blob: 9c78dab95d35532d5b4a958637e348d6291ad9a3 [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: bssdb.c
*
* Purpose: Handles the Basic Service Set & Node Database functions
*
* Functions:
* BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
* BSSvClearBSSList - Clear BSS List
* BSSbInsertToBSSList - Insert a BSS set into known BSS list
* BSSbUpdateToBSSList - Update BSS set in known BSS list
* BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
* BSSvCreateOneNode - Allocate an Node for Node DB
* BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
* BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
* BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fallback rate control
*
* Revision History:
*
* Author: Lyndon Chen
*
* Date: July 17, 2002
*/
#include "tmacro.h"
#include "tether.h"
#include "device.h"
#include "80211hdr.h"
#include "bssdb.h"
#include "wmgr.h"
#include "datarate.h"
#include "desc.h"
#include "wcmd.h"
#include "wpa.h"
#include "baseband.h"
#include "rf.h"
#include "card.h"
#include "mac.h"
#include "wpa2.h"
#include "control.h"
#include "rndis.h"
#include "iowpa.h"
#include "power.h"
static int msglevel = MSG_LEVEL_INFO;
/* static int msglevel = MSG_LEVEL_DEBUG; */
static const u16 awHWRetry0[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
{RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
{RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
{RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
{RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
};
static const u16 awHWRetry1[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
{RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
{RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
{RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
{RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
};
static void s_vCheckSensitivity(struct vnt_private *pDevice);
static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
static void s_uCalculateLinkQual(struct vnt_private *pDevice);
/*
* Routine Description:
* Search known BSS list for Desire SSID or BSSID.
*
* Return Value:
* PTR to KnownBSS or NULL
*/
PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
CARD_PHY_TYPE ePhyType)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u8 *pbyBSSID = NULL;
PWLAN_IE_SSID pSSID = NULL;
PKnownBSS pCurrBSS = NULL;
PKnownBSS pSelect = NULL;
u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
int ii = 0;
int jj = 0;
if (pbyDesireBSSID) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
if (!is_broadcast_ether_addr(pbyDesireBSSID) &&
memcmp(pbyDesireBSSID, ZeroBSSID, 6) != 0)
pbyBSSID = pbyDesireBSSID;
}
if (pbyDesireSSID &&
((PWLAN_IE_SSID) pbyDesireSSID)->len != 0)
pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
if (pbyBSSID && pDevice->bRoaming == false) {
/* match BSSID first */
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]);
pCurrBSS->bSelected = false;
if (pCurrBSS->bActive &&
pCurrBSS->bSelected == false &&
ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) {
if (pSSID) {
/* compare ssid */
if (!memcmp(pSSID->abySSID,
((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
pSSID->len) &&
(pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
(pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
(pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)))) {
pCurrBSS->bSelected = true;
return pCurrBSS;
}
} else if (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
(pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
(pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))) {
pCurrBSS->bSelected = true;
return pCurrBSS;
}
}
}
} else {
/* ignore BSSID */
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]);
/* 2007-0721-01<Mark>by MikeLiu
* if ((pCurrBSS->bActive) &&
* (pCurrBSS->bSelected == false)) { */
pCurrBSS->bSelected = false;
if (pCurrBSS->bActive) {
if (pSSID &&
/* matched SSID */
(memcmp(pSSID->abySSID,
((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
pSSID->len) ||
pSSID->len !=
((PWLAN_IE_SSID) pCurrBSS->abySSID)->len)) {
/* SSID not match skip this BSS */
continue;
}
if ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
(pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))) {
/* Type not match skip this BSS */
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "BSS type mismatch.... Config[%d] BSS[0x%04x]\n",
pMgmt->eConfigMode,
pCurrBSS->wCapInfo);
continue;
}
if (ePhyType != PHY_TYPE_AUTO &&
((ePhyType == PHY_TYPE_11A &&
PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse) ||
(ePhyType != PHY_TYPE_11A &&
PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
/* PhyType not match skip this BSS */
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "Physical type mismatch.... ePhyType[%d] BSS[%d]\n",
ePhyType,
pCurrBSS->eNetworkTypeInUse);
continue;
}
pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"BSSpSearchBSSList pSelect1[%pM]\n",
pCurrBSS->abyBSSID);
jj++;
if (!pSelect)
pSelect = pCurrBSS;
/* compare RSSI, select the strongest signal */
else if (pCurrBSS->uRSSI < pSelect->uRSSI)
pSelect = pCurrBSS;
}
}
pDevice->bSameBSSMaxNum = jj;
if (pSelect) {
pSelect->bSelected = true;
if (pDevice->bRoaming == false) {
/* Einsn Add @20070907 */
memcpy(pbyDesireSSID,
pCurrBSS->abySSID,
WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
}
return pSelect;
}
}
return NULL;
}
/*
* Routine Description:
* Clear BSS List
*
* Return Value:
* None.
