| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel Probes (KProbes) |
| * arch/mips/kernel/kprobes.c |
| * |
| * Copyright 2006 Sony Corp. |
| * Copyright 2010 Cavium Networks |
| * |
| * Some portions copied from the powerpc version. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| */ |
| |
| #include <linux/kprobes.h> |
| #include <linux/preempt.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/slab.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/branch.h> |
| #include <asm/break.h> |
| |
| #include "probes-common.h" |
| |
| static const union mips_instruction breakpoint_insn = { |
| .b_format = { |
| .opcode = spec_op, |
| .code = BRK_KPROBE_BP, |
| .func = break_op |
| } |
| }; |
| |
| static const union mips_instruction breakpoint2_insn = { |
| .b_format = { |
| .opcode = spec_op, |
| .code = BRK_KPROBE_SSTEPBP, |
| .func = break_op |
| } |
| }; |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe); |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| static int __kprobes insn_has_delayslot(union mips_instruction insn) |
| { |
| return __insn_has_delay_slot(insn); |
| } |
| |
| /* |
| * insn_has_ll_or_sc function checks whether instruction is ll or sc |
| * one; putting breakpoint on top of atomic ll/sc pair is bad idea; |
| * so we need to prevent it and refuse kprobes insertion for such |
| * instructions; cannot do much about breakpoint in the middle of |
| * ll/sc pair; it is upto user to avoid those places |
| */ |
| static int __kprobes insn_has_ll_or_sc(union mips_instruction insn) |
| { |
| int ret = 0; |
| |
| switch (insn.i_format.opcode) { |
| case ll_op: |
| case lld_op: |
| case sc_op: |
| case scd_op: |
| ret = 1; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| union mips_instruction insn; |
| union mips_instruction prev_insn; |
| int ret = 0; |
| |
| insn = p->addr[0]; |
| |
| if (insn_has_ll_or_sc(insn)) { |
| pr_notice("Kprobes for ll and sc instructions are not" |
| "supported\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if ((probe_kernel_read(&prev_insn, p->addr - 1, |
| sizeof(mips_instruction)) == 0) && |
| insn_has_delayslot(prev_insn)) { |
| pr_notice("Kprobes for branch delayslot are not supported\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (__insn_is_compact_branch(insn)) { |
| pr_notice("Kprobes for compact branches are not supported\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* insn: must be on special executable page on mips. */ |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * In the kprobe->ainsn.insn[] array we store the original |
| * instruction at index zero and a break trap instruction at |
| * index one. |
| * |
| * On MIPS arch if the instruction at probed address is a |
| * branch instruction, we need to execute the instruction at |
| * Branch Delayslot (BD) at the time of probe hit. As MIPS also |
| * doesn't have single stepping support, the BD instruction can |
| * not be executed in-line and it would be executed on SSOL slot |
| * using a normal breakpoint instruction in the next slot. |
| * So, read the instruction and save it for later execution. |
| */ |
| if (insn_has_delayslot(insn)) |
| memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t)); |
| else |
| memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); |
| |
| p->ainsn.insn[1] = breakpoint2_insn; |
| p->opcode = *p->addr; |
| |
| out: |
| return ret; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = breakpoint_insn; |
| flush_insn_slot(p); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flush_insn_slot(p); |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| } |
| |
| static void save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; |
| kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; |
| kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; |
| } |
| |
| static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; |
| kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; |
| kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; |
| } |
| |
| static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, p); |
| kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); |
| kcb->kprobe_saved_epc = regs->cp0_epc; |
| } |
| |
| /** |
| * evaluate_branch_instrucion - |
| * |
| * Evaluate the branch instruction at probed address during probe hit. The |
| * result of evaluation would be the updated epc. The insturction in delayslot |
| * would actually be single stepped using a normal breakpoint) on SSOL slot. |
| * |
| * The result is also saved in the kprobe control block for later use, |
| * in case we need to execute the delayslot instruction. The latter will be |
| * false for NOP instruction in dealyslot and the branch-likely instructions |
| * when the branch is taken. And for those cases we set a flag as |
| * SKIP_DELAYSLOT in the kprobe control block |
| */ |
| static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| union mips_instruction insn = p->opcode; |
| long epc; |
| int ret = 0; |
| |
| epc = regs->cp0_epc; |
| if (epc & 3) |
| goto unaligned; |
| |
| if (p->ainsn.insn->word == 0) |
| kcb->flags |= SKIP_DELAYSLOT; |
| else |
| kcb->flags &= ~SKIP_DELAYSLOT; |
| |
| ret = __compute_return_epc_for_insn(regs, insn); |
| if (ret < 0) |
| return ret; |
| |
| if (ret == BRANCH_LIKELY_TAKEN) |
| kcb->flags |= SKIP_DELAYSLOT; |
