|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * linux/ipc/sem.c | 
|  | * Copyright (C) 1992 Krishna Balasubramanian | 
|  | * Copyright (C) 1995 Eric Schenk, Bruno Haible | 
|  | * | 
|  | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> | 
|  | * | 
|  | * SMP-threaded, sysctl's added | 
|  | * (c) 1999 Manfred Spraul <manfred@colorfullife.com> | 
|  | * Enforced range limit on SEM_UNDO | 
|  | * (c) 2001 Red Hat Inc | 
|  | * Lockless wakeup | 
|  | * (c) 2003 Manfred Spraul <manfred@colorfullife.com> | 
|  | * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> | 
|  | * Further wakeup optimizations, documentation | 
|  | * (c) 2010 Manfred Spraul <manfred@colorfullife.com> | 
|  | * | 
|  | * support for audit of ipc object properties and permission changes | 
|  | * Dustin Kirkland <dustin.kirkland@us.ibm.com> | 
|  | * | 
|  | * namespaces support | 
|  | * OpenVZ, SWsoft Inc. | 
|  | * Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * Implementation notes: (May 2010) | 
|  | * This file implements System V semaphores. | 
|  | * | 
|  | * User space visible behavior: | 
|  | * - FIFO ordering for semop() operations (just FIFO, not starvation | 
|  | *   protection) | 
|  | * - multiple semaphore operations that alter the same semaphore in | 
|  | *   one semop() are handled. | 
|  | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | 
|  | *   SETALL calls. | 
|  | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | 
|  | * - undo adjustments at process exit are limited to 0..SEMVMX. | 
|  | * - namespace are supported. | 
|  | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | 
|  | *   to /proc/sys/kernel/sem. | 
|  | * - statistics about the usage are reported in /proc/sysvipc/sem. | 
|  | * | 
|  | * Internals: | 
|  | * - scalability: | 
|  | *   - all global variables are read-mostly. | 
|  | *   - semop() calls and semctl(RMID) are synchronized by RCU. | 
|  | *   - most operations do write operations (actually: spin_lock calls) to | 
|  | *     the per-semaphore array structure. | 
|  | *   Thus: Perfect SMP scaling between independent semaphore arrays. | 
|  | *         If multiple semaphores in one array are used, then cache line | 
|  | *         trashing on the semaphore array spinlock will limit the scaling. | 
|  | * - semncnt and semzcnt are calculated on demand in count_semcnt() | 
|  | * - the task that performs a successful semop() scans the list of all | 
|  | *   sleeping tasks and completes any pending operations that can be fulfilled. | 
|  | *   Semaphores are actively given to waiting tasks (necessary for FIFO). | 
|  | *   (see update_queue()) | 
|  | * - To improve the scalability, the actual wake-up calls are performed after | 
|  | *   dropping all locks. (see wake_up_sem_queue_prepare()) | 
|  | * - All work is done by the waker, the woken up task does not have to do | 
|  | *   anything - not even acquiring a lock or dropping a refcount. | 
|  | * - A woken up task may not even touch the semaphore array anymore, it may | 
|  | *   have been destroyed already by a semctl(RMID). | 
|  | * - UNDO values are stored in an array (one per process and per | 
|  | *   semaphore array, lazily allocated). For backwards compatibility, multiple | 
|  | *   modes for the UNDO variables are supported (per process, per thread) | 
|  | *   (see copy_semundo, CLONE_SYSVSEM) | 
|  | * - There are two lists of the pending operations: a per-array list | 
|  | *   and per-semaphore list (stored in the array). This allows to achieve FIFO | 
|  | *   ordering without always scanning all pending operations. | 
|  | *   The worst-case behavior is nevertheless O(N^2) for N wakeups. | 
|  | */ | 
|  |  | 
|  | #include <linux/compat.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/ipc_namespace.h> | 
|  | #include <linux/sched/wake_q.h> | 
|  | #include <linux/nospec.h> | 
|  | #include <linux/rhashtable.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include "util.h" | 
|  |  | 
|  | /* One semaphore structure for each semaphore in the system. */ | 
|  | struct sem { | 
|  | int	semval;		/* current value */ | 
|  | /* | 
|  | * PID of the process that last modified the semaphore. For | 
|  | * Linux, specifically these are: | 
|  | *  - semop | 
|  | *  - semctl, via SETVAL and SETALL. | 
|  | *  - at task exit when performing undo adjustments (see exit_sem). | 
|  | */ | 
|  | struct pid *sempid; | 
|  | spinlock_t	lock;	/* spinlock for fine-grained semtimedop */ | 
|  | struct list_head pending_alter; /* pending single-sop operations */ | 
|  | /* that alter the semaphore */ | 
