| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * mm_init.c - Memory initialisation verification and debugging |
| * |
| * Copyright 2008 IBM Corporation, 2008 |
| * Author Mel Gorman <mel@csn.ul.ie> |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/kobject.h> |
| #include <linux/export.h> |
| #include <linux/memory.h> |
| #include <linux/notifier.h> |
| #include <linux/sched.h> |
| #include <linux/mman.h> |
| #include <linux/memblock.h> |
| #include <linux/page-isolation.h> |
| #include <linux/padata.h> |
| #include <linux/nmi.h> |
| #include <linux/buffer_head.h> |
| #include <linux/kmemleak.h> |
| #include <linux/kfence.h> |
| #include <linux/page_ext.h> |
| #include <linux/pti.h> |
| #include <linux/pgtable.h> |
| #include <linux/swap.h> |
| #include <linux/cma.h> |
| #include "internal.h" |
| #include "slab.h" |
| #include "shuffle.h" |
| |
| #include <asm/setup.h> |
| |
| #ifdef CONFIG_DEBUG_MEMORY_INIT |
| int __meminitdata mminit_loglevel; |
| |
| /* The zonelists are simply reported, validation is manual. */ |
| void __init mminit_verify_zonelist(void) |
| { |
| int nid; |
| |
| if (mminit_loglevel < MMINIT_VERIFY) |
| return; |
| |
| for_each_online_node(nid) { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| struct zone *zone; |
| struct zoneref *z; |
| struct zonelist *zonelist; |
| int i, listid, zoneid; |
| |
| BUILD_BUG_ON(MAX_ZONELISTS > 2); |
| for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { |
| |
| /* Identify the zone and nodelist */ |
| zoneid = i % MAX_NR_ZONES; |
| listid = i / MAX_NR_ZONES; |
| zonelist = &pgdat->node_zonelists[listid]; |
| zone = &pgdat->node_zones[zoneid]; |
| if (!populated_zone(zone)) |
| continue; |
| |
| /* Print information about the zonelist */ |
| printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", |
| listid > 0 ? "thisnode" : "general", nid, |
| zone->name); |
| |
| /* Iterate the zonelist */ |
| for_each_zone_zonelist(zone, z, zonelist, zoneid) |
| pr_cont("%d:%s ", zone_to_nid(zone), zone->name); |
| pr_cont("\n"); |
| } |
| } |
| } |
| |
| void __init mminit_verify_pageflags_layout(void) |
| { |
| int shift, width; |
| unsigned long or_mask, add_mask; |
| |
| shift = 8 * sizeof(unsigned long); |
| width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH |
| - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", |
| "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", |
| SECTIONS_WIDTH, |
| NODES_WIDTH, |
| ZONES_WIDTH, |
| LAST_CPUPID_WIDTH, |
| KASAN_TAG_WIDTH, |
| LRU_GEN_WIDTH, |
| LRU_REFS_WIDTH, |
| NR_PAGEFLAGS); |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", |
| "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", |
| SECTIONS_SHIFT, |
| NODES_SHIFT, |
| ZONES_SHIFT, |
| LAST_CPUPID_SHIFT, |
| KASAN_TAG_WIDTH); |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", |
| "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", |
| (unsigned long)SECTIONS_PGSHIFT, |
| (unsigned long)NODES_PGSHIFT, |
| (unsigned long)ZONES_PGSHIFT, |
| (unsigned long)LAST_CPUPID_PGSHIFT, |
| (unsigned long)KASAN_TAG_PGSHIFT); |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", |
| "Node/Zone ID: %lu -> %lu\n", |
| (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), |
| (unsigned long)ZONEID_PGOFF); |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", |
| "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", |
| shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); |
| #ifdef NODE_NOT_IN_PAGE_FLAGS |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", |
| "Node not in page flags"); |
| #endif |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
| mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", |
| "Last cpupid not in page flags"); |
| #endif |
| |
| if (SECTIONS_WIDTH) { |
| shift -= SECTIONS_WIDTH; |
| BUG_ON(shift != SECTIONS_PGSHIFT); |
| } |
| if (NODES_WIDTH) { |
| shift -= NODES_WIDTH; |
| BUG_ON(shift != NODES_PGSHIFT); |
| } |
| if (ZONES_WIDTH) { |
| shift -= ZONES_WIDTH; |
| BUG_ON(shift != ZONES_PGSHIFT); |
| } |
| |
| /* Check for bitmask overlaps */ |
| or_mask = (ZONES_MASK << ZONES_PGSHIFT) | |
| (NODES_MASK << NODES_PGSHIFT) | |
| (SECTIONS_MASK << SECTIONS_PGSHIFT); |
| add_mask = (ZONES_MASK << ZONES_PGSHIFT) + |
| (NODES_MASK << NODES_PGSHIFT) + |
| (SECTIONS_MASK << SECTIONS_PGSHIFT); |
| BUG_ON(or_mask != add_mask); |
| } |
| |
| static __init int set_mminit_loglevel(char *str) |
| { |
| get_option(&str, &mminit_loglevel); |
| return 0; |
| } |
| early_param("mminit_loglevel", set_mminit_loglevel); |
| #endif /* CONFIG_DEBUG_MEMORY_INIT */ |
| |
| struct kobject *mm_kobj; |
| EXPORT_SYMBOL_GPL(mm_kobj); |
| |
| #ifdef CONFIG_SMP |
| s32 vm_committed_as_batch = 32; |
| |
| void mm_compute_batch(int overcommit_policy) |
| { |
| u64 memsized_batch; |
| s32 nr = num_present_cpus(); |
| s32 batch = max_t(s32, nr*2, 32); |
| unsigned long ram_pages = totalram_pages(); |
| |
| /* |
| * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of |
| * (total memory/#cpus), and lift it to 25% for other policies |
| * to easy the possible lock contention for percpu_counter |
| * vm_committed_as, while the max limit is INT_MAX |
| */ |
| if (overcommit_policy == OVERCOMMIT_NEVER) |
| memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); |
| else |
| memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); |
| |
| vm_committed_as_batch = max_t(s32, memsized_batch, batch); |
| } |
| |
| static int __meminit mm_compute_batch_notifier(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| switch (action) { |
| case MEM_ONLINE: |
| case MEM_OFFLINE: |
| mm_compute_batch(sysctl_overcommit_memory); |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static int __init mm_compute_batch_init(void) |
| { |
| mm_compute_batch(sysctl_overcommit_memory); |
| hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); |
| return 0; |
| } |
| |
| __initcall(mm_compute_batch_init); |
| |
| #endif |
| |
| static int __init mm_sysfs_init(void) |
| { |
| mm_kobj = kobject_create_and_add("mm", kernel_kobj); |
| if (!mm_kobj) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| postcore_initcall(mm_sysfs_init); |
| |
| static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; |
| static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; |
| static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; |
| |
| static unsigned long required_kernelcore __initdata; |
| static unsigned long required_kernelcore_percent __initdata; |
| static unsigned long required_movablecore __initdata; |
| static unsigned long required_movablecore_percent __initdata; |
| |
| static unsigned long nr_kernel_pages __initdata; |
| static unsigned long nr_all_pages __initdata; |
| static unsigned long dma_reserve __initdata; |
| |
| static bool deferred_struct_pages __meminitdata; |
| |
| static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); |
| |
| static int __init cmdline_parse_core(char *p, unsigned long *core, |
| unsigned long *percent) |
| { |
| unsigned long long coremem; |
| char *endptr; |
| |
| if (!p) |
| return -EINVAL; |
| |
| /* Value may be a percentage of total memory, otherwise bytes */ |
| coremem = simple_strtoull(p, &endptr, 0); |
| if (*endptr == '%') { |
| /* Paranoid check for percent values greater than 100 */ |
| WARN_ON(coremem > 100); |
| |
| *percent = coremem; |
| } else { |
| coremem = memparse(p, &p); |
| /* Paranoid check that UL is enough for the coremem value */ |
| WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
| |
| *core = coremem >> PAGE_SHIFT; |
| *percent = 0UL; |
| } |
| return 0; |
| } |
| |
| bool mirrored_kernelcore __initdata_memblock; |
| |
| /* |
| * kernelcore=size sets the amount of memory for use for allocations that |
| * cannot be reclaimed or migrated. |
| */ |
| static int __init cmdline_parse_kernelcore(char *p) |
| { |
| /* parse kernelcore=mirror */ |
| if (parse_option_str(p, "mirror")) { |
| mirrored_kernelcore = true; |
| return 0; |
| } |
| |
| return cmdline_parse_core(p, &required_kernelcore, |
| &required_kernelcore_percent); |
| } |
| early_param("kernelcore", cmdline_parse_kernelcore); |
| |
| /* |
| * movablecore=size sets the amount of memory for use for allocations that |
| * can be reclaimed or migrated. |
| */ |
| static int __init cmdline_parse_movablecore(char *p) |
| { |
| return cmdline_parse_core(p, &required_movablecore, |
| &required_movablecore_percent); |
| } |
| early_param("movablecore", cmdline_parse_movablecore); |
| |
| /* |
| * early_calculate_totalpages() |
| * Sum pages in active regions for movable zone. |
| * Populate N_MEMORY for calculating usable_nodes. |
| */ |
| static unsigned long __init early_calculate_totalpages(void) |
| { |
| unsigned long totalpages = 0; |
| unsigned long start_pfn, end_pfn; |
| int i, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| unsigned long pages = end_pfn - start_pfn; |
| |
| totalpages += pages; |
| if (pages) |
| node_set_state(nid, N_MEMORY); |
| } |
| return totalpages; |
| } |
| |
| /* |
| * This finds a zone that can be used for ZONE_MOVABLE pages. The |
| * assumption is made that zones within a node are ordered in monotonic |
| * increasing memory addresses so that the "highest" populated zone is used |
| */ |
| static void __init find_usable_zone_for_movable(void) |
| { |
| int zone_index; |
| for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { |
| if (zone_index == ZONE_MOVABLE) |
| continue; |
| |
| if (arch_zone_highest_possible_pfn[zone_index] > |
| arch_zone_lowest_possible_pfn[zone_index]) |
| break; |
| } |
| |
| VM_BUG_ON(zone_index == -1); |
| movable_zone = zone_index; |
| } |
| |
| /* |
| * Find the PFN the Movable zone begins in each node. Kernel memory |
| * is spread evenly between nodes as long as the nodes have enough |
| * memory. When they don't, some nodes will have more kernelcore than |
| * others |
| */ |
| static void __init find_zone_movable_pfns_for_nodes(void) |
| { |
| int i, nid; |
| unsigned long usable_startpfn; |
| unsigned long kernelcore_node, kernelcore_remaining; |
| /* save the state before borrow the nodemask */ |
| nodemask_t saved_node_state = node_states[N_MEMORY]; |
| unsigned long totalpages = early_calculate_totalpages(); |
| int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
| struct memblock_region *r; |
| |
| /* Need to find movable_zone earlier when movable_node is specified. */ |
| find_usable_zone_for_movable(); |
| |
| /* |
| * If movable_node is specified, ignore kernelcore and movablecore |
| * options. |
| */ |
| if (movable_node_is_enabled()) { |