| |
| kcb->target_epc = regs->cp0_epc; |
| |
| return 0; |
| |
| unaligned: |
| pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm); |
| force_sig(SIGBUS, current); |
| return -EFAULT; |
| |
| } |
| |
| static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| int ret = 0; |
| |
| regs->cp0_status &= ~ST0_IE; |
| |
| /* single step inline if the instruction is a break */ |
| if (p->opcode.word == breakpoint_insn.word || |
| p->opcode.word == breakpoint2_insn.word) |
| regs->cp0_epc = (unsigned long)p->addr; |
| else if (insn_has_delayslot(p->opcode)) { |
| ret = evaluate_branch_instruction(p, regs, kcb); |
| if (ret < 0) { |
| pr_notice("Kprobes: Error in evaluating branch\n"); |
| return; |
| } |
| } |
| regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "break 0" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| * |
| * This function prepares to return from the post-single-step |
| * breakpoint trap. In case of branch instructions, the target |
| * epc to be restored. |
| */ |
| static void __kprobes resume_execution(struct kprobe *p, |
| struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| if (insn_has_delayslot(p->opcode)) |
| regs->cp0_epc = kcb->target_epc; |
| else { |
| unsigned long orig_epc = kcb->kprobe_saved_epc; |
| regs->cp0_epc = orig_epc + 4; |
| } |
| } |
| |
| static int __kprobes kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| kprobe_opcode_t *addr; |
| struct kprobe_ctlblk *kcb; |
| |
| addr = (kprobe_opcode_t *) regs->cp0_epc; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| if (kcb->kprobe_status == KPROBE_HIT_SS && |
| p->ainsn.insn->word == breakpoint_insn.word) { |
| regs->cp0_status &= ~ST0_IE; |
| regs->cp0_status |= kcb->kprobe_saved_SR; |
| goto no_kprobe; |
| } |
| /* |
| * We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kprobes_inc_nmissed_count(p); |
| prepare_singlestep(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_REENTER; |
| if (kcb->flags & SKIP_DELAYSLOT) { |
| resume_execution(p, regs, kcb); |
| restore_previous_kprobe(kcb); |
| preempt_enable_no_resched(); |
| } |
| return 1; |
| } else if (addr->word != breakpoint_insn.word) { |
| /* |
| * The breakpoint instruction was removed by |
| * another cpu right after we hit, no further |
| * handling of this interrupt is appropriate |
| */ |
| ret = 1; |
| } |
| goto no_kprobe; |
| } |
| |
| p = get_kprobe(addr); |
| if (!p) { |
| if (addr->word != breakpoint_insn.word) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| if (p->pre_handler && p->pre_handler(p, regs)) { |
| /* handler has already set things up, so skip ss setup */ |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| prepare_singlestep(p, regs, kcb); |
| if (kcb->flags & SKIP_DELAYSLOT) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| if (p->post_handler) |
| p->post_handler(p, regs, 0); |
| resume_execution(p, regs, kcb); |
| preempt_enable_no_resched(); |
| } else |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| |
| } |
| |
| static inline int post_kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| resume_execution(cur, regs, kcb); |
| |
| regs->cp0_status |= kcb->kprobe_saved_SR; |
| |
| /* Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| out: |
| preempt_enable_no_resched(); |
| |
| return 1; |
| } |
| |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| if (kcb->kprobe_status & KPROBE_HIT_SS) { |
| resume_execution(cur, regs, kcb); |
| regs->cp0_status |= kcb->kprobe_old_SR; |
| |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine for handling exceptions. |
| */ |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_BREAK: |
| if (kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_SSTEPBP: |
| if (post_kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| |
| case DIE_PAGE_FAULT: |
| /* kprobe_running() needs smp_processor_id() */ |
| preempt_disable(); |
| |
| if (kprobe_running() |
| && kprobe_fault_handler(args->regs, args->trapnr)) |
| ret = NOTIFY_STOP; |
| preempt_enable(); |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| /* |
| * Function return probe trampoline: |
| * - init_kprobes() establishes a probepoint here |
| * - When the probed function returns, this probe causes the |
| * handlers to fire |
| */ |
| static void __used kretprobe_trampoline_holder(void) |
| { |
| asm volatile( |
| ".set push\n\t" |
| /* Keep the assembler from reordering and placing JR here. */ |
| ".set noreorder\n\t" |
| "nop\n\t" |
| ".global kretprobe_trampoline\n" |
| "kretprobe_trampoline:\n\t" |
| "nop\n\t" |
| ".set pop" |
| : : : "memory"); |
| } |
| |
| void kretprobe_trampoline(void); |
| |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->regs[31] = (unsigned long)kretprobe_trampoline; |
| } |
| |
| /* |
| * Called when the probe at kretprobe trampoline is hit |
| */ |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more than one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| instruction_pointer(regs) = orig_ret_address; |
| |
| kretprobe_hash_unlock(current, &flags); |
| |
| hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we don't want the post_handler |
| * to run (and have re-enabled preemption) |
| */ |
| return 1; |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *)kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| return register_kprobe(&trampoline_p); |
| } |