|  | struct list_head pending_const; /* pending single-sop operations */ | 
|  | /* that do not alter the semaphore*/ | 
|  | time64_t	 sem_otime;	/* candidate for sem_otime */ | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | /* One sem_array data structure for each set of semaphores in the system. */ | 
|  | struct sem_array { | 
|  | struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */ | 
|  | time64_t		sem_ctime;	/* create/last semctl() time */ | 
|  | struct list_head	pending_alter;	/* pending operations */ | 
|  | /* that alter the array */ | 
|  | struct list_head	pending_const;	/* pending complex operations */ | 
|  | /* that do not alter semvals */ | 
|  | struct list_head	list_id;	/* undo requests on this array */ | 
|  | int			sem_nsems;	/* no. of semaphores in array */ | 
|  | int			complex_count;	/* pending complex operations */ | 
|  | unsigned int		use_global_lock;/* >0: global lock required */ | 
|  |  | 
|  | struct sem		sems[]; | 
|  | } __randomize_layout; | 
|  |  | 
|  | /* One queue for each sleeping process in the system. */ | 
|  | struct sem_queue { | 
|  | struct list_head	list;	 /* queue of pending operations */ | 
|  | struct task_struct	*sleeper; /* this process */ | 
|  | struct sem_undo		*undo;	 /* undo structure */ | 
|  | struct pid		*pid;	 /* process id of requesting process */ | 
|  | int			status;	 /* completion status of operation */ | 
|  | struct sembuf		*sops;	 /* array of pending operations */ | 
|  | struct sembuf		*blocking; /* the operation that blocked */ | 
|  | int			nsops;	 /* number of operations */ | 
|  | bool			alter;	 /* does *sops alter the array? */ | 
|  | bool                    dupsop;	 /* sops on more than one sem_num */ | 
|  | }; | 
|  |  | 
|  | /* Each task has a list of undo requests. They are executed automatically | 
|  | * when the process exits. | 
|  | */ | 
|  | struct sem_undo { | 
|  | struct list_head	list_proc;	/* per-process list: * | 
|  | * all undos from one process | 
|  | * rcu protected */ | 
|  | struct rcu_head		rcu;		/* rcu struct for sem_undo */ | 
|  | struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */ | 
|  | struct list_head	list_id;	/* per semaphore array list: | 
|  | * all undos for one array */ | 
|  | int			semid;		/* semaphore set identifier */ | 
|  | short			*semadj;	/* array of adjustments */ | 
|  | /* one per semaphore */ | 
|  | }; | 
|  |  | 
|  | /* sem_undo_list controls shared access to the list of sem_undo structures | 
|  | * that may be shared among all a CLONE_SYSVSEM task group. | 
|  | */ | 
|  | struct sem_undo_list { | 
|  | refcount_t		refcnt; | 
|  | spinlock_t		lock; | 
|  | struct list_head	list_proc; | 
|  | }; | 
|  |  | 
|  |  | 
|  | #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS]) | 
|  |  | 
|  | static int newary(struct ipc_namespace *, struct ipc_params *); | 
|  | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); | 
|  | #endif | 
|  |  | 
|  | #define SEMMSL_FAST	256 /* 512 bytes on stack */ | 
|  | #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */ | 
|  |  | 
|  | /* | 
|  | * Switching from the mode suitable for simple ops | 
|  | * to the mode for complex ops is costly. Therefore: | 
|  | * use some hysteresis | 
|  | */ | 
|  | #define USE_GLOBAL_LOCK_HYSTERESIS	10 | 
|  |  | 
|  | /* | 
|  | * Locking: | 
|  | * a) global sem_lock() for read/write | 
|  | *	sem_undo.id_next, | 
|  | *	sem_array.complex_count, | 
|  | *	sem_array.pending{_alter,_const}, | 
|  | *	sem_array.sem_undo | 
|  | * | 
|  | * b) global or semaphore sem_lock() for read/write: | 
|  | *	sem_array.sems[i].pending_{const,alter}: | 
|  | * | 
|  | * c) special: | 
|  | *	sem_undo_list.list_proc: | 
|  | *	* undo_list->lock for write | 
|  | *	* rcu for read | 
|  | *	use_global_lock: | 
|  | *	* global sem_lock() for write | 
|  | *	* either local or global sem_lock() for read. | 
|  | * | 
|  | * Memory ordering: | 
|  | * Most ordering is enforced by using spin_lock() and spin_unlock(). | 
|  | * | 
|  | * Exceptions: | 
|  | * 1) use_global_lock: (SEM_BARRIER_1) | 
|  | * Setting it from non-zero to 0 is a RELEASE, this is ensured by | 
|  | * using smp_store_release(): Immediately after setting it to 0, | 
|  | * a simple op can start. | 
|  | * Testing if it is non-zero is an ACQUIRE, this is ensured by using | 
|  | * smp_load_acquire(). | 
|  | * Setting it from 0 to non-zero must be ordered with regards to | 
|  | * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() | 
|  | * is inside a spin_lock() and after a write from 0 to non-zero a | 
|  | * spin_lock()+spin_unlock() is done. | 
