_ring[i];
irq_clear_status_flags(ring->irq, IRQ_DISABLE_UNLAZY);
devm_free_irq(dev, ring->irq, ring);
}
for (i = 0; i < pdata->cq_cnt; i++) {
ring = pdata->tx_ring[i]->cp_ring;
irq_clear_status_flags(ring->irq, IRQ_DISABLE_UNLAZY);
devm_free_irq(dev, ring->irq, ring);
}
}
static void xgene_enet_napi_enable(struct xgene_enet_pdata *pdata)
{
struct napi_struct *napi;
int i;
for (i = 0; i < pdata->rxq_cnt; i++) {
napi = &pdata->rx_ring[i]->napi;
napi_enable(napi);
}
for (i = 0; i < pdata->cq_cnt; i++) {
napi = &pdata->tx_ring[i]->cp_ring->napi;
napi_enable(napi);
}
}
static void xgene_enet_napi_disable(struct xgene_enet_pdata *pdata)
{
struct napi_struct *napi;
int i;
for (i = 0; i < pdata->rxq_cnt; i++) {
napi = &pdata->rx_ring[i]->napi;
napi_disable(napi);
}
for (i = 0; i < pdata->cq_cnt; i++) {
napi = &pdata->tx_ring[i]->cp_ring->napi;
napi_disable(napi);
}
}
static int xgene_enet_open(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
const struct xgene_mac_ops *mac_ops = pdata->mac_ops;
int ret;
ret = netif_set_real_num_tx_queues(ndev, pdata->txq_cnt);
if (ret)
return ret;
ret = netif_set_real_num_rx_queues(ndev, pdata->rxq_cnt);
if (ret)
return ret;
xgene_enet_napi_enable(pdata);
ret = xgene_enet_register_irq(ndev);
if (ret)
return ret;
if (ndev->phydev) {
phy_start(ndev->phydev);
} else {
schedule_delayed_work(&pdata->link_work, PHY_POLL_LINK_OFF);
netif_carrier_off(ndev);
}
mac_ops->tx_enable(pdata);
mac_ops->rx_enable(pdata);
netif_tx_start_all_queues(ndev);
return ret;
}
static int xgene_enet_close(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
const struct xgene_mac_ops *mac_ops = pdata->mac_ops;
int i;
netif_tx_stop_all_queues(ndev);
mac_ops->tx_disable(pdata);
mac_ops->rx_disable(pdata);
if (ndev->phydev)
phy_stop(ndev->phydev);
else
cancel_delayed_work_sync(&pdata->link_work);
xgene_enet_free_irq(ndev);
xgene_enet_napi_disable(pdata);
for (i = 0; i < pdata->rxq_cnt; i++)
xgene_enet_process_ring(pdata->rx_ring[i], -1);
return 0;
}
static void xgene_enet_delete_ring(struct xgene_enet_desc_ring *ring)
{
struct xgene_enet_pdata *pdata;
struct device *dev;
pdata = netdev_priv(ring->ndev);
dev = ndev_to_dev(ring->ndev);
pdata->ring_ops->clear(ring);
dmam_free_coherent(dev, ring->size, ring->desc_addr, ring->dma);
}
static void xgene_enet_delete_desc_rings(struct xgene_enet_pdata *pdata)
{
struct xgene_enet_desc_ring *buf_pool;
struct xgene_enet_desc_ring *ring;
int i;
for (i = 0; i < pdata->txq_cnt; i++) {
ring = pdata->tx_ring[i];
if (ring) {
xgene_enet_delete_ring(ring);
pdata->port_ops->clear(pdata, ring);
if (pdata->cq_cnt)
xgene_enet_delete_ring(ring->cp_ring);
pdata->tx_ring[i] = NULL;
}
}
for (i = 0; i < pdata->rxq_cnt; i++) {
ring = pdata->rx_ring[i];
if (ring) {
buf_pool = ring->buf_pool;
xgene_enet_delete_bufpool(buf_pool);
xgene_enet_delete_ring(buf_pool);
pdata->port_ops->clear(pdata, buf_pool);
xgene_enet_delete_ring(ring);
pdata->rx_ring[i] = NULL;
}
}
}
static int xgene_enet_get_ring_size(struct device *dev,
enum xgene_enet_ring_cfgsize cfgsize)
{
int size = -EINVAL;
switch (cfgsize) {
case RING_CFGSIZE_512B:
size = 0x200;
break;
case RING_CFGSIZE_2KB:
size = 0x800;
break;
case RING_CFGSIZE_16KB:
size = 0x4000;
break;
case RING_CFGSIZE_64KB:
size = 0x10000;
break;
case RING_CFGSIZE_512KB:
size = 0x80000;
break;
default:
dev_err(dev, "Unsupported cfg ring size %d\n", cfgsize);