*/
void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (bKeepCurrBSSID &&
pMgmt->sBSSList[ii].bActive &&
ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
pMgmt->abyCurrBSSID)) {
/* mike mark:
* there are two BSSID's in list. If that AP is
* in hidden ssid mode, one SSID is null, but
* other's might not be obvious, so if it
* associate's with your STA, you must keep the
* two of them!! bKeepCurrBSSID = false;
*/
continue;
}
pMgmt->sBSSList[ii].bActive = false;
memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
}
BSSvClearAnyBSSJoinRecord(pDevice);
}
/*
* Routine Description:
* search BSS list by BSSID & SSID if matched
*
* Return Value:
* true if found.
*/
PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
u8 *abyBSSID,
PWLAN_IE_SSID pSSID)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PKnownBSS pBSSList = NULL;
int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = &(pMgmt->sBSSList[ii]);
if (pBSSList->bActive &&
ether_addr_equal(pBSSList->abyBSSID, abyBSSID) &&
pSSID->len == ((PWLAN_IE_SSID) pBSSList->abySSID)->len &&
memcmp(pSSID->abySSID,
((PWLAN_IE_SSID) pBSSList->abySSID)->abySSID,
pSSID->len) == 0)
return pBSSList;
}
return NULL;
}
/*
* Routine Description:
* Insert a BSS set into known BSS list
*
* Return Value:
* true if success.
*/
int BSSbInsertToBSSList(struct vnt_private *pDevice,
u8 *abyBSSIDAddr,
u64 qwTimestamp,
u16 wBeaconInterval,
u16 wCapInfo,
u8 byCurrChannel,
PWLAN_IE_SSID pSSID,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates,
PERPObject psERP,
PWLAN_IE_RSN pRSN,
PWLAN_IE_RSN_EXT pRSNWPA,
PWLAN_IE_COUNTRY pIE_Country,
PWLAN_IE_QUIET pIE_Quiet,
u32 uIELength,
u8 *pbyIEs,
void *pRxPacketContext)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_rx_mgmt *pRxPacket =
(struct vnt_rx_mgmt *) pRxPacketContext;
PKnownBSS pBSSList = NULL;
unsigned int ii;
bool bParsingQuiet = false;
pBSSList = (PKnownBSS) &(pMgmt->sBSSList[0]);
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = (PKnownBSS) &(pMgmt->sBSSList[ii]);
if (!pBSSList->bActive)
break;
}
if (ii == MAX_BSS_NUM) {
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "Get free KnowBSS node failed.\n");
return false;
}
/* save the BSS info */
pBSSList->bActive = true;
memcpy(pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0;
if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN;
memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
pBSSList->uChannel = byCurrChannel;
if (pSuppRates->len > WLAN_RATES_MAXLEN)
pSuppRates->len = WLAN_RATES_MAXLEN;
memcpy(pBSSList->abySuppRates, pSuppRates,
pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates) {
if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
pExtSuppRates->len = WLAN_RATES_MAXLEN;
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
pExtSuppRates->len + WLAN_IEHDR_LEN);
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "BSSbInsertToBSSList: pExtSuppRates->len = %d\n",
pExtSuppRates->len);
} else {
memset(pBSSList->abyExtSuppRates, 0,
WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
/* Check if BSS is 802.11a/b/g */
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
else if (pBSSList->sERP.bERPExist == true)
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
else
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
pMgmt->eCurrState == WMAC_STATE_ASSOC &&
/* assoc with BSS */
pBSSList == pMgmt->pCurrBSS)
bParsingQuiet = true;
WPA_ClearRSN(pBSSList);
if (pRSNWPA) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength -
(unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
}
}
WPA2_ClearRSN(pBSSList);
if (pRSN) {
unsigned int uLen = pRSN->len + 2;
if (uLen <= (uIELength -
(unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
if (pMgmt->eAuthenMode == WMAC_AUTH_WPA2 ||
pBSSList->bWPA2Valid == true) {
PSKeyItem pTransmitKey = NULL;
bool bIs802_1x = false;
for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii++) {
if (pBSSList->abyAKMSSAuthType[ii] ==
WLAN_11i_AKMSS_802_1X) {
bIs802_1x = true;
break;
}
}
if (bIs802_1x == true &&
pSSID->len == ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->len &&