|  | * | 
|  | * 2) queue.status: (SEM_BARRIER_2) | 
|  | * Initialization is done while holding sem_lock(), so no further barrier is | 
|  | * required. | 
|  | * Setting it to a result code is a RELEASE, this is ensured by both a | 
|  | * smp_store_release() (for case a) and while holding sem_lock() | 
|  | * (for case b). | 
|  | * The AQUIRE when reading the result code without holding sem_lock() is | 
|  | * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep(). | 
|  | * (case a above). | 
|  | * Reading the result code while holding sem_lock() needs no further barriers, | 
|  | * the locks inside sem_lock() enforce ordering (case b above) | 
|  | * | 
|  | * 3) current->state: | 
|  | * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock(). | 
|  | * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may | 
|  | * happen immediately after calling wake_q_add. As wake_q_add_safe() is called | 
|  | * when holding sem_lock(), no further barriers are required. | 
|  | * | 
|  | * See also ipc/mqueue.c for more details on the covered races. | 
|  | */ | 
|  |  | 
|  | #define sc_semmsl	sem_ctls[0] | 
|  | #define sc_semmns	sem_ctls[1] | 
|  | #define sc_semopm	sem_ctls[2] | 
|  | #define sc_semmni	sem_ctls[3] | 
|  |  | 
|  | void sem_init_ns(struct ipc_namespace *ns) | 
|  | { | 
|  | ns->sc_semmsl = SEMMSL; | 
|  | ns->sc_semmns = SEMMNS; | 
|  | ns->sc_semopm = SEMOPM; | 
|  | ns->sc_semmni = SEMMNI; | 
|  | ns->used_sems = 0; | 
|  | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IPC_NS | 
|  | void sem_exit_ns(struct ipc_namespace *ns) | 
|  | { | 
|  | free_ipcs(ns, &sem_ids(ns), freeary); | 
|  | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); | 
|  | rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init sem_init(void) | 
|  | { | 
|  | sem_init_ns(&init_ipc_ns); | 
|  | ipc_init_proc_interface("sysvipc/sem", | 
|  | "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n", | 
|  | IPC_SEM_IDS, sysvipc_sem_proc_show); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmerge_queues - unmerge queues, if possible. | 
|  | * @sma: semaphore array | 
|  | * | 
|  | * The function unmerges the wait queues if complex_count is 0. | 
|  | * It must be called prior to dropping the global semaphore array lock. | 
|  | */ | 
|  | static void unmerge_queues(struct sem_array *sma) | 
|  | { | 
|  | struct sem_queue *q, *tq; | 
|  |  | 
|  | /* complex operations still around? */ | 
|  | if (sma->complex_count) | 
|  | return; | 
|  | /* | 
|  | * We will switch back to simple mode. | 
|  | * Move all pending operation back into the per-semaphore | 
|  | * queues. | 
|  | */ | 
|  | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | 
|  | struct sem *curr; | 
|  | curr = &sma->sems[q->sops[0].sem_num]; | 
|  |  | 
|  | list_add_tail(&q->list, &curr->pending_alter); | 
|  | } | 
|  | INIT_LIST_HEAD(&sma->pending_alter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * merge_queues - merge single semop queues into global queue | 
|  | * @sma: semaphore array | 
|  | * | 
|  | * This function merges all per-semaphore queues into the global queue. | 
|  | * It is necessary to achieve FIFO ordering for the pending single-sop | 
|  | * operations when a multi-semop operation must sleep. | 
|  | * Only the alter operations must be moved, the const operations can stay. | 
|  | */ | 
|  | static void merge_queues(struct sem_array *sma) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | struct sem *sem = &sma->sems[i]; | 
|  |  | 
|  | list_splice_init(&sem->pending_alter, &sma->pending_alter); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sem_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); | 
|  | struct sem_array *sma = container_of(p, struct sem_array, sem_perm); | 
|  |  | 
|  | security_sem_free(&sma->sem_perm); | 
|  | kvfree(sma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enter the mode suitable for non-simple operations: | 
|  | * Caller must own sem_perm.lock. | 
|  | */ | 
|  | static void complexmode_enter(struct sem_array *sma) | 
|  | { | 
|  | int i; | 
|  | struct sem *sem; | 
|  |  | 
|  | if (sma->use_global_lock > 0)  { | 
|  | /* | 
|  | * We are already in global lock mode. | 
|  | * Nothing to do, just reset the | 
|  | * counter until we return to simple mode. | 
|  | */ | 
|  | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | 
|  | return; | 
|  | } | 
|  | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | 
|  |  | 
|  | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | sem = &sma->sems[i]; | 
|  | spin_lock(&sem->lock); | 