break;
}
return size;
}
static void xgene_enet_free_desc_ring(struct xgene_enet_desc_ring *ring)
{
struct xgene_enet_pdata *pdata;
struct device *dev;
if (!ring)
return;
dev = ndev_to_dev(ring->ndev);
pdata = netdev_priv(ring->ndev);
if (ring->desc_addr) {
pdata->ring_ops->clear(ring);
dmam_free_coherent(dev, ring->size, ring->desc_addr, ring->dma);
}
devm_kfree(dev, ring);
}
static void xgene_enet_free_desc_rings(struct xgene_enet_pdata *pdata)
{
struct device *dev = &pdata->pdev->dev;
struct xgene_enet_desc_ring *ring;
int i;
for (i = 0; i < pdata->txq_cnt; i++) {
ring = pdata->tx_ring[i];
if (ring) {
if (ring->cp_ring && ring->cp_ring->cp_skb)
devm_kfree(dev, ring->cp_ring->cp_skb);
if (ring->cp_ring && pdata->cq_cnt)
xgene_enet_free_desc_ring(ring->cp_ring);
xgene_enet_free_desc_ring(ring);
}
}
for (i = 0; i < pdata->rxq_cnt; i++) {
ring = pdata->rx_ring[i];
if (ring) {
if (ring->buf_pool) {
if (ring->buf_pool->rx_skb)
devm_kfree(dev, ring->buf_pool->rx_skb);
xgene_enet_free_desc_ring(ring->buf_pool);
}
xgene_enet_free_desc_ring(ring);
}
}
}
static bool is_irq_mbox_required(struct xgene_enet_pdata *pdata,
struct xgene_enet_desc_ring *ring)
{
if ((pdata->enet_id == XGENE_ENET2) &&
(xgene_enet_ring_owner(ring->id) == RING_OWNER_CPU)) {
return true;
}
return false;
}
static void __iomem *xgene_enet_ring_cmd_base(struct xgene_enet_pdata *pdata,
struct xgene_enet_desc_ring *ring)
{
u8 num_ring_id_shift = pdata->ring_ops->num_ring_id_shift;
return pdata->ring_cmd_addr + (ring->num << num_ring_id_shift);
}
static struct xgene_enet_desc_ring *xgene_enet_create_desc_ring(
struct net_device *ndev, u32 ring_num,
enum xgene_enet_ring_cfgsize cfgsize, u32 ring_id)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct device *dev = ndev_to_dev(ndev);
struct xgene_enet_desc_ring *ring;
void *irq_mbox_addr;
int size;
size = xgene_enet_get_ring_size(dev, cfgsize);
if (size < 0)
return NULL;
ring = devm_kzalloc(dev, sizeof(struct xgene_enet_desc_ring),
GFP_KERNEL);
if (!ring)
return NULL;
ring->ndev = ndev;
ring->num = ring_num;
ring->cfgsize = cfgsize;
ring->id = ring_id;
ring->desc_addr = dmam_alloc_coherent(dev, size, &ring->dma,
GFP_KERNEL | __GFP_ZERO);
if (!ring->desc_addr) {
devm_kfree(dev, ring);
return NULL;
}
ring->size = size;
if (is_irq_mbox_required(pdata, ring)) {
irq_mbox_addr = dmam_alloc_coherent(dev, INTR_MBOX_SIZE,
&ring->irq_mbox_dma,
GFP_KERNEL | __GFP_ZERO);
if (!irq_mbox_addr) {
dmam_free_coherent(dev, size, ring->desc_addr,
ring->dma);
devm_kfree(dev, ring);
return NULL;
}
ring->irq_mbox_addr = irq_mbox_addr;
}
ring->cmd_base = xgene_enet_ring_cmd_base(pdata, ring);
ring->cmd = ring->cmd_base + INC_DEC_CMD_ADDR;
ring = pdata->ring_ops->setup(ring);
netdev_dbg(ndev, "ring info: num=%d size=%d id=%d slots=%d\n",
ring->num, ring->size, ring->id, ring->slots);
return ring;
}
static u16 xgene_enet_get_ring_id(enum xgene_ring_owner owner, u8 bufnum)
{
return (owner << 6) | (bufnum & GENMASK(5, 0));
}
static enum xgene_ring_owner xgene_derive_ring_owner(struct xgene_enet_pdata *p)
{
enum xgene_ring_owner owner;
if (p->enet_id == XGENE_ENET1) {
switch (p->phy_mode) {
case PHY_INTERFACE_MODE_SGMII:
owner = RING_OWNER_ETH0;
break;
default:
owner = (!p->port_id) ? RING_OWNER_ETH0 :
RING_OWNER_ETH1;
break;
}
} else {
owner = (!p->port_id) ? RING_OWNER_ETH0 : RING_OWNER_ETH1;