!memcmp(pSSID->abySSID,
((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->abySSID,
pSSID->len)) {
bAdd_PMKID_Candidate((void *) pDevice,
pBSSList->abyBSSID,
&pBSSList->sRSNCapObj);
if (pDevice->bLinkPass == true &&
pMgmt->eCurrState == WMAC_STATE_ASSOC &&
(KeybGetTransmitKey(&(pDevice->sKey),
pDevice->abyBSSID,
PAIRWISE_KEY,
&pTransmitKey) == true ||
KeybGetTransmitKey(&(pDevice->sKey),
pDevice->abyBSSID,
GROUP_KEY,
&pTransmitKey) == true)) {
pDevice->gsPMKIDCandidate.StatusType =
Ndis802_11StatusType_PMKID_CandidateList;
pDevice->gsPMKIDCandidate.Version = 1;
}
}
}
if (pDevice->bUpdateBBVGA) {
/* Monitor if RSSI is too strong. */
pBSSList->byRSSIStatCnt = 0;
RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI),
&pBSSList->ldBmMAX);
pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
pBSSList->ldBmAverage[ii] = 0;
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return true;
}
/*
* Routine Description:
* Update BSS set in known BSS list
*
* Return Value:
* true if success.
*/
/* TODO: input structure modify */
int BSSbUpdateToBSSList(struct vnt_private *pDevice,
u64 qwTimestamp,
u16 wBeaconInterval,
u16 wCapInfo,
u8 byCurrChannel,
int bChannelHit,
PWLAN_IE_SSID pSSID,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates,
PERPObject psERP,
PWLAN_IE_RSN pRSN,
PWLAN_IE_RSN_EXT pRSNWPA,
PWLAN_IE_COUNTRY pIE_Country,
PWLAN_IE_QUIET pIE_Quiet,
PKnownBSS pBSSList,
u32 uIELength,
u8 *pbyIEs,
void *pRxPacketContext)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_rx_mgmt *pRxPacket =
(struct vnt_rx_mgmt *) pRxPacketContext;
int ii, jj;
signed long ldBm, ldBmSum;
bool bParsingQuiet = false;
if (!pBSSList)
return false;
pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0;
pBSSList->uChannel = byCurrChannel;
if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN;
if (pSSID->len != 0 && pSSID->abySSID[0] != 0)
memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
memcpy(pBSSList->abySuppRates, pSuppRates,
pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates)
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
pExtSuppRates->len + WLAN_IEHDR_LEN);
else
memset(pBSSList->abyExtSuppRates, 0,
WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
/* Check if BSS is 802.11a/b/g */
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
else if (pBSSList->sERP.bERPExist == true)
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
else
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
if (bChannelHit)
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
pMgmt->eCurrState == WMAC_STATE_ASSOC &&
/* assoc with BSS */
pBSSList == pMgmt->pCurrBSS)
bParsingQuiet = true;
WPA_ClearRSN(pBSSList); /* mike update */
if (pRSNWPA) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength -
(unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
}
}
WPA2_ClearRSN(pBSSList); /* mike update */
if (pRSN) {
unsigned int uLen = pRSN->len + 2;
if (uLen <= (uIELength -
(unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
if (pRxPacket->uRSSI != 0) {
RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI), &ldBm);
/* Monitor if RSSI is too strong. */
pBSSList->byRSSIStatCnt++;
pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
ldBmSum = 0;
for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
pBSSList->ldBmMAX =
max(pBSSList->ldBmAverage[ii], ldBm);
ldBmSum +=
pBSSList->ldBmAverage[ii];
jj++;
}
}
pBSSList->ldBmAverRange = ldBmSum / jj;
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return true;
}
/*
* Routine Description:
* Search Node DB table to find the index of matched DstAddr
*
* Return Value:
* None
*/
int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
u8 *abyDstAddr,
u32 *puNodeIndex)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
unsigned int ii;
/* Index = 0 reserved for AP Node */
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive &&
ether_addr_equal(abyDstAddr,
pMgmt->sNodeDBTable[ii].abyMACAddr)) {
*puNodeIndex = ii;
return true;
}
}
return false;
};
/*
* Routine Description:
* Find an empty node and allocate it; if no empty node
* is found, then use the most inactive one.