| for_each_mem_region(r) { |
| if (!memblock_is_hotpluggable(r)) |
| continue; |
| |
| nid = memblock_get_region_node(r); |
| |
| usable_startpfn = PFN_DOWN(r->base); |
| zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
| min(usable_startpfn, zone_movable_pfn[nid]) : |
| usable_startpfn; |
| } |
| |
| goto out2; |
| } |
| |
| /* |
| * If kernelcore=mirror is specified, ignore movablecore option |
| */ |
| if (mirrored_kernelcore) { |
| bool mem_below_4gb_not_mirrored = false; |
| |
| for_each_mem_region(r) { |
| if (memblock_is_mirror(r)) |
| continue; |
| |
| nid = memblock_get_region_node(r); |
| |
| usable_startpfn = memblock_region_memory_base_pfn(r); |
| |
| if (usable_startpfn < PHYS_PFN(SZ_4G)) { |
| mem_below_4gb_not_mirrored = true; |
| continue; |
| } |
| |
| zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
| min(usable_startpfn, zone_movable_pfn[nid]) : |
| usable_startpfn; |
| } |
| |
| if (mem_below_4gb_not_mirrored) |
| pr_warn("This configuration results in unmirrored kernel memory.\n"); |
| |
| goto out2; |
| } |
| |
| /* |
| * If kernelcore=nn% or movablecore=nn% was specified, calculate the |
| * amount of necessary memory. |
| */ |
| if (required_kernelcore_percent) |
| required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / |
| 10000UL; |
| if (required_movablecore_percent) |
| required_movablecore = (totalpages * 100 * required_movablecore_percent) / |
| 10000UL; |
| |
| /* |
| * If movablecore= was specified, calculate what size of |
| * kernelcore that corresponds so that memory usable for |
| * any allocation type is evenly spread. If both kernelcore |
| * and movablecore are specified, then the value of kernelcore |
| * will be used for required_kernelcore if it's greater than |
| * what movablecore would have allowed. |
| */ |
| if (required_movablecore) { |
| unsigned long corepages; |
| |
| /* |
| * Round-up so that ZONE_MOVABLE is at least as large as what |
| * was requested by the user |
| */ |
| required_movablecore = |
| roundup(required_movablecore, MAX_ORDER_NR_PAGES); |
| required_movablecore = min(totalpages, required_movablecore); |
| corepages = totalpages - required_movablecore; |
| |
| required_kernelcore = max(required_kernelcore, corepages); |
| } |
| |
| /* |
| * If kernelcore was not specified or kernelcore size is larger |
| * than totalpages, there is no ZONE_MOVABLE. |
| */ |
| if (!required_kernelcore || required_kernelcore >= totalpages) |
| goto out; |
| |
| /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ |
| usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
| |
| restart: |
| /* Spread kernelcore memory as evenly as possible throughout nodes */ |
| kernelcore_node = required_kernelcore / usable_nodes; |
| for_each_node_state(nid, N_MEMORY) { |
| unsigned long start_pfn, end_pfn; |
| |
| /* |
| * Recalculate kernelcore_node if the division per node |
| * now exceeds what is necessary to satisfy the requested |
| * amount of memory for the kernel |
| */ |
| if (required_kernelcore < kernelcore_node) |
| kernelcore_node = required_kernelcore / usable_nodes; |
| |
| /* |
| * As the map is walked, we track how much memory is usable |
| * by the kernel using kernelcore_remaining. When it is |
| * 0, the rest of the node is usable by ZONE_MOVABLE |
| */ |
| kernelcore_remaining = kernelcore_node; |
| |
| /* Go through each range of PFNs within this node */ |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| unsigned long size_pages; |
| |
| start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
| if (start_pfn >= end_pfn) |
| continue; |
| |
| /* Account for what is only usable for kernelcore */ |
| if (start_pfn < usable_startpfn) { |
| unsigned long kernel_pages; |
| kernel_pages = min(end_pfn, usable_startpfn) |
| - start_pfn; |
| |
| kernelcore_remaining -= min(kernel_pages, |
| kernelcore_remaining); |
| required_kernelcore -= min(kernel_pages, |
| required_kernelcore); |
| |
| /* Continue if range is now fully accounted */ |
| if (end_pfn <= usable_startpfn) { |
| |
| /* |
| * Push zone_movable_pfn to the end so |
| * that if we have to rebalance |
| * kernelcore across nodes, we will |
| * not double account here |
| */ |
| zone_movable_pfn[nid] = end_pfn; |
| continue; |
| } |
| start_pfn = usable_startpfn; |
| } |
| |
| /* |
| * The usable PFN range for ZONE_MOVABLE is from |
| * start_pfn->end_pfn. Calculate size_pages as the |
| * number of pages used as kernelcore |
| */ |
| size_pages = end_pfn - start_pfn; |
| if (size_pages > kernelcore_remaining) |
| size_pages = kernelcore_remaining; |
| zone_movable_pfn[nid] = start_pfn + size_pages; |
| |
| /* |
| * Some kernelcore has been met, update counts and |
| * break if the kernelcore for this node has been |
| * satisfied |
| */ |
| required_kernelcore -= min(required_kernelcore, |
| size_pages); |
| kernelcore_remaining -= size_pages; |
| if (!kernelcore_remaining) |
| break; |
| } |
| } |
| |
| /* |
| * If there is still required_kernelcore, we do another pass with one |
| * less node in the count. This will push zone_movable_pfn[nid] further |
| * along on the nodes that still have memory until kernelcore is |
| * satisfied |
| */ |
| usable_nodes--; |
| if (usable_nodes && required_kernelcore > usable_nodes) |
| goto restart; |
| |
| out2: |
| /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
| for (nid = 0; nid < MAX_NUMNODES; nid++) { |
| unsigned long start_pfn, end_pfn; |
| |
| zone_movable_pfn[nid] = |
| roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| if (zone_movable_pfn[nid] >= end_pfn) |
| zone_movable_pfn[nid] = 0; |
| } |
| |
| out: |
| /* restore the node_state */ |
| node_states[N_MEMORY] = saved_node_state; |
| } |
| |
| static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
| unsigned long zone, int nid) |
| { |
| mm_zero_struct_page(page); |
| set_page_links(page, zone, nid, pfn); |
| init_page_count(page); |
| page_mapcount_reset(page); |
| page_cpupid_reset_last(page); |
| page_kasan_tag_reset(page); |
| |
| INIT_LIST_HEAD(&page->lru); |
| #ifdef WANT_PAGE_VIRTUAL |
| /* The shift won't overflow because ZONE_NORMAL is below 4G. */ |
| if (!is_highmem_idx(zone)) |
| set_page_address(page, __va(pfn << PAGE_SHIFT)); |
| #endif |
| } |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * During memory init memblocks map pfns to nids. The search is expensive and |
| * this caches recent lookups. The implementation of __early_pfn_to_nid |
| * treats start/end as pfns. |
| */ |
| struct mminit_pfnnid_cache { |
| unsigned long last_start; |
| unsigned long last_end; |
| int last_nid; |
| }; |
| |
| static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
| |
| /* |
| * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. |
| */ |
| static int __meminit __early_pfn_to_nid(unsigned long pfn, |
| struct mminit_pfnnid_cache *state) |
| { |
| unsigned long start_pfn, end_pfn; |
| int nid; |
| |
| if (state->last_start <= pfn && pfn < state->last_end) |
| return state->last_nid; |
| |
| nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
| if (nid != NUMA_NO_NODE) { |
| state->last_start = start_pfn; |
| state->last_end = end_pfn; |
| state->last_nid = nid; |
| } |
| |
| return nid; |
| } |
| |
| int __meminit early_pfn_to_nid(unsigned long pfn) |
| { |
| static DEFINE_SPINLOCK(early_pfn_lock); |
| int nid; |
| |
| spin_lock(&early_pfn_lock); |
| nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
| if (nid < 0) |
| nid = first_online_node; |
| spin_unlock(&early_pfn_lock); |
| |
| return nid; |
| } |
| |
| int hashdist = HASHDIST_DEFAULT; |
| |
| static int __init set_hashdist(char *str) |
| { |
| if (!str) |
| return 0; |
| hashdist = simple_strtoul(str, &str, 0); |
| return 1; |
| } |
| __setup("hashdist=", set_hashdist); |
| |
| static inline void fixup_hashdist(void) |
| { |
| if (num_node_state(N_MEMORY) == 1) |
| hashdist = 0; |
| } |
| #else |
| static inline void fixup_hashdist(void) {} |
| #endif /* CONFIG_NUMA */ |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| static inline void pgdat_set_deferred_range(pg_data_t *pgdat) |
| { |
| pgdat->first_deferred_pfn = ULONG_MAX; |
| } |
| |
| /* Returns true if the struct page for the pfn is initialised */ |
| static inline bool __meminit early_page_initialised(unsigned long pfn) |
| { |
| int nid = early_pfn_to_nid(pfn); |
| |
| if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Returns true when the remaining initialisation should be deferred until |
| * later in the boot cycle when it can be parallelised. |
| */ |
| static bool __meminit |
| defer_init(int nid, unsigned long pfn, unsigned long end_pfn) |
| { |
| static unsigned long prev_end_pfn, nr_initialised; |
| |
| if (early_page_ext_enabled()) |
| return false; |
| /* |
| * prev_end_pfn static that contains the end of previous zone |
| * No need to protect because called very early in boot before smp_init. |
| */ |
| if (prev_end_pfn != end_pfn) { |
| prev_end_pfn = end_pfn; |
| nr_initialised = 0; |
| } |
| |
| /* Always populate low zones for address-constrained allocations */ |
| if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) |
| return false; |
| |
| if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) |
| return true; |
| /* |
| * We start only with one section of pages, more pages are added as |
| * needed until the rest of deferred pages are initialized. |
| */ |
| nr_initialised++; |
| if ((nr_initialised > PAGES_PER_SECTION) && |
| (pfn & (PAGES_PER_SECTION - 1)) == 0) { |
| NODE_DATA(nid)->first_deferred_pfn = pfn; |
| return true; |
| } |
| return false; |
| } |
| |
| static void __meminit init_reserved_page(unsigned long pfn) |
| { |
| pg_data_t *pgdat; |
| int nid, zid; |
| |
| if (early_page_initialised(pfn)) |
| return; |
| |
| nid = early_pfn_to_nid(pfn); |
| pgdat = NODE_DATA(nid); |
| |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| struct zone *zone = &pgdat->node_zones[zid]; |
| |
| if (zone_spans_pfn(zone, pfn)) |
| break; |
| } |
| __init_single_page(pfn_to_page(pfn), pfn, zid, nid); |
| } |
| #else |
| static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} |
| |
| static inline bool early_page_initialised(unsigned long pfn) |
| { |
| return true; |
| } |
| |
| static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) |
| { |
| return false; |
| } |
| |
| static inline void init_reserved_page(unsigned long pfn) |
| { |
| } |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| /* |
| * Initialised pages do not have PageReserved set. This function is |