}
return owner;
}
static u8 xgene_start_cpu_bufnum(struct xgene_enet_pdata *pdata)
{
struct device *dev = &pdata->pdev->dev;
u32 cpu_bufnum;
int ret;
ret = device_property_read_u32(dev, "channel", &cpu_bufnum);
return (!ret) ? cpu_bufnum : pdata->cpu_bufnum;
}
static int xgene_enet_create_desc_rings(struct net_device *ndev)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct device *dev = ndev_to_dev(ndev);
struct xgene_enet_desc_ring *rx_ring, *tx_ring, *cp_ring;
struct xgene_enet_desc_ring *buf_pool = NULL;
enum xgene_ring_owner owner;
dma_addr_t dma_exp_bufs;
u8 cpu_bufnum;
u8 eth_bufnum = pdata->eth_bufnum;
u8 bp_bufnum = pdata->bp_bufnum;
u16 ring_num = pdata->ring_num;
__le64 *exp_bufs;
u16 ring_id;
int i, ret, size;
cpu_bufnum = xgene_start_cpu_bufnum(pdata);
for (i = 0; i < pdata->rxq_cnt; i++) {
/* allocate rx descriptor ring */
owner = xgene_derive_ring_owner(pdata);
ring_id = xgene_enet_get_ring_id(RING_OWNER_CPU, cpu_bufnum++);
rx_ring = xgene_enet_create_desc_ring(ndev, ring_num++,
RING_CFGSIZE_16KB,
ring_id);
if (!rx_ring) {
ret = -ENOMEM;
goto err;
}
/* allocate buffer pool for receiving packets */
owner = xgene_derive_ring_owner(pdata);
ring_id = xgene_enet_get_ring_id(owner, bp_bufnum++);
buf_pool = xgene_enet_create_desc_ring(ndev, ring_num++,
RING_CFGSIZE_2KB,
ring_id);
if (!buf_pool) {
ret = -ENOMEM;
goto err;
}
rx_ring->nbufpool = NUM_BUFPOOL;
rx_ring->buf_pool = buf_pool;
rx_ring->irq = pdata->irqs[i];
buf_pool->rx_skb = devm_kcalloc(dev, buf_pool->slots,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!buf_pool->rx_skb) {
ret = -ENOMEM;
goto err;
}
buf_pool->dst_ring_num = xgene_enet_dst_ring_num(buf_pool);
rx_ring->buf_pool = buf_pool;
pdata->rx_ring[i] = rx_ring;
}
for (i = 0; i < pdata->txq_cnt; i++) {
/* allocate tx descriptor ring */
owner = xgene_derive_ring_owner(pdata);
ring_id = xgene_enet_get_ring_id(owner, eth_bufnum++);
tx_ring = xgene_enet_create_desc_ring(ndev, ring_num++,
RING_CFGSIZE_16KB,
ring_id);
if (!tx_ring) {
ret = -ENOMEM;
goto err;
}
size = (tx_ring->slots / 2) * sizeof(__le64) * MAX_EXP_BUFFS;
exp_bufs = dmam_alloc_coherent(dev, size, &dma_exp_bufs,
GFP_KERNEL | __GFP_ZERO);
if (!exp_bufs) {
ret = -ENOMEM;
goto err;
}
tx_ring->exp_bufs = exp_bufs;
pdata->tx_ring[i] = tx_ring;
if (!pdata->cq_cnt) {
cp_ring = pdata->rx_ring[i];
} else {
/* allocate tx completion descriptor ring */
ring_id = xgene_enet_get_ring_id(RING_OWNER_CPU,
cpu_bufnum++);
cp_ring = xgene_enet_create_desc_ring(ndev, ring_num++,
RING_CFGSIZE_16KB,
ring_id);
if (!cp_ring) {
ret = -ENOMEM;
goto err;
}
cp_ring->irq = pdata->irqs[pdata->rxq_cnt + i];
cp_ring->index = i;
}
cp_ring->cp_skb = devm_kcalloc(dev, tx_ring->slots,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!cp_ring->cp_skb) {
ret = -ENOMEM;
goto err;
}
size = sizeof(dma_addr_t) * MAX_SKB_FRAGS;
cp_ring->frag_dma_addr = devm_kcalloc(dev, tx_ring->slots,
size, GFP_KERNEL);
if (!cp_ring->frag_dma_addr) {
devm_kfree(dev, cp_ring->cp_skb);
ret = -ENOMEM;
goto err;
}
tx_ring->cp_ring = cp_ring;
tx_ring->dst_ring_num = xgene_enet_dst_ring_num(cp_ring);
}
pdata->ring_ops->coalesce(pdata->tx_ring[0]);
pdata->tx_qcnt_hi = pdata->tx_ring[0]->slots - 128;
return 0;
err:
xgene_enet_free_desc_rings(pdata);
return ret;
}
static struct rtnl_link_stats64 *xgene_enet_get_stats64(
struct net_device *ndev,