|  | spin_unlock(&sem->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to leave the mode that disallows simple operations: | 
|  | * Caller must own sem_perm.lock. | 
|  | */ | 
|  | static void complexmode_tryleave(struct sem_array *sma) | 
|  | { | 
|  | if (sma->complex_count)  { | 
|  | /* Complex ops are sleeping. | 
|  | * We must stay in complex mode | 
|  | */ | 
|  | return; | 
|  | } | 
|  | if (sma->use_global_lock == 1) { | 
|  |  | 
|  | /* See SEM_BARRIER_1 for purpose/pairing */ | 
|  | smp_store_release(&sma->use_global_lock, 0); | 
|  | } else { | 
|  | sma->use_global_lock--; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SEM_GLOBAL_LOCK	(-1) | 
|  | /* | 
|  | * If the request contains only one semaphore operation, and there are | 
|  | * no complex transactions pending, lock only the semaphore involved. | 
|  | * Otherwise, lock the entire semaphore array, since we either have | 
|  | * multiple semaphores in our own semops, or we need to look at | 
|  | * semaphores from other pending complex operations. | 
|  | */ | 
|  | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | 
|  | int nsops) | 
|  | { | 
|  | struct sem *sem; | 
|  | int idx; | 
|  |  | 
|  | if (nsops != 1) { | 
|  | /* Complex operation - acquire a full lock */ | 
|  | ipc_lock_object(&sma->sem_perm); | 
|  |  | 
|  | /* Prevent parallel simple ops */ | 
|  | complexmode_enter(sma); | 
|  | return SEM_GLOBAL_LOCK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only one semaphore affected - try to optimize locking. | 
|  | * Optimized locking is possible if no complex operation | 
|  | * is either enqueued or processed right now. | 
|  | * | 
|  | * Both facts are tracked by use_global_mode. | 
|  | */ | 
|  | idx = array_index_nospec(sops->sem_num, sma->sem_nsems); | 
|  | sem = &sma->sems[idx]; | 
|  |  | 
|  | /* | 
|  | * Initial check for use_global_lock. Just an optimization, | 
|  | * no locking, no memory barrier. | 
|  | */ | 
|  | if (!sma->use_global_lock) { | 
|  | /* | 
|  | * It appears that no complex operation is around. | 
|  | * Acquire the per-semaphore lock. | 
|  | */ | 
|  | spin_lock(&sem->lock); | 
|  |  | 
|  | /* see SEM_BARRIER_1 for purpose/pairing */ | 
|  | if (!smp_load_acquire(&sma->use_global_lock)) { | 
|  | /* fast path successful! */ | 
|  | return sops->sem_num; | 
|  | } | 
|  | spin_unlock(&sem->lock); | 
|  | } | 
|  |  | 
|  | /* slow path: acquire the full lock */ | 
|  | ipc_lock_object(&sma->sem_perm); | 
|  |  | 
|  | if (sma->use_global_lock == 0) { | 
|  | /* | 
|  | * The use_global_lock mode ended while we waited for | 
|  | * sma->sem_perm.lock. Thus we must switch to locking | 
|  | * with sem->lock. | 
|  | * Unlike in the fast path, there is no need to recheck | 
|  | * sma->use_global_lock after we have acquired sem->lock: | 
|  | * We own sma->sem_perm.lock, thus use_global_lock cannot | 
|  | * change. | 
|  | */ | 
|  | spin_lock(&sem->lock); | 
|  |  | 
|  | ipc_unlock_object(&sma->sem_perm); | 
|  | return sops->sem_num; | 
|  | } else { | 
|  | /* | 
|  | * Not a false alarm, thus continue to use the global lock | 
|  | * mode. No need for complexmode_enter(), this was done by | 
|  | * the caller that has set use_global_mode to non-zero. | 
|  | */ | 
|  | return SEM_GLOBAL_LOCK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sem_unlock(struct sem_array *sma, int locknum) | 
|  | { | 
|  | if (locknum == SEM_GLOBAL_LOCK) { | 
|  | unmerge_queues(sma); | 
|  | complexmode_tryleave(sma); | 
|  | ipc_unlock_object(&sma->sem_perm); | 
|  | } else { | 
|  | struct sem *sem = &sma->sems[locknum]; | 
|  | spin_unlock(&sem->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sem_lock_(check_) routines are called in the paths where the rwsem | 
|  | * is not held. | 
|  | * | 
|  | * The caller holds the RCU read lock. | 
|  | */ | 
|  | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) | 
|  | { | 
|  | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); | 
|  |  | 
|  | if (IS_ERR(ipcp)) | 
|  | return ERR_CAST(ipcp); | 
|  |  | 
|  | return container_of(ipcp, struct sem_array, sem_perm); | 
|  | } | 
|  |  | 
|  | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, | 
|  | int id) | 
|  | { | 
|  | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | 
|  |  | 
|  | if (IS_ERR(ipcp)) | 
|  | return ERR_CAST(ipcp); | 
|  |  | 
|  | return container_of(ipcp, struct sem_array, sem_perm); | 
|  | } | 
|  |  | 
|  | static inline void sem_lock_and_putref(struct sem_array *sma) | 
|  | { | 
|  | sem_lock(sma, NULL, -1); | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | } | 