| * called for each range allocated by the bootmem allocator and |
| * marks the pages PageReserved. The remaining valid pages are later |
| * sent to the buddy page allocator. |
| */ |
| void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) |
| { |
| unsigned long start_pfn = PFN_DOWN(start); |
| unsigned long end_pfn = PFN_UP(end); |
| |
| for (; start_pfn < end_pfn; start_pfn++) { |
| if (pfn_valid(start_pfn)) { |
| struct page *page = pfn_to_page(start_pfn); |
| |
| init_reserved_page(start_pfn); |
| |
| /* Avoid false-positive PageTail() */ |
| INIT_LIST_HEAD(&page->lru); |
| |
| /* |
| * no need for atomic set_bit because the struct |
| * page is not visible yet so nobody should |
| * access it yet. |
| */ |
| __SetPageReserved(page); |
| } |
| } |
| } |
| |
| /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ |
| static bool __meminit |
| overlap_memmap_init(unsigned long zone, unsigned long *pfn) |
| { |
| static struct memblock_region *r; |
| |
| if (mirrored_kernelcore && zone == ZONE_MOVABLE) { |
| if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { |
| for_each_mem_region(r) { |
| if (*pfn < memblock_region_memory_end_pfn(r)) |
| break; |
| } |
| } |
| if (*pfn >= memblock_region_memory_base_pfn(r) && |
| memblock_is_mirror(r)) { |
| *pfn = memblock_region_memory_end_pfn(r); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * Only struct pages that correspond to ranges defined by memblock.memory |
| * are zeroed and initialized by going through __init_single_page() during |
| * memmap_init_zone_range(). |
| * |
| * But, there could be struct pages that correspond to holes in |
| * memblock.memory. This can happen because of the following reasons: |
| * - physical memory bank size is not necessarily the exact multiple of the |
| * arbitrary section size |
| * - early reserved memory may not be listed in memblock.memory |
| * - memory layouts defined with memmap= kernel parameter may not align |
| * nicely with memmap sections |
| * |
| * Explicitly initialize those struct pages so that: |
| * - PG_Reserved is set |
| * - zone and node links point to zone and node that span the page if the |
| * hole is in the middle of a zone |
| * - zone and node links point to adjacent zone/node if the hole falls on |
| * the zone boundary; the pages in such holes will be prepended to the |
| * zone/node above the hole except for the trailing pages in the last |
| * section that will be appended to the zone/node below. |
| */ |
| static void __init init_unavailable_range(unsigned long spfn, |
| unsigned long epfn, |
| int zone, int node) |
| { |
| unsigned long pfn; |
| u64 pgcnt = 0; |
| |
| for (pfn = spfn; pfn < epfn; pfn++) { |
| if (!pfn_valid(pageblock_start_pfn(pfn))) { |
| pfn = pageblock_end_pfn(pfn) - 1; |
| continue; |
| } |
| __init_single_page(pfn_to_page(pfn), pfn, zone, node); |
| __SetPageReserved(pfn_to_page(pfn)); |
| pgcnt++; |
| } |
| |
| if (pgcnt) |
| pr_info("On node %d, zone %s: %lld pages in unavailable ranges", |
| node, zone_names[zone], pgcnt); |
| } |
| |
| /* |
| * Initially all pages are reserved - free ones are freed |
| * up by memblock_free_all() once the early boot process is |
| * done. Non-atomic initialization, single-pass. |
| * |
| * All aligned pageblocks are initialized to the specified migratetype |
| * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related |
| * zone stats (e.g., nr_isolate_pageblock) are touched. |
| */ |
| void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, |
| unsigned long start_pfn, unsigned long zone_end_pfn, |
| enum meminit_context context, |
| struct vmem_altmap *altmap, int migratetype) |
| { |
| unsigned long pfn, end_pfn = start_pfn + size; |
| struct page *page; |
| |
| if (highest_memmap_pfn < end_pfn - 1) |
| highest_memmap_pfn = end_pfn - 1; |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| /* |
| * Honor reservation requested by the driver for this ZONE_DEVICE |
| * memory. We limit the total number of pages to initialize to just |
| * those that might contain the memory mapping. We will defer the |
| * ZONE_DEVICE page initialization until after we have released |
| * the hotplug lock. |
| */ |
| if (zone == ZONE_DEVICE) { |
| if (!altmap) |
| return; |
| |
| if (start_pfn == altmap->base_pfn) |
| start_pfn += altmap->reserve; |
| end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); |
| } |
| #endif |
| |
| for (pfn = start_pfn; pfn < end_pfn; ) { |
| /* |
| * There can be holes in boot-time mem_map[]s handed to this |
| * function. They do not exist on hotplugged memory. |
| */ |
| if (context == MEMINIT_EARLY) { |
| if (overlap_memmap_init(zone, &pfn)) |
| continue; |
| if (defer_init(nid, pfn, zone_end_pfn)) { |
| deferred_struct_pages = true; |
| break; |
| } |
| } |
| |
| page = pfn_to_page(pfn); |
| __init_single_page(page, pfn, zone, nid); |
| if (context == MEMINIT_HOTPLUG) |
| __SetPageReserved(page); |
| |
| /* |
| * Usually, we want to mark the pageblock MIGRATE_MOVABLE, |
| * such that unmovable allocations won't be scattered all |
| * over the place during system boot. |
| */ |
| if (pageblock_aligned(pfn)) { |
| set_pageblock_migratetype(page, migratetype); |
| cond_resched(); |
| } |
| pfn++; |
| } |
| } |
| |
| static void __init memmap_init_zone_range(struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long end_pfn, |
| unsigned long *hole_pfn) |
| { |
| unsigned long zone_start_pfn = zone->zone_start_pfn; |
| unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; |
| int nid = zone_to_nid(zone), zone_id = zone_idx(zone); |
| |
| start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); |
| end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); |
| |
| if (start_pfn >= end_pfn) |
| return; |
| |
| memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, |
| zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); |
| |
| if (*hole_pfn < start_pfn) |
| init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); |
| |
| *hole_pfn = end_pfn; |
| } |
| |
| static void __init memmap_init(void) |
| { |
| unsigned long start_pfn, end_pfn; |
| unsigned long hole_pfn = 0; |
| int i, j, zone_id = 0, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| struct pglist_data *node = NODE_DATA(nid); |
| |
| for (j = 0; j < MAX_NR_ZONES; j++) { |
| struct zone *zone = node->node_zones + j; |
| |
| if (!populated_zone(zone)) |
| continue; |
| |
| memmap_init_zone_range(zone, start_pfn, end_pfn, |
| &hole_pfn); |
| zone_id = j; |
| } |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| /* |
| * Initialize the memory map for hole in the range [memory_end, |
| * section_end]. |
| * Append the pages in this hole to the highest zone in the last |
| * node. |
| * The call to init_unavailable_range() is outside the ifdef to |
| * silence the compiler warining about zone_id set but not used; |
| * for FLATMEM it is a nop anyway |
| */ |
| end_pfn = round_up(end_pfn, PAGES_PER_SECTION); |
| if (hole_pfn < end_pfn) |
| #endif |
| init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); |
| } |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, |
| unsigned long zone_idx, int nid, |
| struct dev_pagemap *pgmap) |
| { |
| |
| __init_single_page(page, pfn, zone_idx, nid); |
| |
| /* |
| * Mark page reserved as it will need to wait for onlining |
| * phase for it to be fully associated with a zone. |
| * |
| * We can use the non-atomic __set_bit operation for setting |
| * the flag as we are still initializing the pages. |
| */ |
| __SetPageReserved(page); |
| |
| /* |
| * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer |
| * and zone_device_data. It is a bug if a ZONE_DEVICE page is |
| * ever freed or placed on a driver-private list. |
| */ |
| page->pgmap = pgmap; |
| page->zone_device_data = NULL; |
| |
| /* |
| * Mark the block movable so that blocks are reserved for |
| * movable at startup. This will force kernel allocations |
| * to reserve their blocks rather than leaking throughout |
| * the address space during boot when many long-lived |
| * kernel allocations are made. |
| * |
| * Please note that MEMINIT_HOTPLUG path doesn't clear memmap |
| * because this is done early in section_activate() |
| */ |
| if (pageblock_aligned(pfn)) { |
| set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
| cond_resched(); |
| } |
| |
| /* |
| * ZONE_DEVICE pages are released directly to the driver page allocator |
| * which will set the page count to 1 when allocating the page. |
| */ |
| if (pgmap->type == MEMORY_DEVICE_PRIVATE || |
| pgmap->type == MEMORY_DEVICE_COHERENT) |
| set_page_count(page, 0); |
| } |
| |
| /* |
| * With compound page geometry and when struct pages are stored in ram most |
| * tail pages are reused. Consequently, the amount of unique struct pages to |
| * initialize is a lot smaller that the total amount of struct pages being |
| * mapped. This is a paired / mild layering violation with explicit knowledge |
| * of how the sparse_vmemmap internals handle compound pages in the lack |
| * of an altmap. See vmemmap_populate_compound_pages(). |
| */ |
| static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, |
| struct dev_pagemap *pgmap) |
| { |
| if (!vmemmap_can_optimize(altmap, pgmap)) |
| return pgmap_vmemmap_nr(pgmap); |
| |
| return 2 * (PAGE_SIZE / sizeof(struct page)); |
| } |
| |
| static void __ref memmap_init_compound(struct page *head, |
| unsigned long head_pfn, |
| unsigned long zone_idx, int nid, |
| struct dev_pagemap *pgmap, |
| unsigned long nr_pages) |
| { |
| unsigned long pfn, end_pfn = head_pfn + nr_pages; |
| unsigned int order = pgmap->vmemmap_shift; |
| |
| __SetPageHead(head); |
| for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); |
| prep_compound_tail(head, pfn - head_pfn); |
| set_page_count(page, 0); |
| |
| /* |
| * The first tail page stores important compound page info. |
| * Call prep_compound_head() after the first tail page has |
| * been initialized, to not have the data overwritten. |
| */ |
| if (pfn == head_pfn + 1) |
| prep_compound_head(head, order); |
| } |
| } |
| |
| void __ref memmap_init_zone_device(struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long nr_pages, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long pfn, end_pfn = start_pfn + nr_pages; |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| struct vmem_altmap *altmap = pgmap_altmap(pgmap); |
| unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); |
| unsigned long zone_idx = zone_idx(zone); |
| unsigned long start = jiffies; |
| int nid = pgdat->node_id; |
| |