struct rtnl_link_stats64 *storage)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
struct rtnl_link_stats64 *stats = &pdata->stats;
struct xgene_enet_desc_ring *ring;
int i;
memset(stats, 0, sizeof(struct rtnl_link_stats64));
for (i = 0; i < pdata->txq_cnt; i++) {
ring = pdata->tx_ring[i];
if (ring) {
stats->tx_packets += ring->tx_packets;
stats->tx_bytes += ring->tx_bytes;
}
}
for (i = 0; i < pdata->rxq_cnt; i++) {
ring = pdata->rx_ring[i];
if (ring) {
stats->rx_packets += ring->rx_packets;
stats->rx_bytes += ring->rx_bytes;
stats->rx_errors += ring->rx_length_errors +
ring->rx_crc_errors +
ring->rx_frame_errors +
ring->rx_fifo_errors;
stats->rx_dropped += ring->rx_dropped;
}
}
memcpy(storage, stats, sizeof(struct rtnl_link_stats64));
return storage;
}
static int xgene_enet_set_mac_address(struct net_device *ndev, void *addr)
{
struct xgene_enet_pdata *pdata = netdev_priv(ndev);
int ret;
ret = eth_mac_addr(ndev, addr);
if (ret)
return ret;
pdata->mac_ops->set_mac_addr(pdata);
return ret;
}
static const struct net_device_ops xgene_ndev_ops = {
.ndo_open = xgene_enet_open,
.ndo_stop = xgene_enet_close,
.ndo_start_xmit = xgene_enet_start_xmit,
.ndo_tx_timeout = xgene_enet_timeout,
.ndo_get_stats64 = xgene_enet_get_stats64,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = xgene_enet_set_mac_address,
};
#ifdef CONFIG_ACPI
static void xgene_get_port_id_acpi(struct device *dev,
struct xgene_enet_pdata *pdata)
{
acpi_status status;
u64 temp;
status = acpi_evaluate_integer(ACPI_HANDLE(dev), "_SUN", NULL, &temp);
if (ACPI_FAILURE(status)) {
pdata->port_id = 0;
} else {
pdata->port_id = temp;
}
return;
}
#endif
static void xgene_get_port_id_dt(struct device *dev, struct xgene_enet_pdata *pdata)
{
u32 id = 0;
of_property_read_u32(dev->of_node, "port-id", &id);
pdata->port_id = id & BIT(0);
return;
}
static int xgene_get_tx_delay(struct xgene_enet_pdata *pdata)
{
struct device *dev = &pdata->pdev->dev;
int delay, ret;
ret = of_property_read_u32(dev->of_node, "tx-delay", &delay);
if (ret) {
pdata->tx_delay = 4;
return 0;
}
if (delay < 0 || delay > 7) {
dev_err(dev, "Invalid tx-delay specified\n");
return -EINVAL;
}
pdata->tx_delay = delay;
return 0;
}
static int xgene_get_rx_delay(struct xgene_enet_pdata *pdata)
{
struct device *dev = &pdata->pdev->dev;
int delay, ret;
ret = of_property_read_u32(dev->of_node, "rx-delay", &delay);
if (ret) {
pdata->rx_delay = 2;
return 0;
}
if (delay < 0 || delay > 7) {
dev_err(dev, "Invalid rx-delay specified\n");
return -EINVAL;
}
pdata->rx_delay = delay;
return 0;
}
static int xgene_enet_get_irqs(struct xgene_enet_pdata *pdata)
{
struct platform_device *pdev = pdata->pdev;
struct device *dev = &pdev->dev;
int i, ret, max_irqs;
if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
max_irqs = 1;
else if (pdata->phy_mode == PHY_INTERFACE_MODE_SGMII)
max_irqs = 2;
else
max_irqs = XGENE_MAX_ENET_IRQ;
for (i = 0; i < max_irqs; i++) {
ret = platform_get_irq(pdev, i);
if (ret <= 0) {
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
max_irqs = i;
pdata->rxq_cnt = max_irqs / 2;
pdata->txq_cnt = max_irqs / 2;
pdata->cq_cnt = max_irqs / 2;
break;
}
dev_err(dev, "Unable to get ENET IRQ\n");
ret = ret ? : -ENXIO;
return ret;
}
pdata->irqs[i] = ret;
}
return 0;
}
static int xgene_enet_check_phy_handle(struct xgene_enet_pdata *pdata)
{
int ret;