|  |  | 
|  | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) | 
|  | { | 
|  | ipc_rmid(&sem_ids(ns), &s->sem_perm); | 
|  | } | 
|  |  | 
|  | static struct sem_array *sem_alloc(size_t nsems) | 
|  | { | 
|  | struct sem_array *sma; | 
|  |  | 
|  | if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) | 
|  | return NULL; | 
|  |  | 
|  | sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL); | 
|  | if (unlikely(!sma)) | 
|  | return NULL; | 
|  |  | 
|  | return sma; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * newary - Create a new semaphore set | 
|  | * @ns: namespace | 
|  | * @params: ptr to the structure that contains key, semflg and nsems | 
|  | * | 
|  | * Called with sem_ids.rwsem held (as a writer) | 
|  | */ | 
|  | static int newary(struct ipc_namespace *ns, struct ipc_params *params) | 
|  | { | 
|  | int retval; | 
|  | struct sem_array *sma; | 
|  | key_t key = params->key; | 
|  | int nsems = params->u.nsems; | 
|  | int semflg = params->flg; | 
|  | int i; | 
|  |  | 
|  | if (!nsems) | 
|  | return -EINVAL; | 
|  | if (ns->used_sems + nsems > ns->sc_semmns) | 
|  | return -ENOSPC; | 
|  |  | 
|  | sma = sem_alloc(nsems); | 
|  | if (!sma) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sma->sem_perm.mode = (semflg & S_IRWXUGO); | 
|  | sma->sem_perm.key = key; | 
|  |  | 
|  | sma->sem_perm.security = NULL; | 
|  | retval = security_sem_alloc(&sma->sem_perm); | 
|  | if (retval) { | 
|  | kvfree(sma); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsems; i++) { | 
|  | INIT_LIST_HEAD(&sma->sems[i].pending_alter); | 
|  | INIT_LIST_HEAD(&sma->sems[i].pending_const); | 
|  | spin_lock_init(&sma->sems[i].lock); | 
|  | } | 
|  |  | 
|  | sma->complex_count = 0; | 
|  | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | 
|  | INIT_LIST_HEAD(&sma->pending_alter); | 
|  | INIT_LIST_HEAD(&sma->pending_const); | 
|  | INIT_LIST_HEAD(&sma->list_id); | 
|  | sma->sem_nsems = nsems; | 
|  | sma->sem_ctime = ktime_get_real_seconds(); | 
|  |  | 
|  | /* ipc_addid() locks sma upon success. */ | 
|  | retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); | 
|  | if (retval < 0) { | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | return retval; | 
|  | } | 
|  | ns->used_sems += nsems; | 
|  |  | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return sma->sem_perm.id; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Called with sem_ids.rwsem and ipcp locked. | 
|  | */ | 
|  | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, | 
|  | struct ipc_params *params) | 
|  | { | 
|  | struct sem_array *sma; | 
|  |  | 
|  | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | if (params->u.nsems > sma->sem_nsems) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long ksys_semget(key_t key, int nsems, int semflg) | 
|  | { | 
|  | struct ipc_namespace *ns; | 
|  | static const struct ipc_ops sem_ops = { | 
|  | .getnew = newary, | 
|  | .associate = security_sem_associate, | 
|  | .more_checks = sem_more_checks, | 
|  | }; | 
|  | struct ipc_params sem_params; | 
|  |  | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | if (nsems < 0 || nsems > ns->sc_semmsl) | 
|  | return -EINVAL; | 
|  |  | 
|  | sem_params.key = key; | 
|  | sem_params.flg = semflg; | 
|  | sem_params.u.nsems = nsems; | 
|  |  | 
|  | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) | 
|  | { | 
|  | return ksys_semget(key, nsems, semflg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * perform_atomic_semop[_slow] - Attempt to perform semaphore | 
|  | *                               operations on a given array. | 
|  | * @sma: semaphore array | 
|  | * @q: struct sem_queue that describes the operation | 
|  | * | 
|  | * Caller blocking are as follows, based the value | 
|  | * indicated by the semaphore operation (sem_op): | 
|  | * | 
|  | *  (1) >0 never blocks. | 
|  | *  (2)  0 (wait-for-zero operation): semval is non-zero. | 
|  | *  (3) <0 attempting to decrement semval to a value smaller than zero. | 
|  | * | 
|  | * Returns 0 if the operation was possible. | 
|  | * Returns 1 if the operation is impossible, the caller must sleep. | 
|  | * Returns <0 for error codes. | 
|  | */ | 
|  | static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) | 
|  | { | 
|  | int result, sem_op, nsops; | 
|  | struct pid *pid; | 
|  | struct sembuf *sop; | 
|  | struct sem *curr; | 
|  | struct sembuf *sops; | 
|  | struct sem_undo *un; | 
|  |  | 
|  | sops = q->sops; | 
|  | nsops = q->nsops; | 
|  | un = q->undo; | 
|  |  | 
|  | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); | 