| if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) |
| return; |
| |
| /* |
| * The call to memmap_init should have already taken care |
| * of the pages reserved for the memmap, so we can just jump to |
| * the end of that region and start processing the device pages. |
| */ |
| if (altmap) { |
| start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); |
| nr_pages = end_pfn - start_pfn; |
| } |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { |
| struct page *page = pfn_to_page(pfn); |
| |
| __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); |
| |
| if (pfns_per_compound == 1) |
| continue; |
| |
| memmap_init_compound(page, pfn, zone_idx, nid, pgmap, |
| compound_nr_pages(altmap, pgmap)); |
| } |
| |
| pr_debug("%s initialised %lu pages in %ums\n", __func__, |
| nr_pages, jiffies_to_msecs(jiffies - start)); |
| } |
| #endif |
| |
| /* |
| * The zone ranges provided by the architecture do not include ZONE_MOVABLE |
| * because it is sized independent of architecture. Unlike the other zones, |
| * the starting point for ZONE_MOVABLE is not fixed. It may be different |
| * in each node depending on the size of each node and how evenly kernelcore |
| * is distributed. This helper function adjusts the zone ranges |
| * provided by the architecture for a given node by using the end of the |
| * highest usable zone for ZONE_MOVABLE. This preserves the assumption that |
| * zones within a node are in order of monotonic increases memory addresses |
| */ |
| static void __init adjust_zone_range_for_zone_movable(int nid, |
| unsigned long zone_type, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn, |
| unsigned long *zone_start_pfn, |
| unsigned long *zone_end_pfn) |
| { |
| /* Only adjust if ZONE_MOVABLE is on this node */ |
| if (zone_movable_pfn[nid]) { |
| /* Size ZONE_MOVABLE */ |
| if (zone_type == ZONE_MOVABLE) { |
| *zone_start_pfn = zone_movable_pfn[nid]; |
| *zone_end_pfn = min(node_end_pfn, |
| arch_zone_highest_possible_pfn[movable_zone]); |
| |
| /* Adjust for ZONE_MOVABLE starting within this range */ |
| } else if (!mirrored_kernelcore && |
| *zone_start_pfn < zone_movable_pfn[nid] && |
| *zone_end_pfn > zone_movable_pfn[nid]) { |
| *zone_end_pfn = zone_movable_pfn[nid]; |
| |
| /* Check if this whole range is within ZONE_MOVABLE */ |
| } else if (*zone_start_pfn >= zone_movable_pfn[nid]) |
| *zone_start_pfn = *zone_end_pfn; |
| } |
| } |
| |
| /* |
| * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
| * then all holes in the requested range will be accounted for. |
| */ |
| unsigned long __init __absent_pages_in_range(int nid, |
| unsigned long range_start_pfn, |
| unsigned long range_end_pfn) |
| { |
| unsigned long nr_absent = range_end_pfn - range_start_pfn; |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); |
| end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); |
| nr_absent -= end_pfn - start_pfn; |
| } |
| return nr_absent; |
| } |
| |
| /** |
| * absent_pages_in_range - Return number of page frames in holes within a range |
| * @start_pfn: The start PFN to start searching for holes |
| * @end_pfn: The end PFN to stop searching for holes |
| * |
| * Return: the number of pages frames in memory holes within a range. |
| */ |
| unsigned long __init absent_pages_in_range(unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); |
| } |
| |
| /* Return the number of page frames in holes in a zone on a node */ |
| static unsigned long __init zone_absent_pages_in_node(int nid, |
| unsigned long zone_type, |
| unsigned long zone_start_pfn, |
| unsigned long zone_end_pfn) |
| { |
| unsigned long nr_absent; |
| |
| /* zone is empty, we don't have any absent pages */ |
| if (zone_start_pfn == zone_end_pfn) |
| return 0; |
| |
| nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
| |
| /* |
| * ZONE_MOVABLE handling. |
| * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages |
| * and vice versa. |
| */ |
| if (mirrored_kernelcore && zone_movable_pfn[nid]) { |
| unsigned long start_pfn, end_pfn; |
| struct memblock_region *r; |
| |
| for_each_mem_region(r) { |
| start_pfn = clamp(memblock_region_memory_base_pfn(r), |
| zone_start_pfn, zone_end_pfn); |
| end_pfn = clamp(memblock_region_memory_end_pfn(r), |
| zone_start_pfn, zone_end_pfn); |
| |
| if (zone_type == ZONE_MOVABLE && |
| memblock_is_mirror(r)) |
| nr_absent += end_pfn - start_pfn; |
| |
| if (zone_type == ZONE_NORMAL && |
| !memblock_is_mirror(r)) |
| nr_absent += end_pfn - start_pfn; |
| } |
| } |
| |
| return nr_absent; |
| } |
| |
| /* |
| * Return the number of pages a zone spans in a node, including holes |
| * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() |
| */ |
| static unsigned long __init zone_spanned_pages_in_node(int nid, |
| unsigned long zone_type, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn, |
| unsigned long *zone_start_pfn, |
| unsigned long *zone_end_pfn) |
| { |
| unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
| unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; |
| |
| /* Get the start and end of the zone */ |
| *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
| *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); |
| adjust_zone_range_for_zone_movable(nid, zone_type, |
| node_start_pfn, node_end_pfn, |
| zone_start_pfn, zone_end_pfn); |
| |
| /* Check that this node has pages within the zone's required range */ |
| if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) |
| return 0; |
| |
| /* Move the zone boundaries inside the node if necessary */ |
| *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); |
| *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); |
| |
| /* Return the spanned pages */ |
| return *zone_end_pfn - *zone_start_pfn; |
| } |
| |
| static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) |
| { |
| struct zone *z; |
| |
| for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { |
| z->zone_start_pfn = 0; |
| z->spanned_pages = 0; |
| z->present_pages = 0; |
| #if defined(CONFIG_MEMORY_HOTPLUG) |
| z->present_early_pages = 0; |
| #endif |
| } |
| |
| pgdat->node_spanned_pages = 0; |
| pgdat->node_present_pages = 0; |
| pr_debug("On node %d totalpages: 0\n", pgdat->node_id); |
| } |
| |
| static void __init calculate_node_totalpages(struct pglist_data *pgdat, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn) |
| { |
| unsigned long realtotalpages = 0, totalpages = 0; |
| enum zone_type i; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| struct zone *zone = pgdat->node_zones + i; |
| unsigned long zone_start_pfn, zone_end_pfn; |
| unsigned long spanned, absent; |
| unsigned long real_size; |
| |
| spanned = zone_spanned_pages_in_node(pgdat->node_id, i, |
| node_start_pfn, |
| node_end_pfn, |
| &zone_start_pfn, |
| &zone_end_pfn); |
| absent = zone_absent_pages_in_node(pgdat->node_id, i, |
| zone_start_pfn, |
| zone_end_pfn); |
| |
| real_size = spanned - absent; |
| |
| if (spanned) |
| zone->zone_start_pfn = zone_start_pfn; |
| else |
| zone->zone_start_pfn = 0; |
| zone->spanned_pages = spanned; |
| zone->present_pages = real_size; |
| #if defined(CONFIG_MEMORY_HOTPLUG) |
| zone->present_early_pages = real_size; |
| #endif |
| |
| totalpages += spanned; |
| realtotalpages += real_size; |
| } |
| |
| pgdat->node_spanned_pages = totalpages; |
| pgdat->node_present_pages = realtotalpages; |
| pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); |
| } |
| |
| static unsigned long __init calc_memmap_size(unsigned long spanned_pages, |
| unsigned long present_pages) |
| { |
| unsigned long pages = spanned_pages; |
| |
| /* |
| * Provide a more accurate estimation if there are holes within |
| * the zone and SPARSEMEM is in use. If there are holes within the |
| * zone, each populated memory region may cost us one or two extra |
| * memmap pages due to alignment because memmap pages for each |
| * populated regions may not be naturally aligned on page boundary. |
| * So the (present_pages >> 4) heuristic is a tradeoff for that. |
| */ |
| if (spanned_pages > present_pages + (present_pages >> 4) && |
| IS_ENABLED(CONFIG_SPARSEMEM)) |
| pages = present_pages; |
| |
| return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static void pgdat_init_split_queue(struct pglist_data *pgdat) |
| { |
| struct deferred_split *ds_queue = &pgdat->deferred_split_queue; |
| |
| spin_lock_init(&ds_queue->split_queue_lock); |
| INIT_LIST_HEAD(&ds_queue->split_queue); |
| ds_queue->split_queue_len = 0; |
| } |
| #else |
| static void pgdat_init_split_queue(struct pglist_data *pgdat) {} |
| #endif |
| |
| #ifdef CONFIG_COMPACTION |
| static void pgdat_init_kcompactd(struct pglist_data *pgdat) |
| { |
| init_waitqueue_head(&pgdat->kcompactd_wait); |
| } |
| #else |
| static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} |
| #endif |
| |
| static void __meminit pgdat_init_internals(struct pglist_data *pgdat) |
| { |
| int i; |
| |
| pgdat_resize_init(pgdat); |
| pgdat_kswapd_lock_init(pgdat); |
| |
| pgdat_init_split_queue(pgdat); |
| pgdat_init_kcompactd(pgdat); |
| |
| init_waitqueue_head(&pgdat->kswapd_wait); |
| init_waitqueue_head(&pgdat->pfmemalloc_wait); |
| |
| for (i = 0; i < NR_VMSCAN_THROTTLE; i++) |
| init_waitqueue_head(&pgdat->reclaim_wait[i]); |
| |
| pgdat_page_ext_init(pgdat); |
| lruvec_init(&pgdat->__lruvec); |
| } |
| |
| static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, |
| unsigned long remaining_pages) |
| { |
| atomic_long_set(&zone->managed_pages, remaining_pages); |
| zone_set_nid(zone, nid); |
| zone->name = zone_names[idx]; |
| zone->zone_pgdat = NODE_DATA(nid); |
| spin_lock_init(&zone->lock); |
| zone_seqlock_init(zone); |
| zone_pcp_init(zone); |
| } |
| |
| static void __meminit zone_init_free_lists(struct zone *zone) |
| { |
| unsigned int order, t; |
| for_each_migratetype_order(order, t) { |
| INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); |
| zone->free_area[order].nr_free = 0; |
| } |
| } |
| |
| void __meminit init_currently_empty_zone(struct zone *zone, |
| unsigned long zone_start_pfn, |
| unsigned long size) |
| { |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| int zone_idx = zone_idx(zone) + 1; |
| |
| if (zone_idx > pgdat->nr_zones) |
| pgdat->nr_zones = zone_idx; |
| |
| zone->zone_start_pfn = zone_start_pfn; |
| |
| mminit_dprintk(MMINIT_TRACE, "memmap_init", |
| "Initialising map node %d zone %lu pfns %lu -> %lu\n", |
| pgdat->node_id, |
| (unsigned long)zone_idx(zone), |
| zone_start_pfn, (zone_start_pfn + size)); |
| |
| zone_init_free_lists(zone); |
| zone->initialized = 1; |
| } |
| |