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII)
return 0;
if (!IS_ENABLED(CONFIG_MDIO_XGENE))
return 0;
ret = xgene_enet_phy_connect(pdata->ndev);
if (!ret)
pdata->mdio_driver = true;
return 0;
}
static void xgene_enet_gpiod_get(struct xgene_enet_pdata *pdata)
{
struct device *dev = &pdata->pdev->dev;
if (pdata->phy_mode != PHY_INTERFACE_MODE_XGMII)
return;
pdata->sfp_rdy = gpiod_get(dev, "rxlos", GPIOD_IN);
if (IS_ERR(pdata->sfp_rdy))
pdata->sfp_rdy = gpiod_get(dev, "sfp", GPIOD_IN);
}
static int xgene_enet_get_resources(struct xgene_enet_pdata *pdata)
{
struct platform_device *pdev;
struct net_device *ndev;
struct device *dev;
struct resource *res;
void __iomem *base_addr;
u32 offset;
int ret = 0;
pdev = pdata->pdev;
dev = &pdev->dev;
ndev = pdata->ndev;
res = platform_get_resource(pdev, IORESOURCE_MEM, RES_ENET_CSR);
if (!res) {
dev_err(dev, "Resource enet_csr not defined\n");
return -ENODEV;
}
pdata->base_addr = devm_ioremap(dev, res->start, resource_size(res));
if (!pdata->base_addr) {
dev_err(dev, "Unable to retrieve ENET Port CSR region\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, RES_RING_CSR);
if (!res) {
dev_err(dev, "Resource ring_csr not defined\n");
return -ENODEV;
}
pdata->ring_csr_addr = devm_ioremap(dev, res->start,
resource_size(res));
if (!pdata->ring_csr_addr) {
dev_err(dev, "Unable to retrieve ENET Ring CSR region\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, RES_RING_CMD);
if (!res) {
dev_err(dev, "Resource ring_cmd not defined\n");
return -ENODEV;
}
pdata->ring_cmd_addr = devm_ioremap(dev, res->start,
resource_size(res));
if (!pdata->ring_cmd_addr) {
dev_err(dev, "Unable to retrieve ENET Ring command region\n");
return -ENOMEM;
}
if (dev->of_node)
xgene_get_port_id_dt(dev, pdata);
#ifdef CONFIG_ACPI
else
xgene_get_port_id_acpi(dev, pdata);
#endif
if (!device_get_mac_address(dev, ndev->dev_addr, ETH_ALEN))
eth_hw_addr_random(ndev);
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
pdata->phy_mode = device_get_phy_mode(dev);
if (pdata->phy_mode < 0) {
dev_err(dev, "Unable to get phy-connection-type\n");
return pdata->phy_mode;
}
if (pdata->phy_mode != PHY_INTERFACE_MODE_RGMII &&
pdata->phy_mode != PHY_INTERFACE_MODE_SGMII &&
pdata->phy_mode != PHY_INTERFACE_MODE_XGMII) {
dev_err(dev, "Incorrect phy-connection-type specified\n");
return -ENODEV;
}
ret = xgene_get_tx_delay(pdata);
if (ret)
return ret;
ret = xgene_get_rx_delay(pdata);
if (ret)
return ret;
ret = xgene_enet_get_irqs(pdata);
if (ret)
return ret;
ret = xgene_enet_check_phy_handle(pdata);
if (ret)
return ret;
xgene_enet_gpiod_get(pdata);
pdata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pdata->clk)) {
/* Firmware may have set up the clock already. */
dev_info(dev, "clocks have been setup already\n");
}
if (pdata->phy_mode != PHY_INTERFACE_MODE_XGMII)
base_addr = pdata->base_addr - (pdata->port_id * MAC_OFFSET);
else
base_addr = pdata->base_addr;
pdata->eth_csr_addr = base_addr + BLOCK_ETH_CSR_OFFSET;
pdata->cle.base = base_addr + BLOCK_ETH_CLE_CSR_OFFSET;
pdata->eth_ring_if_addr = base_addr + BLOCK_ETH_RING_IF_OFFSET;
pdata->eth_diag_csr_addr = base_addr + BLOCK_ETH_DIAG_CSR_OFFSET;
if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII ||
pdata->phy_mode == PHY_INTERFACE_MODE_SGMII) {
pdata->mcx_mac_addr = pdata->base_addr + BLOCK_ETH_MAC_OFFSET;
offset = (pdata->enet_id == XGENE_ENET1) ?