|  | curr = &sma->sems[idx]; | 
|  | sem_op = sop->sem_op; | 
|  | result = curr->semval; | 
|  |  | 
|  | if (!sem_op && result) | 
|  | goto would_block; | 
|  |  | 
|  | result += sem_op; | 
|  | if (result < 0) | 
|  | goto would_block; | 
|  | if (result > SEMVMX) | 
|  | goto out_of_range; | 
|  |  | 
|  | if (sop->sem_flg & SEM_UNDO) { | 
|  | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  | /* Exceeding the undo range is an error. */ | 
|  | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | 
|  | goto out_of_range; | 
|  | un->semadj[sop->sem_num] = undo; | 
|  | } | 
|  |  | 
|  | curr->semval = result; | 
|  | } | 
|  |  | 
|  | sop--; | 
|  | pid = q->pid; | 
|  | while (sop >= sops) { | 
|  | ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); | 
|  | sop--; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_of_range: | 
|  | result = -ERANGE; | 
|  | goto undo; | 
|  |  | 
|  | would_block: | 
|  | q->blocking = sop; | 
|  |  | 
|  | if (sop->sem_flg & IPC_NOWAIT) | 
|  | result = -EAGAIN; | 
|  | else | 
|  | result = 1; | 
|  |  | 
|  | undo: | 
|  | sop--; | 
|  | while (sop >= sops) { | 
|  | sem_op = sop->sem_op; | 
|  | sma->sems[sop->sem_num].semval -= sem_op; | 
|  | if (sop->sem_flg & SEM_UNDO) | 
|  | un->semadj[sop->sem_num] += sem_op; | 
|  | sop--; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) | 
|  | { | 
|  | int result, sem_op, nsops; | 
|  | struct sembuf *sop; | 
|  | struct sem *curr; | 
|  | struct sembuf *sops; | 
|  | struct sem_undo *un; | 
|  |  | 
|  | sops = q->sops; | 
|  | nsops = q->nsops; | 
|  | un = q->undo; | 
|  |  | 
|  | if (unlikely(q->dupsop)) | 
|  | return perform_atomic_semop_slow(sma, q); | 
|  |  | 
|  | /* | 
|  | * We scan the semaphore set twice, first to ensure that the entire | 
|  | * operation can succeed, therefore avoiding any pointless writes | 
|  | * to shared memory and having to undo such changes in order to block | 
|  | * until the operations can go through. | 
|  | */ | 
|  | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); | 
|  |  | 
|  | curr = &sma->sems[idx]; | 
|  | sem_op = sop->sem_op; | 
|  | result = curr->semval; | 
|  |  | 
|  | if (!sem_op && result) | 
|  | goto would_block; /* wait-for-zero */ | 
|  |  | 
|  | result += sem_op; | 
|  | if (result < 0) | 
|  | goto would_block; | 
|  |  | 
|  | if (result > SEMVMX) | 
|  | return -ERANGE; | 
|  |  | 
|  | if (sop->sem_flg & SEM_UNDO) { | 
|  | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  |  | 
|  | /* Exceeding the undo range is an error. */ | 
|  | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | 
|  | return -ERANGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | curr = &sma->sems[sop->sem_num]; | 
|  | sem_op = sop->sem_op; | 
|  | result = curr->semval; | 
|  |  | 
|  | if (sop->sem_flg & SEM_UNDO) { | 
|  | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  |  | 
|  | un->semadj[sop->sem_num] = undo; | 
|  | } | 
|  | curr->semval += sem_op; | 
|  | ipc_update_pid(&curr->sempid, q->pid); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | would_block: | 
|  | q->blocking = sop; | 
|  | return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; | 
|  | } | 
|  |  | 
|  | static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, | 
|  | struct wake_q_head *wake_q) | 
|  | { | 
|  | get_task_struct(q->sleeper); | 
|  |  | 
|  | /* see SEM_BARRIER_2 for purpuse/pairing */ | 
|  | smp_store_release(&q->status, error); | 
|  |  | 
|  | wake_q_add_safe(wake_q, q->sleeper); | 
|  | } | 
|  |  | 
|  | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) | 
|  | { | 
|  | list_del(&q->list); | 
|  | if (q->nsops > 1) | 
|  | sma->complex_count--; | 
|  | } | 
|  |  | 
|  | /** check_restart(sma, q) | 
|  | * @sma: semaphore array | 
|  | * @q: the operation that just completed | 
|  | * | 
|  | * update_queue is O(N^2) when it restarts scanning the whole queue of | 
|  | * waiting operations. Therefore this function checks if the restart is | 
|  | * really necessary. It is called after a previously waiting operation | 
|  | * modified the array. | 
|  | * Note that wait-for-zero operations are handled without restart. | 
|  | */ | 
|  | static inline int check_restart(struct sem_array *sma, struct sem_queue *q) | 
|  | { | 
|  | /* pending complex alter operations are too difficult to analyse */ | 
|  | if (!list_empty(&sma->pending_alter)) | 
|  | return 1; | 
|  |  | 
|  | /* we were a sleeping complex operation. Too difficult */ | 
|  | if (q->nsops > 1) | 
|  | return 1; | 
|  |  | 
|  | /* It is impossible that someone waits for the new value: | 