*
* Return Value:
* None
*/
void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii;
u32 BigestCount = 0;
u32 SelectIndex;
struct sk_buff *skb;
/* Index = 0 reserved for AP Node (In STA mode)
Index = 0 reserved for Broadcast/MultiCast (In AP mode) */
SelectIndex = 1;
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
BigestCount =
pMgmt->sNodeDBTable[ii].uInActiveCount;
SelectIndex = ii;
}
} else {
break;
}
}
/* if not found replace uInActiveCount with the largest one. */
if (ii == (MAX_NODE_NUM + 1)) {
*puNodeIndex = SelectIndex;
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "Replace inactive node = %d\n", SelectIndex);
/* clear ps buffer */
if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)))
dev_kfree_skb(skb);
}
} else {
*puNodeIndex = ii;
}
memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
/* for AP mode PS queue */
skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
}
/*
* Routine Description:
* Remove Node by NodeIndex
*
*
* Return Value:
* None
*/
void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
struct sk_buff *skb;
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)))
dev_kfree_skb(skb);
/* clear context */
memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
/* clear tx bit map */
pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &=
~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
}
/*
* Routine Description:
* Update AP Node content in Index 0 of KnownNodeDB
*
*
* Return Value:
* None
*/
void BSSvUpdateAPNode(struct vnt_private *pDevice,
u16 *pwCapInfo,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u32 uRateLen = WLAN_RATES_MAXLEN;
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[0].bActive = true;
if (pDevice->byBBType == BB_TYPE_11B)
uRateLen = WLAN_RATES_MAXLEN_11B;
pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pSuppRates,
(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
uRateLen);
pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pExtSuppRates,
(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
uRateLen);
RATEvParseMaxRate((void *) pDevice,
(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
true,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID,
WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
pMgmt->sNodeDBTable[0].bShortPreamble =
WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
/* Auto rate fallback function initiation.
* RATEbInit(pDevice); */
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d\n",
pMgmt->sNodeDBTable[0].wTxDataRate);
}
/*
* Routine Description:
* Add Multicast Node content in Index 0 of KnownNodeDB
*
*
* Return Value:
* None
*/
void BSSvAddMulticastNode(struct vnt_private *pDevice)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
if (!pDevice->bEnableHostWEP)
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].bActive = true;
pMgmt->sNodeDBTable[0].bPSEnable = false;
skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
RATEvParseMaxRate((void *) pDevice,
(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
true,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
}
/*
* Routine Description:
*
*
* Second call back function to update Node DB info & AP link status
*
*
* Return Value:
* none.
*/
void BSSvSecondCallBack(struct work_struct *work)
{
struct vnt_private *pDevice = container_of(work,
struct vnt_private, second_callback_work.work);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii;
PWLAN_IE_SSID pItemSSID, pCurrSSID;
u32 uSleepySTACnt = 0;
u32 uNonShortSlotSTACnt = 0;
u32 uLongPreambleSTACnt = 0;
if (pDevice->Flags & fMP_DISCONNECTED)
return;
spin_lock_irq(&pDevice->lock);
pDevice->uAssocCount = 0;
/* Power Saving Mode Tx Burst */
if (pDevice->bEnablePSMode == true) {
pDevice->ulPSModeWaitTx++;
if (pDevice->ulPSModeWaitTx >= 2) {
pDevice->ulPSModeWaitTx = 0;
pDevice->bPSModeTxBurst = false;
}
}
pDevice->byERPFlag &=
~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
if (pDevice->wUseProtectCntDown > 0) {
pDevice->wUseProtectCntDown--;
} else {
/* disable protect mode */
pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
}
if (pDevice->byReAssocCount > 0) {
pDevice->byReAssocCount++;
if (pDevice->byReAssocCount > 10 &&
pDevice->bLinkPass != true) { /* 10 sec timeout */
printk("Re-association timeout!!!\n");
pDevice->byReAssocCount = 0;
/* if (pDevice->bWPASuppWextEnabled == true) */
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof(wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP,
&wrqu, NULL);
}
} else if (pDevice->bLinkPass == true) {
pDevice->byReAssocCount = 0;