BLOCK_ETH_MAC_CSR_OFFSET :
X2_BLOCK_ETH_MAC_CSR_OFFSET;
pdata->mcx_mac_csr_addr = base_addr + offset;
} else {
pdata->mcx_mac_addr = base_addr + BLOCK_AXG_MAC_OFFSET;
pdata->mcx_mac_csr_addr = base_addr + BLOCK_AXG_MAC_CSR_OFFSET;
pdata->pcs_addr = base_addr + BLOCK_PCS_OFFSET;
}
pdata->rx_buff_cnt = NUM_PKT_BUF;
return 0;
}
static int xgene_enet_init_hw(struct xgene_enet_pdata *pdata)
{
struct xgene_enet_cle *enet_cle = &pdata->cle;
struct net_device *ndev = pdata->ndev;
struct xgene_enet_desc_ring *buf_pool;
u16 dst_ring_num;
int i, ret;
ret = pdata->port_ops->reset(pdata);
if (ret)
return ret;
ret = xgene_enet_create_desc_rings(ndev);
if (ret) {
netdev_err(ndev, "Error in ring configuration\n");
return ret;
}
/* setup buffer pool */
for (i = 0; i < pdata->rxq_cnt; i++) {
buf_pool = pdata->rx_ring[i]->buf_pool;
xgene_enet_init_bufpool(buf_pool);
ret = xgene_enet_refill_bufpool(buf_pool, pdata->rx_buff_cnt);
if (ret)
goto err;
}
dst_ring_num = xgene_enet_dst_ring_num(pdata->rx_ring[0]);
buf_pool = pdata->rx_ring[0]->buf_pool;
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
/* Initialize and Enable PreClassifier Tree */
enet_cle->max_nodes = 512;
enet_cle->max_dbptrs = 1024;
enet_cle->parsers = 3;
enet_cle->active_parser = PARSER_ALL;
enet_cle->ptree.start_node = 0;
enet_cle->ptree.start_dbptr = 0;
enet_cle->jump_bytes = 8;
ret = pdata->cle_ops->cle_init(pdata);
if (ret) {
netdev_err(ndev, "Preclass Tree init error\n");
goto err;
}
} else {
pdata->port_ops->cle_bypass(pdata, dst_ring_num, buf_pool->id);
}
pdata->phy_speed = SPEED_UNKNOWN;
pdata->mac_ops->init(pdata);
return ret;
err:
xgene_enet_delete_desc_rings(pdata);
return ret;
}
static void xgene_enet_setup_ops(struct xgene_enet_pdata *pdata)
{
switch (pdata->phy_mode) {
case PHY_INTERFACE_MODE_RGMII:
pdata->mac_ops = &xgene_gmac_ops;
pdata->port_ops = &xgene_gport_ops;
pdata->rm = RM3;
pdata->rxq_cnt = 1;
pdata->txq_cnt = 1;
pdata->cq_cnt = 0;
break;
case PHY_INTERFACE_MODE_SGMII:
pdata->mac_ops = &xgene_sgmac_ops;
pdata->port_ops = &xgene_sgport_ops;
pdata->rm = RM1;
pdata->rxq_cnt = 1;
pdata->txq_cnt = 1;
pdata->cq_cnt = 1;
break;
default:
pdata->mac_ops = &xgene_xgmac_ops;
pdata->port_ops = &xgene_xgport_ops;
pdata->cle_ops = &xgene_cle3in_ops;
pdata->rm = RM0;
if (!pdata->rxq_cnt) {
pdata->rxq_cnt = XGENE_NUM_RX_RING;
pdata->txq_cnt = XGENE_NUM_TX_RING;
pdata->cq_cnt = XGENE_NUM_TXC_RING;
}
break;
}
if (pdata->enet_id == XGENE_ENET1) {
switch (pdata->port_id) {
case 0:
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
pdata->cpu_bufnum = X2_START_CPU_BUFNUM_0;
pdata->eth_bufnum = X2_START_ETH_BUFNUM_0;
pdata->bp_bufnum = X2_START_BP_BUFNUM_0;
pdata->ring_num = START_RING_NUM_0;
} else {
pdata->cpu_bufnum = START_CPU_BUFNUM_0;
pdata->eth_bufnum = START_ETH_BUFNUM_0;
pdata->bp_bufnum = START_BP_BUFNUM_0;
pdata->ring_num = START_RING_NUM_0;
}
break;
case 1:
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
pdata->cpu_bufnum = XG_START_CPU_BUFNUM_1;
pdata->eth_bufnum = XG_START_ETH_BUFNUM_1;
pdata->bp_bufnum = XG_START_BP_BUFNUM_1;
pdata->ring_num = XG_START_RING_NUM_1;
} else {