|  | * - complex operations always restart. | 
|  | * - wait-for-zero are handled seperately. | 
|  | * - q is a previously sleeping simple operation that | 
|  | *   altered the array. It must be a decrement, because | 
|  | *   simple increments never sleep. | 
|  | * - If there are older (higher priority) decrements | 
|  | *   in the queue, then they have observed the original | 
|  | *   semval value and couldn't proceed. The operation | 
|  | *   decremented to value - thus they won't proceed either. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wake_const_ops - wake up non-alter tasks | 
|  | * @sma: semaphore array. | 
|  | * @semnum: semaphore that was modified. | 
|  | * @wake_q: lockless wake-queue head. | 
|  | * | 
|  | * wake_const_ops must be called after a semaphore in a semaphore array | 
|  | * was set to 0. If complex const operations are pending, wake_const_ops must | 
|  | * be called with semnum = -1, as well as with the number of each modified | 
|  | * semaphore. | 
|  | * The tasks that must be woken up are added to @wake_q. The return code | 
|  | * is stored in q->pid. | 
|  | * The function returns 1 if at least one operation was completed successfully. | 
|  | */ | 
|  | static int wake_const_ops(struct sem_array *sma, int semnum, | 
|  | struct wake_q_head *wake_q) | 
|  | { | 
|  | struct sem_queue *q, *tmp; | 
|  | struct list_head *pending_list; | 
|  | int semop_completed = 0; | 
|  |  | 
|  | if (semnum == -1) | 
|  | pending_list = &sma->pending_const; | 
|  | else | 
|  | pending_list = &sma->sems[semnum].pending_const; | 
|  |  | 
|  | list_for_each_entry_safe(q, tmp, pending_list, list) { | 
|  | int error = perform_atomic_semop(sma, q); | 
|  |  | 
|  | if (error > 0) | 
|  | continue; | 
|  | /* operation completed, remove from queue & wakeup */ | 
|  | unlink_queue(sma, q); | 
|  |  | 
|  | wake_up_sem_queue_prepare(q, error, wake_q); | 
|  | if (error == 0) | 
|  | semop_completed = 1; | 
|  | } | 
|  |  | 
|  | return semop_completed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_smart_wakeup_zero - wakeup all wait for zero tasks | 
|  | * @sma: semaphore array | 
|  | * @sops: operations that were performed | 
|  | * @nsops: number of operations | 
|  | * @wake_q: lockless wake-queue head | 
|  | * | 
|  | * Checks all required queue for wait-for-zero operations, based | 
|  | * on the actual changes that were performed on the semaphore array. | 
|  | * The function returns 1 if at least one operation was completed successfully. | 
|  | */ | 
|  | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | 
|  | int nsops, struct wake_q_head *wake_q) | 
|  | { | 
|  | int i; | 
|  | int semop_completed = 0; | 
|  | int got_zero = 0; | 
|  |  | 
|  | /* first: the per-semaphore queues, if known */ | 
|  | if (sops) { | 
|  | for (i = 0; i < nsops; i++) { | 
|  | int num = sops[i].sem_num; | 
|  |  | 
|  | if (sma->sems[num].semval == 0) { | 
|  | got_zero = 1; | 
|  | semop_completed |= wake_const_ops(sma, num, wake_q); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * No sops means modified semaphores not known. | 
|  | * Assume all were changed. | 
|  | */ | 
|  | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | if (sma->sems[i].semval == 0) { | 
|  | got_zero = 1; | 
|  | semop_completed |= wake_const_ops(sma, i, wake_q); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If one of the modified semaphores got 0, | 
|  | * then check the global queue, too. | 
|  | */ | 
|  | if (got_zero) | 
|  | semop_completed |= wake_const_ops(sma, -1, wake_q); | 
|  |  | 
|  | return semop_completed; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * update_queue - look for tasks that can be completed. | 
|  | * @sma: semaphore array. | 
|  | * @semnum: semaphore that was modified. | 
|  | * @wake_q: lockless wake-queue head. | 
|  | * | 
|  | * update_queue must be called after a semaphore in a semaphore array | 
|  | * was modified. If multiple semaphores were modified, update_queue must | 
|  | * be called with semnum = -1, as well as with the number of each modified | 
|  | * semaphore. | 
|  | * The tasks that must be woken up are added to @wake_q. The return code | 
|  | * is stored in q->pid. | 
|  | * The function internally checks if const operations can now succeed. | 
|  | * | 
|  | * The function return 1 if at least one semop was completed successfully. | 
|  | */ | 
|  | static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) | 
|  | { | 
|  | struct sem_queue *q, *tmp; | 
|  | struct list_head *pending_list; | 
|  | int semop_completed = 0; | 