| #ifndef CONFIG_SPARSEMEM |
| /* |
| * Calculate the size of the zone->blockflags rounded to an unsigned long |
| * Start by making sure zonesize is a multiple of pageblock_order by rounding |
| * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally |
| * round what is now in bits to nearest long in bits, then return it in |
| * bytes. |
| */ |
| static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
| { |
| unsigned long usemapsize; |
| |
| zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
| usemapsize = roundup(zonesize, pageblock_nr_pages); |
| usemapsize = usemapsize >> pageblock_order; |
| usemapsize *= NR_PAGEBLOCK_BITS; |
| usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); |
| |
| return usemapsize / 8; |
| } |
| |
| static void __ref setup_usemap(struct zone *zone) |
| { |
| unsigned long usemapsize = usemap_size(zone->zone_start_pfn, |
| zone->spanned_pages); |
| zone->pageblock_flags = NULL; |
| if (usemapsize) { |
| zone->pageblock_flags = |
| memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, |
| zone_to_nid(zone)); |
| if (!zone->pageblock_flags) |
| panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", |
| usemapsize, zone->name, zone_to_nid(zone)); |
| } |
| } |
| #else |
| static inline void setup_usemap(struct zone *zone) {} |
| #endif /* CONFIG_SPARSEMEM */ |
| |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
| |
| /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
| void __init set_pageblock_order(void) |
| { |
| unsigned int order = MAX_ORDER; |
| |
| /* Check that pageblock_nr_pages has not already been setup */ |
| if (pageblock_order) |
| return; |
| |
| /* Don't let pageblocks exceed the maximum allocation granularity. */ |
| if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) |
| order = HUGETLB_PAGE_ORDER; |
| |
| /* |
| * Assume the largest contiguous order of interest is a huge page. |
| * This value may be variable depending on boot parameters on IA64 and |
| * powerpc. |
| */ |
| pageblock_order = order; |
| } |
| #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
| |
| /* |
| * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() |
| * is unused as pageblock_order is set at compile-time. See |
| * include/linux/pageblock-flags.h for the values of pageblock_order based on |
| * the kernel config |
| */ |
| void __init set_pageblock_order(void) |
| { |
| } |
| |
| #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
| |
| /* |
| * Set up the zone data structures |
| * - init pgdat internals |
| * - init all zones belonging to this node |
| * |
| * NOTE: this function is only called during memory hotplug |
| */ |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) |
| { |
| int nid = pgdat->node_id; |
| enum zone_type z; |
| int cpu; |
| |
| pgdat_init_internals(pgdat); |
| |
| if (pgdat->per_cpu_nodestats == &boot_nodestats) |
| pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); |
| |
| /* |
| * Reset the nr_zones, order and highest_zoneidx before reuse. |
| * Note that kswapd will init kswapd_highest_zoneidx properly |
| * when it starts in the near future. |
| */ |
| pgdat->nr_zones = 0; |
| pgdat->kswapd_order = 0; |
| pgdat->kswapd_highest_zoneidx = 0; |
| pgdat->node_start_pfn = 0; |
| for_each_online_cpu(cpu) { |
| struct per_cpu_nodestat *p; |
| |
| p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| for (z = 0; z < MAX_NR_ZONES; z++) |
| zone_init_internals(&pgdat->node_zones[z], z, nid, 0); |
| } |
| #endif |
| |
| /* |
| * Set up the zone data structures: |
| * - mark all pages reserved |
| * - mark all memory queues empty |
| * - clear the memory bitmaps |
| * |
| * NOTE: pgdat should get zeroed by caller. |
| * NOTE: this function is only called during early init. |
| */ |
| static void __init free_area_init_core(struct pglist_data *pgdat) |
| { |
| enum zone_type j; |
| int nid = pgdat->node_id; |
| |
| pgdat_init_internals(pgdat); |
| pgdat->per_cpu_nodestats = &boot_nodestats; |
| |
| for (j = 0; j < MAX_NR_ZONES; j++) { |
| struct zone *zone = pgdat->node_zones + j; |
| unsigned long size, freesize, memmap_pages; |
| |
| size = zone->spanned_pages; |
| freesize = zone->present_pages; |
| |
| /* |
| * Adjust freesize so that it accounts for how much memory |
| * is used by this zone for memmap. This affects the watermark |
| * and per-cpu initialisations |
| */ |
| memmap_pages = calc_memmap_size(size, freesize); |
| if (!is_highmem_idx(j)) { |
| if (freesize >= memmap_pages) { |
| freesize -= memmap_pages; |
| if (memmap_pages) |
| pr_debug(" %s zone: %lu pages used for memmap\n", |
| zone_names[j], memmap_pages); |
| } else |
| pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", |
| zone_names[j], memmap_pages, freesize); |
| } |
| |
| /* Account for reserved pages */ |
| if (j == 0 && freesize > dma_reserve) { |
| freesize -= dma_reserve; |
| pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); |
| } |
| |
| if (!is_highmem_idx(j)) |
| nr_kernel_pages += freesize; |
| /* Charge for highmem memmap if there are enough kernel pages */ |
| else if (nr_kernel_pages > memmap_pages * 2) |
| nr_kernel_pages -= memmap_pages; |
| nr_all_pages += freesize; |
| |
| /* |
| * Set an approximate value for lowmem here, it will be adjusted |
| * when the bootmem allocator frees pages into the buddy system. |
| * And all highmem pages will be managed by the buddy system. |
| */ |
| zone_init_internals(zone, j, nid, freesize); |
| |
| if (!size) |
| continue; |
| |
| setup_usemap(zone); |
| init_currently_empty_zone(zone, zone->zone_start_pfn, size); |
| } |
| } |
| |
| void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, int nid, bool exact_nid) |
| { |
| void *ptr; |
| |
| if (exact_nid) |
| ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, |
| MEMBLOCK_ALLOC_ACCESSIBLE, |
| nid); |
| else |
| ptr = memblock_alloc_try_nid_raw(size, align, min_addr, |
| MEMBLOCK_ALLOC_ACCESSIBLE, |
| nid); |
| |
| if (ptr && size > 0) |
| page_init_poison(ptr, size); |
| |
| return ptr; |
| } |
| |
| #ifdef CONFIG_FLATMEM |
| static void __init alloc_node_mem_map(struct pglist_data *pgdat) |
| { |
| unsigned long __maybe_unused start = 0; |
| unsigned long __maybe_unused offset = 0; |
| |
| /* Skip empty nodes */ |
| if (!pgdat->node_spanned_pages) |
| return; |
| |
| start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
| offset = pgdat->node_start_pfn - start; |
| /* ia64 gets its own node_mem_map, before this, without bootmem */ |
| if (!pgdat->node_mem_map) { |
| unsigned long size, end; |
| struct page *map; |
| |
| /* |
| * The zone's endpoints aren't required to be MAX_ORDER |
| * aligned but the node_mem_map endpoints must be in order |
| * for the buddy allocator to function correctly. |
| */ |
| end = pgdat_end_pfn(pgdat); |
| end = ALIGN(end, MAX_ORDER_NR_PAGES); |
| size = (end - start) * sizeof(struct page); |
| map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, |
| pgdat->node_id, false); |
| if (!map) |
| panic("Failed to allocate %ld bytes for node %d memory map\n", |
| size, pgdat->node_id); |
| pgdat->node_mem_map = map + offset; |
| } |
| pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", |
| __func__, pgdat->node_id, (unsigned long)pgdat, |
| (unsigned long)pgdat->node_mem_map); |
| #ifndef CONFIG_NUMA |
| /* |
| * With no DISCONTIG, the global mem_map is just set as node 0's |
| */ |
| if (pgdat == NODE_DATA(0)) { |
| mem_map = NODE_DATA(0)->node_mem_map; |
| if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
| mem_map -= offset; |
| } |
| #endif |
| } |
| #else |
| static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } |
| #endif /* CONFIG_FLATMEM */ |
| |
| /** |
| * get_pfn_range_for_nid - Return the start and end page frames for a node |
| * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
| * @start_pfn: Passed by reference. On return, it will have the node start_pfn. |
| * @end_pfn: Passed by reference. On return, it will have the node end_pfn. |
| * |
| * It returns the start and end page frame of a node based on information |
| * provided by memblock_set_node(). If called for a node |
| * with no available memory, a warning is printed and the start and end |
| * PFNs will be 0. |
| */ |
| void __init get_pfn_range_for_nid(unsigned int nid, |
| unsigned long *start_pfn, unsigned long *end_pfn) |
| { |
| unsigned long this_start_pfn, this_end_pfn; |
| int i; |
| |
| *start_pfn = -1UL; |
| *end_pfn = 0; |
| |
| for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
| *start_pfn = min(*start_pfn, this_start_pfn); |
| *end_pfn = max(*end_pfn, this_end_pfn); |
| } |
| |
| if (*start_pfn == -1UL) |
| *start_pfn = 0; |
| } |
| |
| static void __init free_area_init_node(int nid) |
| { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| unsigned long start_pfn = 0; |
| unsigned long end_pfn = 0; |
| |
| /* pg_data_t should be reset to zero when it's allocated */ |
| WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| |
| pgdat->node_id = nid; |
| pgdat->node_start_pfn = start_pfn; |
| pgdat->per_cpu_nodestats = NULL; |
| |
| if (start_pfn != end_pfn) { |
| pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
| (u64)start_pfn << PAGE_SHIFT, |
| end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); |
| |
| calculate_node_totalpages(pgdat, start_pfn, end_pfn); |
| } else { |
| pr_info("Initmem setup node %d as memoryless\n", nid); |
| |
| reset_memoryless_node_totalpages(pgdat); |
| } |
| |
| alloc_node_mem_map(pgdat); |
| pgdat_set_deferred_range(pgdat); |
| |
| free_area_init_core(pgdat); |
| lru_gen_init_pgdat(pgdat); |
| } |
| |
| /* Any regular or high memory on that node ? */ |
| static void check_for_memory(pg_data_t *pgdat, int nid) |
| { |
| enum zone_type zone_type; |
| |
| for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { |
| struct zone *zone = &pgdat->node_zones[zone_type]; |
| if (populated_zone(zone)) { |
| if (IS_ENABLED(CONFIG_HIGHMEM)) |
| node_set_state(nid, N_HIGH_MEMORY); |
| if (zone_type <= ZONE_NORMAL) |
| node_set_state(nid, N_NORMAL_MEMORY); |
| break; |
| } |
| } |
| } |
| |
| #if MAX_NUMNODES > 1 |
| /* |
| * Figure out the number of possible node ids. |
| */ |
| void __init setup_nr_node_ids(void) |
| { |
| unsigned int highest; |
| |
| highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
| nr_node_ids = highest + 1; |
| } |
| #endif |
| |
| /* |
| * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For |
| * such cases we allow max_zone_pfn sorted in the descending order |
| */ |
| static bool arch_has_descending_max_zone_pfns(void) |
| { |