pdata->cpu_bufnum = START_CPU_BUFNUM_1;
pdata->eth_bufnum = START_ETH_BUFNUM_1;
pdata->bp_bufnum = START_BP_BUFNUM_1;
pdata->ring_num = START_RING_NUM_1;
}
break;
default:
break;
}
pdata->ring_ops = &xgene_ring1_ops;
} else {
switch (pdata->port_id) {
case 0:
pdata->cpu_bufnum = X2_START_CPU_BUFNUM_0;
pdata->eth_bufnum = X2_START_ETH_BUFNUM_0;
pdata->bp_bufnum = X2_START_BP_BUFNUM_0;
pdata->ring_num = X2_START_RING_NUM_0;
break;
case 1:
pdata->cpu_bufnum = X2_START_CPU_BUFNUM_1;
pdata->eth_bufnum = X2_START_ETH_BUFNUM_1;
pdata->bp_bufnum = X2_START_BP_BUFNUM_1;
pdata->ring_num = X2_START_RING_NUM_1;
break;
default:
break;
}
pdata->rm = RM0;
pdata->ring_ops = &xgene_ring2_ops;
}
}
static void xgene_enet_napi_add(struct xgene_enet_pdata *pdata)
{
struct napi_struct *napi;
int i;
for (i = 0; i < pdata->rxq_cnt; i++) {
napi = &pdata->rx_ring[i]->napi;
netif_napi_add(pdata->ndev, napi, xgene_enet_napi,
NAPI_POLL_WEIGHT);
}
for (i = 0; i < pdata->cq_cnt; i++) {
napi = &pdata->tx_ring[i]->cp_ring->napi;
netif_napi_add(pdata->ndev, napi, xgene_enet_napi,
NAPI_POLL_WEIGHT);
}
}
static int xgene_enet_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct xgene_enet_pdata *pdata;
struct device *dev = &pdev->dev;
void (*link_state)(struct work_struct *);
const struct of_device_id *of_id;
int ret;
ndev = alloc_etherdev_mqs(sizeof(struct xgene_enet_pdata),
XGENE_NUM_RX_RING, XGENE_NUM_TX_RING);
if (!ndev)
return -ENOMEM;
pdata = netdev_priv(ndev);
pdata->pdev = pdev;
pdata->ndev = ndev;
SET_NETDEV_DEV(ndev, dev);
platform_set_drvdata(pdev, pdata);
ndev->netdev_ops = &xgene_ndev_ops;
xgene_enet_set_ethtool_ops(ndev);
ndev->features |= NETIF_F_IP_CSUM |
NETIF_F_GSO |
NETIF_F_GRO |
NETIF_F_SG;
of_id = of_match_device(xgene_enet_of_match, &pdev->dev);
if (of_id) {
pdata->enet_id = (enum xgene_enet_id)of_id->data;
}
#ifdef CONFIG_ACPI
else {
const struct acpi_device_id *acpi_id;
acpi_id = acpi_match_device(xgene_enet_acpi_match, &pdev->dev);
if (acpi_id)
pdata->enet_id = (enum xgene_enet_id) acpi_id->driver_data;
}
#endif
if (!pdata->enet_id) {
ret = -ENODEV;
goto err;
}
ret = xgene_enet_get_resources(pdata);
if (ret)
goto err;
xgene_enet_setup_ops(pdata);
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
ndev->features |= NETIF_F_TSO;
spin_lock_init(&pdata->mss_lock);
}
ndev->hw_features = ndev->features;
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret) {
netdev_err(ndev, "No usable DMA configuration\n");
goto err;
}
ret = xgene_enet_init_hw(pdata);
if (ret)
goto err;
link_state = pdata->mac_ops->link_state;
if (pdata->phy_mode == PHY_INTERFACE_MODE_XGMII) {
INIT_DELAYED_WORK(&pdata->link_work, link_state);
} else if (!pdata->mdio_driver) {
if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
ret = xgene_enet_mdio_config(pdata);
else
INIT_DELAYED_WORK(&pdata->link_work, link_state);
if (ret)
goto err1;
}
xgene_enet_napi_add(pdata);
ret = register_netdev(ndev);
if (ret) {
netdev_err(ndev, "Failed to register netdev\n");
goto err2;
}
return 0;
err2:
/*
* If necessary, free_netdev() will call netif_napi_del() and undo
* the effects of xgene_enet_napi_add()'s calls to netif_napi_add().