}
}
pMgmt->eLastState = pMgmt->eCurrState;
s_uCalculateLinkQual(pDevice);
for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
/* Increase in-activity counter */
pMgmt->sNodeDBTable[ii].uInActiveCount++;
if (ii > 0) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount >
MAX_INACTIVE_COUNT) {
BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Inactive timeout [%d] sec, STA index = [%d] remove\n",
MAX_INACTIVE_COUNT, ii);
continue;
}
if (pMgmt->sNodeDBTable[ii].eNodeState >=
NODE_ASSOC) {
pDevice->uAssocCount++;
/* check if Non ERP exist */
if (pMgmt->sNodeDBTable[ii].uInActiveCount <
ERP_RECOVER_COUNT) {
if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
pDevice->byERPFlag |=
WLAN_SET_ERP_BARKER_MODE(1);
uLongPreambleSTACnt++;
}
if (!pMgmt->sNodeDBTable[ii].bERPExist) {
pDevice->byERPFlag |=
WLAN_SET_ERP_NONERP_PRESENT(1);
pDevice->byERPFlag |=
WLAN_SET_ERP_USE_PROTECTION(1);
}
if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
uNonShortSlotSTACnt++;
}
}
/* check if any STA in PS mode */
if (pMgmt->sNodeDBTable[ii].bPSEnable)
uSleepySTACnt++;
}
/* Rate fallback check */
if (!pDevice->bFixRate) {
if (ii > 0) {
/* ii = 0 for multicast node (AP & Adhoc) */
RATEvTxRateFallBack((void *) pDevice,
&(pMgmt->sNodeDBTable[ii]));
} else if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
/* ii = 0 reserved for unicast AP node (Infra STA) */
RATEvTxRateFallBack((void *) pDevice,
&(pMgmt->sNodeDBTable[ii]));
}
}
/* check if pending PS queue */
if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "Index= %d, Queue = %d pending\n",
ii,
pMgmt->sNodeDBTable[ii].wEnQueueCnt);
if (ii > 0 &&
pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15) {
BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_NOTICE,
KERN_INFO "Pending many queues PS STA Index = %d remove\n",
ii);
continue;
}
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP &&
pDevice->byBBType == BB_TYPE_11G) {
/* on/off protect mode */
if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
if (!pDevice->bProtectMode) {
MACvEnableProtectMD(pDevice);
pDevice->bProtectMode = true;
}
} else if (pDevice->bProtectMode) {
MACvDisableProtectMD(pDevice);
pDevice->bProtectMode = false;
}
/* on/off short slot time */
if (uNonShortSlotSTACnt > 0) {
if (pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = false;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *) pDevice);
}
} else if (!pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = true;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *) pDevice);
}
/* on/off barker long preamble mode */
if (uLongPreambleSTACnt > 0) {
if (!pDevice->bBarkerPreambleMd) {
MACvEnableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = true;
}
} else if (pDevice->bBarkerPreambleMd) {
MACvDisableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = false;
}
}
/* Check if any STA in PS mode, enable DTIM multicast deliver */
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (uSleepySTACnt > 0)
pMgmt->sNodeDBTable[0].bPSEnable = true;
else
pMgmt->sNodeDBTable[0].bPSEnable = false;
}
pItemSSID = (PWLAN_IE_SSID) pMgmt->abyDesireSSID;
pCurrSSID = (PWLAN_IE_SSID) pMgmt->abyCurrSSID;
if (pMgmt->eCurrMode == WMAC_MODE_STANDBY ||
pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
if (pMgmt->sNodeDBTable[0].bActive) { /* Assoc with BSS */
if (pDevice->bUpdateBBVGA) {
s_vCheckSensitivity(pDevice);
s_vCheckPreEDThreshold(pDevice);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >=
(LOST_BEACON_COUNT/2) &&
pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) {
pDevice->byBBVGANew = pDevice->abyBBVGA[0];
bScheduleCommand((void *) pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >=
LOST_BEACON_COUNT) {
pMgmt->sNodeDBTable[0].bActive = false;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
ControlvMaskByte(pDevice,
MESSAGE_REQUEST_MACREG,
MAC_REG_PAPEDELAY, LEDSTS_STS,
LEDSTS_SLOW);
pDevice->bRoaming = true;
pDevice->bIsRoaming = false;
DBG_PRT(MSG_LEVEL_NOTICE,
KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n",
pMgmt->sNodeDBTable[0].uInActiveCount);
/* let wpa supplicant know AP may disconnect */
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof(wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev,
SIOCGIWAP,
&wrqu,
NULL);
}
}
} else if (pItemSSID->len != 0) {
/* Davidwang */
if ((pDevice->bEnableRoaming == true) &&
(!(pMgmt->Cisco_cckm))) {
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "bRoaming %d, !\n",
pDevice->bRoaming);
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "bIsRoaming %d, !\n",