| return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); |
| } |
| |
| /** |
| * free_area_init - Initialise all pg_data_t and zone data |
| * @max_zone_pfn: an array of max PFNs for each zone |
| * |
| * This will call free_area_init_node() for each active node in the system. |
| * Using the page ranges provided by memblock_set_node(), the size of each |
| * zone in each node and their holes is calculated. If the maximum PFN |
| * between two adjacent zones match, it is assumed that the zone is empty. |
| * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed |
| * that arch_max_dma32_pfn has no pages. It is also assumed that a zone |
| * starts where the previous one ended. For example, ZONE_DMA32 starts |
| * at arch_max_dma_pfn. |
| */ |
| void __init free_area_init(unsigned long *max_zone_pfn) |
| { |
| unsigned long start_pfn, end_pfn; |
| int i, nid, zone; |
| bool descending; |
| |
| /* Record where the zone boundaries are */ |
| memset(arch_zone_lowest_possible_pfn, 0, |
| sizeof(arch_zone_lowest_possible_pfn)); |
| memset(arch_zone_highest_possible_pfn, 0, |
| sizeof(arch_zone_highest_possible_pfn)); |
| |
| start_pfn = PHYS_PFN(memblock_start_of_DRAM()); |
| descending = arch_has_descending_max_zone_pfns(); |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (descending) |
| zone = MAX_NR_ZONES - i - 1; |
| else |
| zone = i; |
| |
| if (zone == ZONE_MOVABLE) |
| continue; |
| |
| end_pfn = max(max_zone_pfn[zone], start_pfn); |
| arch_zone_lowest_possible_pfn[zone] = start_pfn; |
| arch_zone_highest_possible_pfn[zone] = end_pfn; |
| |
| start_pfn = end_pfn; |
| } |
| |
| /* Find the PFNs that ZONE_MOVABLE begins at in each node */ |
| memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); |
| find_zone_movable_pfns_for_nodes(); |
| |
| /* Print out the zone ranges */ |
| pr_info("Zone ranges:\n"); |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (i == ZONE_MOVABLE) |
| continue; |
| pr_info(" %-8s ", zone_names[i]); |
| if (arch_zone_lowest_possible_pfn[i] == |
| arch_zone_highest_possible_pfn[i]) |
| pr_cont("empty\n"); |
| else |
| pr_cont("[mem %#018Lx-%#018Lx]\n", |
| (u64)arch_zone_lowest_possible_pfn[i] |
| << PAGE_SHIFT, |
| ((u64)arch_zone_highest_possible_pfn[i] |
| << PAGE_SHIFT) - 1); |
| } |
| |
| /* Print out the PFNs ZONE_MOVABLE begins at in each node */ |
| pr_info("Movable zone start for each node\n"); |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| if (zone_movable_pfn[i]) |
| pr_info(" Node %d: %#018Lx\n", i, |
| (u64)zone_movable_pfn[i] << PAGE_SHIFT); |
| } |
| |
| /* |
| * Print out the early node map, and initialize the |
| * subsection-map relative to active online memory ranges to |
| * enable future "sub-section" extensions of the memory map. |
| */ |
| pr_info("Early memory node ranges\n"); |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
| (u64)start_pfn << PAGE_SHIFT, |
| ((u64)end_pfn << PAGE_SHIFT) - 1); |
| subsection_map_init(start_pfn, end_pfn - start_pfn); |
| } |
| |
| /* Initialise every node */ |
| mminit_verify_pageflags_layout(); |
| setup_nr_node_ids(); |
| set_pageblock_order(); |
| |
| for_each_node(nid) { |
| pg_data_t *pgdat; |
| |
| if (!node_online(nid)) { |
| pr_info("Initializing node %d as memoryless\n", nid); |
| |
| /* Allocator not initialized yet */ |
| pgdat = arch_alloc_nodedata(nid); |
| if (!pgdat) |
| panic("Cannot allocate %zuB for node %d.\n", |
| sizeof(*pgdat), nid); |
| arch_refresh_nodedata(nid, pgdat); |
| free_area_init_node(nid); |
| |
| /* |
| * We do not want to confuse userspace by sysfs |
| * files/directories for node without any memory |
| * attached to it, so this node is not marked as |
| * N_MEMORY and not marked online so that no sysfs |
| * hierarchy will be created via register_one_node for |
| * it. The pgdat will get fully initialized by |
| * hotadd_init_pgdat() when memory is hotplugged into |
| * this node. |
| */ |
| continue; |
| } |
| |
| pgdat = NODE_DATA(nid); |
| free_area_init_node(nid); |
| |
| /* Any memory on that node */ |
| if (pgdat->node_present_pages) |
| node_set_state(nid, N_MEMORY); |
| check_for_memory(pgdat, nid); |
| } |
| |
| memmap_init(); |
| |
| /* disable hash distribution for systems with a single node */ |
| fixup_hashdist(); |
| } |
| |
| /** |
| * node_map_pfn_alignment - determine the maximum internode alignment |
| * |
| * This function should be called after node map is populated and sorted. |
| * It calculates the maximum power of two alignment which can distinguish |
| * all the nodes. |
| * |
| * For example, if all nodes are 1GiB and aligned to 1GiB, the return value |
| * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the |
| * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is |
| * shifted, 1GiB is enough and this function will indicate so. |
| * |
| * This is used to test whether pfn -> nid mapping of the chosen memory |
| * model has fine enough granularity to avoid incorrect mapping for the |
| * populated node map. |
| * |
| * Return: the determined alignment in pfn's. 0 if there is no alignment |
| * requirement (single node). |
| */ |
| unsigned long __init node_map_pfn_alignment(void) |
| { |
| unsigned long accl_mask = 0, last_end = 0; |
| unsigned long start, end, mask; |
| int last_nid = NUMA_NO_NODE; |
| int i, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
| if (!start || last_nid < 0 || last_nid == nid) { |
| last_nid = nid; |
| last_end = end; |
| continue; |
| } |
| |
| /* |
| * Start with a mask granular enough to pin-point to the |
| * start pfn and tick off bits one-by-one until it becomes |
| * too coarse to separate the current node from the last. |
| */ |
| mask = ~((1 << __ffs(start)) - 1); |
| while (mask && last_end <= (start & (mask << 1))) |
| mask <<= 1; |
| |
| /* accumulate all internode masks */ |
| accl_mask |= mask; |
| } |
| |
| /* convert mask to number of pages */ |
| return ~accl_mask + 1; |
| } |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| static void __init deferred_free_range(unsigned long pfn, |
| unsigned long nr_pages) |
| { |
| struct page *page; |
| unsigned long i; |
| |
| if (!nr_pages) |
| return; |
| |
| page = pfn_to_page(pfn); |
| |
| /* Free a large naturally-aligned chunk if possible */ |
| if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { |
| for (i = 0; i < nr_pages; i += pageblock_nr_pages) |
| set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); |
| __free_pages_core(page, MAX_ORDER); |
| return; |
| } |
| |
| for (i = 0; i < nr_pages; i++, page++, pfn++) { |
| if (pageblock_aligned(pfn)) |
| set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
| __free_pages_core(page, 0); |
| } |
| } |
| |
| /* Completion tracking for deferred_init_memmap() threads */ |
| static atomic_t pgdat_init_n_undone __initdata; |
| static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); |
| |
| static inline void __init pgdat_init_report_one_done(void) |
| { |
| if (atomic_dec_and_test(&pgdat_init_n_undone)) |
| complete(&pgdat_init_all_done_comp); |
| } |
| |
| /* |
| * Returns true if page needs to be initialized or freed to buddy allocator. |
| * |
| * We check if a current MAX_ORDER block is valid by only checking the validity |
| * of the head pfn. |
| */ |
| static inline bool __init deferred_pfn_valid(unsigned long pfn) |
| { |
| if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Free pages to buddy allocator. Try to free aligned pages in |
| * MAX_ORDER_NR_PAGES sizes. |
| */ |
| static void __init deferred_free_pages(unsigned long pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long nr_free = 0; |
| |
| for (; pfn < end_pfn; pfn++) { |
| if (!deferred_pfn_valid(pfn)) { |
| deferred_free_range(pfn - nr_free, nr_free); |
| nr_free = 0; |
| } else if (IS_MAX_ORDER_ALIGNED(pfn)) { |
| deferred_free_range(pfn - nr_free, nr_free); |
| nr_free = 1; |
| } else { |
| nr_free++; |
| } |
| } |
| /* Free the last block of pages to allocator */ |
| deferred_free_range(pfn - nr_free, nr_free); |
| } |
| |
| /* |
| * Initialize struct pages. We minimize pfn page lookups and scheduler checks |
| * by performing it only once every MAX_ORDER_NR_PAGES. |
| * Return number of pages initialized. |
| */ |
| static unsigned long __init deferred_init_pages(struct zone *zone, |
| unsigned long pfn, |
| unsigned long end_pfn) |
| { |
| int nid = zone_to_nid(zone); |
| unsigned long nr_pages = 0; |
| int zid = zone_idx(zone); |
| struct page *page = NULL; |
| |
| for (; pfn < end_pfn; pfn++) { |
| if (!deferred_pfn_valid(pfn)) { |
| page = NULL; |
| continue; |
| } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { |
| page = pfn_to_page(pfn); |
| } else { |
| page++; |
| } |
| __init_single_page(page, pfn, zid, nid); |
| nr_pages++; |
| } |
| return (nr_pages); |
| } |
| |
| /* |
| * This function is meant to pre-load the iterator for the zone init. |
| * Specifically it walks through the ranges until we are caught up to the |
| * first_init_pfn value and exits there. If we never encounter the value we |
| * return false indicating there are no valid ranges left. |
| */ |
| static bool __init |
| deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, |
| unsigned long *spfn, unsigned long *epfn, |
| unsigned long first_init_pfn) |
| { |
| u64 j; |
| |
| /* |
| * Start out by walking through the ranges in this zone that have |
| * already been initialized. We don't need to do anything with them |
| * so we just need to flush them out of the system. |
| */ |
| for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { |
| if (*epfn <= first_init_pfn) |
| continue; |
| if (*spfn < first_init_pfn) |
| *spfn = first_init_pfn; |
| *i = j; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Initialize and free pages. We do it in two loops: first we initialize |
| * struct page, then free to buddy allocator, because while we are |
| * freeing pages we can access pages that are ahead (computing buddy |
| * page in __free_one_page()). |
| * |
| * In order to try and keep some memory in the cache we have the loop |
| * broken along max page order boundaries. This way we will not cause |
| * any issues with the buddy page computation. |
| */ |
| static unsigned long __init |
| deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, |
| unsigned long *end_pfn) |
| { |
| unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); |
| unsigned long spfn = *start_pfn, epfn = *end_pfn; |
| unsigned long nr_pages = 0; |
| u64 j = *i; |
| |
| /* First we loop through and initialize the page values */ |
| for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { |
| unsigned long t; |
| |
| if (mo_pfn <= *start_pfn) |
| break; |
| |
| t = min(mo_pfn, *end_pfn); |
| nr_pages += deferred_init_pages(zone, *start_pfn, t); |
| |
| if (mo_pfn < *end_pfn) { |
| *start_pfn = mo_pfn; |
| break; |
| } |
| } |
| |
| /* Reset values and now loop through freeing pages as needed */ |
| swap(j, *i); |
| |
| for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { |
| unsigned long t; |
| |
| if (mo_pfn <= spfn) |
| break; |
| |
| t = min(mo_pfn, epfn); |
| deferred_free_pages(spfn, t); |
| |
| if (mo_pfn <= epfn) |
| break; |
| } |
| |
| return nr_pages; |
| } |
| |
| static void __init |
| deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, |
| void *arg) |
| { |
| unsigned long spfn, epfn; |
| struct zone *zone = arg; |
| u64 i; |
| |
| deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); |
| |
| /* |
| * Initialize and free pages in MAX_ORDER sized increments so that we |
| * can avoid introducing any issues with the buddy allocator. |
| */ |
| while (spfn < end_pfn) { |
| deferred_init_maxorder(&i, zone, &spfn, &epfn); |
| cond_resched(); |
| } |
| } |
| |
| /* An arch may override for more concurrency. */ |
| __weak int __init |
| deferred_page_init_max_threads(const struct cpumask *node_cpumask) |
| { |
| return 1; |
| } |
| |
| /* Initialise remaining memory on a node */ |
| static int __init deferred_init_memmap(void *data) |
| { |
| pg_data_t *pgdat = data; |
| const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
| unsigned long spfn = 0, epfn = 0; |
| unsigned long first_init_pfn, flags; |
| unsigned long start = jiffies; |
| struct zone *zone; |
| int zid, max_threads; |
| u64 i; |
| |
| /* Bind memory initialisation thread to a local node if possible */ |
| if (!cpumask_empty(cpumask)) |
| set_cpus_allowed_ptr(current, cpumask); |
| |
| pgdat_resize_lock(pgdat, &flags); |
| first_init_pfn = pgdat->first_deferred_pfn; |
| if (first_init_pfn == ULONG_MAX) { |
| pgdat_resize_unlock(pgdat, &flags); |
| pgdat_init_report_one_done(); |
| return 0; |
| } |
| |
| /* Sanity check boundaries */ |
| BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); |
| BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); |
| pgdat->first_deferred_pfn = ULONG_MAX; |
| |
| /* |
| * Once we unlock here, the zone cannot be grown anymore, thus if an |
| * interrupt thread must allocate this early in boot, zone must be |
| * pre-grown prior to start of deferred page initialization. |
| */ |
| pgdat_resize_unlock(pgdat, &flags); |
| |
| /* Only the highest zone is deferred so find it */ |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| zone = pgdat->node_zones + zid; |
| if (first_init_pfn < zone_end_pfn(zone)) |
| break; |
| } |
| |
| /* If the zone is empty somebody else may have cleared out the zone */ |
| if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, |
| first_init_pfn)) |
| goto zone_empty; |
| |
| max_threads = deferred_page_init_max_threads(cpumask); |
| |
| while (spfn < epfn) { |
| unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); |
| struct padata_mt_job job = { |
| .thread_fn = deferred_init_memmap_chunk, |
| .fn_arg = zone, |
| .start = spfn, |
| .size = epfn_align - spfn, |
| .align = PAGES_PER_SECTION, |
| .min_chunk = PAGES_PER_SECTION, |
| .max_threads = max_threads, |
| }; |
| |
| padata_do_multithreaded(&job); |
| deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, |
| epfn_align); |
| } |
| zone_empty: |
| /* Sanity check that the next zone really is unpopulated */ |
| WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); |
| |
| pr_info("node %d deferred pages initialised in %ums\n", |
| pgdat->node_id, jiffies_to_msecs(jiffies - start)); |
| |
| pgdat_init_report_one_done(); |
| return 0; |
| } |
| |
| /* |
| * If this zone has deferred pages, try to grow it by initializing enough |
| * deferred pages to satisfy the allocation specified by order, rounded up to |
| * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments |
| * of SECTION_SIZE bytes by initializing struct pages in increments of |
| * PAGES_PER_SECTION * sizeof(struct page) bytes. |
| * |
| * Return true when zone was grown, otherwise return false. We return true even |
| * when we grow less than requested, to let the caller decide if there are |
| * enough pages to satisfy the allocation. |
| * |
| * Note: We use noinline because this function is needed only during boot, and |
| * it is called from a __ref function _deferred_grow_zone. This way we are |
| * making sure that it is not inlined into permanent text section. |
| */ |
| bool __init deferred_grow_zone(struct zone *zone, unsigned int order) |
| { |
| unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); |
| pg_data_t *pgdat = zone->zone_pgdat; |
| unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; |
| unsigned long spfn, epfn, flags; |
| unsigned long nr_pages = 0; |
| u64 i; |
| |
| /* Only the last zone may have deferred pages */ |
| if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) |
| return false; |
| |
| pgdat_resize_lock(pgdat, &flags); |
| |
| /* |
| * If someone grew this zone while we were waiting for spinlock, return |
| * true, as there might be enough pages already. |
| */ |
| if (first_deferred_pfn != pgdat->first_deferred_pfn) { |
| pgdat_resize_unlock(pgdat, &flags); |
| return true; |
| } |
| |
| /* If the zone is empty somebody else may have cleared out the zone */ |
| if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, |
| first_deferred_pfn)) { |
| pgdat->first_deferred_pfn = ULONG_MAX; |
| pgdat_resize_unlock(pgdat, &flags); |
| /* Retry only once. */ |
| return first_deferred_pfn != ULONG_MAX; |
| } |
| |
| /* |
| * Initialize and free pages in MAX_ORDER sized increments so |
| * that we can avoid introducing any issues with the buddy |
| * allocator. |
| */ |
| while (spfn < epfn) { |
| /* update our first deferred PFN for this section */ |
| first_deferred_pfn = spfn; |
| |
| nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); |
| touch_nmi_watchdog(); |
| |
| /* We should only stop along section boundaries */ |
| if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) |
| continue; |
| |
| /* If our quota has been met we can stop here */ |
| if (nr_pages >= nr_pages_needed) |
| break; |
| } |
| |
| pgdat->first_deferred_pfn = spfn; |
| pgdat_resize_unlock(pgdat, &flags); |
| |
| return nr_pages > 0; |
| } |
| |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| #ifdef CONFIG_CMA |
| void __init init_cma_reserved_pageblock(struct page *page) |
| { |
| unsigned i = pageblock_nr_pages; |
| struct page *p = page; |
| |
| do { |
| __ClearPageReserved(p); |
| set_page_count(p, 0); |
| } while (++p, --i); |
| |
| set_pageblock_migratetype(page, MIGRATE_CMA); |
| set_page_refcounted(page); |
| __free_pages(page, pageblock_order); |
| |
| adjust_managed_page_count(page, pageblock_nr_pages); |
| page_zone(page)->cma_pages += pageblock_nr_pages; |
| } |
| #endif |
| |
| void set_zone_contiguous(struct zone *zone) |
| { |
| unsigned long block_start_pfn = zone->zone_start_pfn; |
| unsigned long block_end_pfn; |
| |
| block_end_pfn = pageblock_end_pfn(block_start_pfn); |
| for (; block_start_pfn < zone_end_pfn(zone); |
| block_start_pfn = block_end_pfn, |
| block_end_pfn += pageblock_nr_pages) { |
| |
| block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); |
| |
| if (!__pageblock_pfn_to_page(block_start_pfn, |
| block_end_pfn, zone)) |
| return; |
| cond_resched(); |
| } |
| |
| /* We confirm that there is no hole */ |
| zone->contiguous = true; |
| } |
| |
| void __init page_alloc_init_late(void) |
| { |
| struct zone *zone; |
| int nid; |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| |
| /* There will be num_node_state(N_MEMORY) threads */ |
| atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); |
| for_each_node_state(nid, N_MEMORY) { |
| kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
| } |
| |
| /* Block until all are initialised */ |
| wait_for_completion(&pgdat_init_all_done_comp); |
| |
| /* |
| * We initialized the rest of the deferred pages. Permanently disable |
| * on-demand struct page initialization. |
| */ |
| static_branch_disable(&deferred_pages); |
| |
| /* Reinit limits that are based on free pages after the kernel is up */ |
| files_maxfiles_init(); |
| #endif |
| |
| buffer_init(); |
| |
| /* Discard memblock private memory */ |
| memblock_discard(); |
| |
| for_each_node_state(nid, N_MEMORY) |
| shuffle_free_memory(NODE_DATA(nid)); |
| |
| for_each_populated_zone(zone) |
| set_zone_contiguous(zone); |
| |
| /* Initialize page ext after all struct pages are initialized. */ |
| if (deferred_struct_pages) |
| page_ext_init(); |
| |
| page_alloc_sysctl_init(); |
| } |
| |
| #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES |
| /* |
| * Returns the number of pages that arch has reserved but |
| * is not known to alloc_large_system_hash(). |
| */ |
| static unsigned long __init arch_reserved_kernel_pages(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Adaptive scale is meant to reduce sizes of hash tables on large memory |
| * machines. As memory size is increased the scale is also increased but at |
| * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory |
| * quadruples the scale is increased by one, which means the size of hash table |
| * only doubles, instead of quadrupling as well. |
| * Because 32-bit systems cannot have large physical memory, where this scaling |
| * makes sense, it is disabled on such platforms. |
| */ |
| #if __BITS_PER_LONG > 32 |
| #define ADAPT_SCALE_BASE (64ul << 30) |
| #define ADAPT_SCALE_SHIFT 2 |
| #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) |
| #endif |
| |
| /* |
| * allocate a large system hash table from bootmem |
| * - it is assumed that the hash table must contain an exact power-of-2 |
| * quantity of entries |
| * - limit is the number of hash buckets, not the total allocation size |
| */ |
| void *__init alloc_large_system_hash(const char *tablename, |
| unsigned long bucketsize, |
| unsigned long numentries, |
| int scale, |
| int flags, |
| unsigned int *_hash_shift, |
| unsigned int *_hash_mask, |
| unsigned long low_limit, |
| unsigned long high_limit) |
| { |
| unsigned long long max = high_limit; |
| unsigned long log2qty, size; |
| void *table; |
| gfp_t gfp_flags; |
| bool virt; |
| bool huge; |
| |
| /* allow the kernel cmdline to have a say */ |
| if (!numentries) { |
| /* round applicable memory size up to nearest megabyte */ |
| numentries = nr_kernel_pages; |