*/
if (pdata->mdio_driver)
xgene_enet_phy_disconnect(pdata);
else if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
xgene_enet_mdio_remove(pdata);
err1:
xgene_enet_delete_desc_rings(pdata);
err:
free_netdev(ndev);
return ret;
}
static int xgene_enet_remove(struct platform_device *pdev)
{
struct xgene_enet_pdata *pdata;
struct net_device *ndev;
pdata = platform_get_drvdata(pdev);
ndev = pdata->ndev;
rtnl_lock();
if (netif_running(ndev))
dev_close(ndev);
rtnl_unlock();
if (pdata->mdio_driver)
xgene_enet_phy_disconnect(pdata);
else if (pdata->phy_mode == PHY_INTERFACE_MODE_RGMII)
xgene_enet_mdio_remove(pdata);
unregister_netdev(ndev);
pdata->port_ops->shutdown(pdata);
xgene_enet_delete_desc_rings(pdata);
free_netdev(ndev);
return 0;
}
static void xgene_enet_shutdown(struct platform_device *pdev)
{
struct xgene_enet_pdata *pdata;
pdata = platform_get_drvdata(pdev);
if (!pdata)
return;
if (!pdata->ndev)
return;
xgene_enet_remove(pdev);
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id xgene_enet_acpi_match[] = {
{ "APMC0D05", XGENE_ENET1},
{ "APMC0D30", XGENE_ENET1},
{ "APMC0D31", XGENE_ENET1},
{ "APMC0D3F", XGENE_ENET1},
{ "APMC0D26", XGENE_ENET2},
{ "APMC0D25", XGENE_ENET2},
{ }
};
MODULE_DEVICE_TABLE(acpi, xgene_enet_acpi_match);
#endif
#ifdef CONFIG_OF
static const struct of_device_id xgene_enet_of_match[] = {
{.compatible = "apm,xgene-enet", .data = (void *)XGENE_ENET1},
{.compatible = "apm,xgene1-sgenet", .data = (void *)XGENE_ENET1},
{.compatible = "apm,xgene1-xgenet", .data = (void *)XGENE_ENET1},
{.compatible = "apm,xgene2-sgenet", .data = (void *)XGENE_ENET2},
{.compatible = "apm,xgene2-xgenet", .data = (void *)XGENE_ENET2},
{},
};
MODULE_DEVICE_TABLE(of, xgene_enet_of_match);
#endif
static struct platform_driver xgene_enet_driver = {
.driver = {
.name = "xgene-enet",
.of_match_table = of_match_ptr(xgene_enet_of_match),
.acpi_match_table = ACPI_PTR(xgene_enet_acpi_match),
},
.probe = xgene_enet_probe,
.remove = xgene_enet_remove,
.shutdown = xgene_enet_shutdown,
};
module_platform_driver(xgene_enet_driver);
MODULE_DESCRIPTION("APM X-Gene SoC Ethernet driver");
MODULE_VERSION(XGENE_DRV_VERSION);
MODULE_AUTHOR("Iyappan Subramanian <isubramanian@apm.com>");
MODULE_AUTHOR("Keyur Chudgar <kchudgar@apm.com>");
MODULE_LICENSE("GPL");