pDevice->bIsRoaming);
if ((pDevice->bRoaming == true) &&
(pDevice->bIsRoaming == true)) {
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "Fast Roaming ...\n");
BSSvClearBSSList((void *) pDevice,
pDevice->bLinkPass);
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
pDevice->uIsroamingTime = 0;
pDevice->bRoaming = false;
} else if (pDevice->bRoaming == false &&
pDevice->bIsRoaming == true) {
pDevice->uIsroamingTime++;
if (pDevice->uIsroamingTime >= 20)
pDevice->bIsRoaming = false;
}
} else if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
/* network manager support need not do Roaming scan??? */
if (pDevice->bWPASuppWextEnabled == true)
pDevice->uAutoReConnectTime = 0;
} else {
/* mike use old encryption status for wpa reauthen */
if (pDevice->bWPADEVUp)
pDevice->eEncryptionStatus =
pDevice->eOldEncryptionStatus;
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "Roaming ...\n");
BSSvClearBSSList((void *) pDevice,
pDevice->bLinkPass);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
/* if adhoc started which essid is NULL string, rescanning. */
if (pMgmt->eCurrState == WMAC_STATE_STARTED &&
pCurrSSID->len == 0) {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
} else {
DBG_PRT(MSG_LEVEL_NOTICE,
KERN_INFO "Adhoc re-scanning ...\n");
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID, NULL);
pDevice->uAutoReConnectTime = 0;
}
}
if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
if (pDevice->bUpdateBBVGA) {
s_vCheckSensitivity(pDevice);
s_vCheckPreEDThreshold(pDevice);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >=
ADHOC_LOST_BEACON_COUNT) {
DBG_PRT(MSG_LEVEL_NOTICE,
KERN_INFO "Lost other STA beacon [%d] sec, started !\n",
pMgmt->sNodeDBTable[0].uInActiveCount);
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
pMgmt->eCurrState = WMAC_STATE_STARTED;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
ControlvMaskByte(pDevice,
MESSAGE_REQUEST_MACREG,
MAC_REG_PAPEDELAY, LEDSTS_STS,
LEDSTS_SLOW);
}
}
}
if (pDevice->bLinkPass == true) {
if ((pMgmt->eAuthenMode < WMAC_AUTH_WPA ||
pDevice->fWPA_Authened == true) &&
(++pDevice->tx_data_time_out > 40)) {
pDevice->tx_trigger = true;
PSbSendNullPacket(pDevice);
pDevice->tx_trigger = false;
pDevice->tx_data_time_out = 0;
}
if (netif_queue_stopped(pDevice->dev))
netif_wake_queue(pDevice->dev);
}
spin_unlock_irq(&pDevice->lock);
schedule_delayed_work(&pDevice->second_callback_work, HZ);
}
/*
* Routine Description:
*
*
* Update Tx attemps, Tx failure counter in Node DB
*
*
* Return Value:
* none.
*/
void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_tx_pkt_info *pkt_info = pDevice->pkt_info;
u32 uNodeIndex = 0;
u8 byTxRetry;
u16 wRate;
u16 wFallBackRate = RATE_1M;
u8 byFallBack;
int ii;
u8 *pbyDestAddr;
u8 byPktNum;
u16 wFIFOCtl;
byPktNum = (byPktNO & 0x0F) >> 4;
byTxRetry = (byTSR & 0xF0) >> 4;
wRate = (u16) (byPktNO & 0xF0) >> 4;
wFIFOCtl = pkt_info[byPktNum].fifo_ctl;
pbyDestAddr = pkt_info[byPktNum].dest_addr;
if (wFIFOCtl & FIFOCTL_AUTO_FB_0)
byFallBack = AUTO_FB_0;
else if (wFIFOCtl & FIFOCTL_AUTO_FB_1)
byFallBack = AUTO_FB_1;
else
byFallBack = AUTO_FB_NONE;
/* Only Unicast using support rates */
if (wFIFOCtl & FIFOCTL_NEEDACK) {
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
pMgmt->sNodeDBTable[0].uTxAttempts += 1;
if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
/* transmit success, TxAttempts at least plus one */
pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate =
awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[0].uTxFailures++;
}
pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE] += byTxRetry;
if (byFallBack == AUTO_FB_NONE ||
wRate < RATE_18M) {
pMgmt->sNodeDBTable[0].uTxFail[wRate] += byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
}
}
}
if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA ||
pMgmt->eCurrMode == WMAC_MODE_ESS_AP) &&
BSSbIsSTAInNodeDB((void *) pDevice,
pbyDestAddr,
&uNodeIndex)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
/* transmit success, TxAttempts at least plus one */
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate =
awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate =
awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[uNodeIndex].uTxFailures++;
}
pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE] += byTxRetry;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate] += byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
}
}
}
}
}
/*
* Routine Description:
* Clear Nodes & skb in DB Table
*
*
* Parameters:
* In:
* hDeviceContext - The adapter context.