| numentries -= arch_reserved_kernel_pages(); |
| |
| /* It isn't necessary when PAGE_SIZE >= 1MB */ |
| if (PAGE_SIZE < SZ_1M) |
| numentries = round_up(numentries, SZ_1M / PAGE_SIZE); |
| |
| #if __BITS_PER_LONG > 32 |
| if (!high_limit) { |
| unsigned long adapt; |
| |
| for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; |
| adapt <<= ADAPT_SCALE_SHIFT) |
| scale++; |
| } |
| #endif |
| |
| /* limit to 1 bucket per 2^scale bytes of low memory */ |
| if (scale > PAGE_SHIFT) |
| numentries >>= (scale - PAGE_SHIFT); |
| else |
| numentries <<= (PAGE_SHIFT - scale); |
| |
| /* Make sure we've got at least a 0-order allocation.. */ |
| if (unlikely(flags & HASH_SMALL)) { |
| /* Makes no sense without HASH_EARLY */ |
| WARN_ON(!(flags & HASH_EARLY)); |
| if (!(numentries >> *_hash_shift)) { |
| numentries = 1UL << *_hash_shift; |
| BUG_ON(!numentries); |
| } |
| } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) |
| numentries = PAGE_SIZE / bucketsize; |
| } |
| numentries = roundup_pow_of_two(numentries); |
| |
| /* limit allocation size to 1/16 total memory by default */ |
| if (max == 0) { |
| max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; |
| do_div(max, bucketsize); |
| } |
| max = min(max, 0x80000000ULL); |
| |
| if (numentries < low_limit) |
| numentries = low_limit; |
| if (numentries > max) |
| numentries = max; |
| |
| log2qty = ilog2(numentries); |
| |
| gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; |
| do { |
| virt = false; |
| size = bucketsize << log2qty; |
| if (flags & HASH_EARLY) { |
| if (flags & HASH_ZERO) |
| table = memblock_alloc(size, SMP_CACHE_BYTES); |
| else |
| table = memblock_alloc_raw(size, |
| SMP_CACHE_BYTES); |
| } else if (get_order(size) > MAX_ORDER || hashdist) { |
| table = vmalloc_huge(size, gfp_flags); |
| virt = true; |
| if (table) |
| huge = is_vm_area_hugepages(table); |
| } else { |
| /* |
| * If bucketsize is not a power-of-two, we may free |
| * some pages at the end of hash table which |
| * alloc_pages_exact() automatically does |
| */ |
| table = alloc_pages_exact(size, gfp_flags); |
| kmemleak_alloc(table, size, 1, gfp_flags); |
| } |
| } while (!table && size > PAGE_SIZE && --log2qty); |
| |
| if (!table) |
| panic("Failed to allocate %s hash table\n", tablename); |
| |
| pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", |
| tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, |
| virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); |
| |
| if (_hash_shift) |
| *_hash_shift = log2qty; |
| if (_hash_mask) |
| *_hash_mask = (1 << log2qty) - 1; |
| |
| return table; |
| } |
| |
| /** |
| * set_dma_reserve - set the specified number of pages reserved in the first zone |
| * @new_dma_reserve: The number of pages to mark reserved |
| * |
| * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
| * In the DMA zone, a significant percentage may be consumed by kernel image |
| * and other unfreeable allocations which can skew the watermarks badly. This |
| * function may optionally be used to account for unfreeable pages in the |
| * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and |
| * smaller per-cpu batchsize. |
| */ |
| void __init set_dma_reserve(unsigned long new_dma_reserve) |
| { |
| dma_reserve = new_dma_reserve; |
| } |
| |
| void __init memblock_free_pages(struct page *page, unsigned long pfn, |
| unsigned int order) |
| { |
| if (!early_page_initialised(pfn)) |
| return; |
| if (!kmsan_memblock_free_pages(page, order)) { |
| /* KMSAN will take care of these pages. */ |
| return; |
| } |
| __free_pages_core(page, order); |
| } |
| |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
| EXPORT_SYMBOL(init_on_alloc); |
| |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); |
| EXPORT_SYMBOL(init_on_free); |
| |
| static bool _init_on_alloc_enabled_early __read_mostly |
| = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); |
| static int __init early_init_on_alloc(char *buf) |
| { |
| |
| return kstrtobool(buf, &_init_on_alloc_enabled_early); |
| } |
| early_param("init_on_alloc", early_init_on_alloc); |
| |
| static bool _init_on_free_enabled_early __read_mostly |
| = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); |
| static int __init early_init_on_free(char *buf) |
| { |
| return kstrtobool(buf, &_init_on_free_enabled_early); |
| } |
| early_param("init_on_free", early_init_on_free); |
| |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); |
| |
| /* |
| * Enable static keys related to various memory debugging and hardening options. |
| * Some override others, and depend on early params that are evaluated in the |
| * order of appearance. So we need to first gather the full picture of what was |
| * enabled, and then make decisions. |
| */ |
| static void __init mem_debugging_and_hardening_init(void) |
| { |
| bool page_poisoning_requested = false; |
| bool want_check_pages = false; |
| |
| #ifdef CONFIG_PAGE_POISONING |
| /* |
| * Page poisoning is debug page alloc for some arches. If |
| * either of those options are enabled, enable poisoning. |
| */ |
| if (page_poisoning_enabled() || |
| (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && |
| debug_pagealloc_enabled())) { |
| static_branch_enable(&_page_poisoning_enabled); |
| page_poisoning_requested = true; |
| want_check_pages = true; |
| } |
| #endif |
| |
| if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && |
| page_poisoning_requested) { |
| pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " |
| "will take precedence over init_on_alloc and init_on_free\n"); |
| _init_on_alloc_enabled_early = false; |
| _init_on_free_enabled_early = false; |
| } |
| |
| if (_init_on_alloc_enabled_early) { |
| want_check_pages = true; |
| static_branch_enable(&init_on_alloc); |
| } else { |
| static_branch_disable(&init_on_alloc); |
| } |
| |
| if (_init_on_free_enabled_early) { |
| want_check_pages = true; |
| static_branch_enable(&init_on_free); |
| } else { |
| static_branch_disable(&init_on_free); |
| } |
| |
| if (IS_ENABLED(CONFIG_KMSAN) && |
| (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) |
| pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| if (debug_pagealloc_enabled()) { |
| want_check_pages = true; |
| static_branch_enable(&_debug_pagealloc_enabled); |
| |
| if (debug_guardpage_minorder()) |
| static_branch_enable(&_debug_guardpage_enabled); |
| } |
| #endif |
| |
| /* |
| * Any page debugging or hardening option also enables sanity checking |
| * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's |
| * enabled already. |
| */ |
| if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) |
| static_branch_enable(&check_pages_enabled); |
| } |
| |
| /* Report memory auto-initialization states for this boot. */ |
| static void __init report_meminit(void) |
| { |
| const char *stack; |
| |
| if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) |
| stack = "all(pattern)"; |
| else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) |
| stack = "all(zero)"; |
| else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) |
| stack = "byref_all(zero)"; |
| else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) |
| stack = "byref(zero)"; |
| else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) |
| stack = "__user(zero)"; |
| else |
| stack = "off"; |
| |
| pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", |
| stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", |
| want_init_on_free() ? "on" : "off"); |
| if (want_init_on_free()) |
| pr_info("mem auto-init: clearing system memory may take some time...\n"); |
| } |
| |
| static void __init mem_init_print_info(void) |
| { |
| unsigned long physpages, codesize, datasize, rosize, bss_size; |
| unsigned long init_code_size, init_data_size; |
| |
| physpages = get_num_physpages(); |
| codesize = _etext - _stext; |
| datasize = _edata - _sdata; |
| rosize = __end_rodata - __start_rodata; |
| bss_size = __bss_stop - __bss_start; |
| init_data_size = __init_end - __init_begin; |
| init_code_size = _einittext - _sinittext; |
| |
| /* |
| * Detect special cases and adjust section sizes accordingly: |
| * 1) .init.* may be embedded into .data sections |
| * 2) .init.text.* may be out of [__init_begin, __init_end], |
| * please refer to arch/tile/kernel/vmlinux.lds.S. |
| * 3) .rodata.* may be embedded into .text or .data sections. |
| */ |
| #define adj_init_size(start, end, size, pos, adj) \ |
| do { \ |
| if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ |
| size -= adj; \ |
| } while (0) |
| |
| adj_init_size(__init_begin, __init_end, init_data_size, |
| _sinittext, init_code_size); |
| adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); |
| adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); |
| adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); |
| adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); |
| |
| #undef adj_init_size |
| |
| pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" |
| #ifdef CONFIG_HIGHMEM |
| ", %luK highmem" |
| #endif |
| ")\n", |
| K(nr_free_pages()), K(physpages), |
| codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, |
| (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, |
| K(physpages - totalram_pages() - totalcma_pages), |
| K(totalcma_pages) |
| #ifdef CONFIG_HIGHMEM |
| , K(totalhigh_pages()) |
| #endif |
| ); |
| } |
| |
| /* |
| * Set up kernel memory allocators |
| */ |
| void __init mm_core_init(void) |
| { |
| /* Initializations relying on SMP setup */ |
| build_all_zonelists(NULL); |
| page_alloc_init_cpuhp(); |
| |
| /* |
| * page_ext requires contiguous pages, |
| * bigger than MAX_ORDER unless SPARSEMEM. |
| */ |
| page_ext_init_flatmem(); |
| mem_debugging_and_hardening_init(); |
| kfence_alloc_pool(); |
| report_meminit(); |
| kmsan_init_shadow(); |
| stack_depot_early_init(); |
| mem_init(); |
| mem_init_print_info(); |
| kmem_cache_init(); |
| /* |
| * page_owner must be initialized after buddy is ready, and also after |
| * slab is ready so that stack_depot_init() works properly |
| */ |
| page_ext_init_flatmem_late(); |
| kmemleak_init(); |
| ptlock_cache_init(); |
| pgtable_cache_init(); |
| debug_objects_mem_init(); |
| vmalloc_init(); |
| /* If no deferred init page_ext now, as vmap is fully initialized */ |
| if (!deferred_struct_pages) |
| page_ext_init(); |
| /* Should be run before the first non-init thread is created */ |
| init_espfix_bsp(); |
| /* Should be run after espfix64 is set up. */ |
| pti_init(); |
| kmsan_init_runtime(); |
| mm_cache_init(); |
| } |