* uStartIndex - starting index
* Out:
* none
*
* Return Value:
* None.
*/
void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct sk_buff *skb;
int ii;
for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
/* check if sTxPSQueue has been initial */
if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue))) {
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "PS skb != NULL %d\n",
ii);
dev_kfree_skb(skb);
}
}
memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
}
}
}
static void s_vCheckSensitivity(struct vnt_private *pDevice)
{
PKnownBSS pBSSList = NULL;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii;
if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
(pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID,
(PWLAN_IE_SSID) pMgmt->abyCurrSSID);
if (pBSSList) {
/* Update BB register if RSSI is too strong */
signed long LocalldBmAverage = 0;
signed long uNumofdBm = 0;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
uNumofdBm++;
LocalldBmAverage += pBSSList->ldBmAverage[ii];
}
}
if (uNumofdBm > 0) {
LocalldBmAverage = LocalldBmAverage/uNumofdBm;
for (ii = 0; ii < BB_VGA_LEVEL; ii++) {
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n",
LocalldBmAverage,
pDevice->ldBmThreshold[ii],
pDevice->abyBBVGA[ii]);
if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
pDevice->byBBVGANew =
pDevice->abyBBVGA[ii];
break;
}
}
if (pDevice->byBBVGANew !=
pDevice->byBBVGACurrent) {
pDevice->uBBVGADiffCount++;
if (pDevice->uBBVGADiffCount >=
BB_VGA_CHANGE_THRESHOLD)
bScheduleCommand(pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL);
} else {
pDevice->uBBVGADiffCount = 0;
}
}
}
}
}
static void s_uCalculateLinkQual(struct vnt_private *pDevice)
{
struct net_device_stats *stats = &pDevice->stats;
unsigned long TxOkRatio, TxCnt;
unsigned long RxOkRatio, RxCnt;
unsigned long RssiRatio;
unsigned long qual;
long ldBm;
TxCnt = stats->tx_packets + pDevice->wstats.discard.retries;
RxCnt = stats->rx_packets + stats->rx_frame_errors;
TxOkRatio = (TxCnt < 6) ? 4000:((stats->tx_packets * 4000) / TxCnt);
RxOkRatio = (RxCnt < 6) ? 2000 :
((stats->rx_packets * 2000) / RxCnt);
/* decide link quality */
if (pDevice->bLinkPass != true) {
pDevice->wstats.qual.qual = 0;
} else {
RFvRSSITodBm(pDevice, (u8) (pDevice->uCurrRSSI), &ldBm);
if (-ldBm < 50)
RssiRatio = 4000;
else if (-ldBm > 90)
RssiRatio = 0;
else
RssiRatio = (40-(-ldBm-50)) * 4000 / 40;
qual = (RssiRatio + TxOkRatio + RxOkRatio) / 100;
if (qual < 100)
pDevice->wstats.qual.qual = (u8) qual;
else
pDevice->wstats.qual.qual = 100;
}
}
void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++)
pMgmt->sBSSList[ii].bSelected = false;
return;
}
static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
{
PKnownBSS pBSSList = NULL;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
(pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
pBSSList = BSSpAddrIsInBSSList(pDevice,
pMgmt->abyCurrBSSID,
(PWLAN_IE_SSID) pMgmt->abyCurrSSID);
if (pBSSList) {
pDevice->byBBPreEDRSSI =
(u8) (~(pBSSList->ldBmAverRange) + 1);
BBvUpdatePreEDThreshold(pDevice, false);
}
}
}