|  |  | 
|  | if (semnum == -1) | 
|  | pending_list = &sma->pending_alter; | 
|  | else | 
|  | pending_list = &sma->sems[semnum].pending_alter; | 
|  |  | 
|  | again: | 
|  | list_for_each_entry_safe(q, tmp, pending_list, list) { | 
|  | int error, restart; | 
|  |  | 
|  | /* If we are scanning the single sop, per-semaphore list of | 
|  | * one semaphore and that semaphore is 0, then it is not | 
|  | * necessary to scan further: simple increments | 
|  | * that affect only one entry succeed immediately and cannot | 
|  | * be in the  per semaphore pending queue, and decrements | 
|  | * cannot be successful if the value is already 0. | 
|  | */ | 
|  | if (semnum != -1 && sma->sems[semnum].semval == 0) | 
|  | break; | 
|  |  | 
|  | error = perform_atomic_semop(sma, q); | 
|  |  | 
|  | /* Does q->sleeper still need to sleep? */ | 
|  | if (error > 0) | 
|  | continue; | 
|  |  | 
|  | unlink_queue(sma, q); | 
|  |  | 
|  | if (error) { | 
|  | restart = 0; | 
|  | } else { | 
|  | semop_completed = 1; | 
|  | do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); | 
|  | restart = check_restart(sma, q); | 
|  | } | 
|  |  | 
|  | wake_up_sem_queue_prepare(q, error, wake_q); | 
|  | if (restart) | 
|  | goto again; | 
|  | } | 
|  | return semop_completed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_semotime - set sem_otime | 
|  | * @sma: semaphore array | 
|  | * @sops: operations that modified the array, may be NULL | 
|  | * | 
|  | * sem_otime is replicated to avoid cache line trashing. | 
|  | * This function sets one instance to the current time. | 
|  | */ | 
|  | static void set_semotime(struct sem_array *sma, struct sembuf *sops) | 
|  | { | 
|  | if (sops == NULL) { | 
|  | sma->sems[0].sem_otime = ktime_get_real_seconds(); | 
|  | } else { | 
|  | sma->sems[sops[0].sem_num].sem_otime = | 
|  | ktime_get_real_seconds(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_smart_update - optimized update_queue | 
|  | * @sma: semaphore array | 
|  | * @sops: operations that were performed | 
|  | * @nsops: number of operations | 
|  | * @otime: force setting otime | 
|  | * @wake_q: lockless wake-queue head | 
|  | * | 
|  | * do_smart_update() does the required calls to update_queue and wakeup_zero, | 
|  | * based on the actual changes that were performed on the semaphore array. | 
|  | * Note that the function does not do the actual wake-up: the caller is | 
|  | * responsible for calling wake_up_q(). | 
|  | * It is safe to perform this call after dropping all locks. | 
|  | */ | 
|  | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, | 
|  | int otime, struct wake_q_head *wake_q) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); | 
|  |  | 
|  | if (!list_empty(&sma->pending_alter)) { | 
|  | /* semaphore array uses the global queue - just process it. */ | 
|  | otime |= update_queue(sma, -1, wake_q); | 
|  | } else { | 
|  | if (!sops) { | 
|  | /* | 
|  | * No sops, thus the modified semaphores are not | 
|  | * known. Check all. | 
|  | */ | 
|  | for (i = 0; i < sma->sem_nsems; i++) | 
|  | otime |= update_queue(sma, i, wake_q); | 
|  | } else { | 
|  | /* | 
|  | * Check the semaphores that were increased: | 
|  | * - No complex ops, thus all sleeping ops are | 
|  | *   decrease. | 
|  | * - if we decreased the value, then any sleeping | 
|  | *   semaphore ops wont be able to run: If the | 
|  | *   previous value was too small, then the new | 
|  | *   value will be too small, too. | 
|  | */ | 
|  | for (i = 0; i < nsops; i++) { | 
|  | if (sops[i].sem_op > 0) { | 
|  | otime |= update_queue(sma, | 
|  | sops[i].sem_num, wake_q); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (otime) | 
|  | set_semotime(sma, sops); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check_qop: Test if a queued operation sleeps on the semaphore semnum | 
|  | */ | 
|  | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, | 
|  | bool count_zero) | 
|  | { | 
|  | struct sembuf *sop = q->blocking; | 
|  |  | 
|  | /* | 
|  | * Linux always (since 0.99.10) reported a task as sleeping on all | 
|  | * semaphores. This violates SUS, therefore it was changed to the | 
|  | * standard compliant behavior. | 
|  | * Give the administrators a chance to notice that an application | 
|  | * might misbehave because it relies on the Linux behavior. | 
|  | */ | 
|  | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" | 
|  | "The task %s (%d) triggered the difference, watch for misbehavior.\n", | 
|  | current->comm, task_pid_nr(current)); | 
|  |  | 
|  | if (sop->sem_num != semnum) | 
|  | return 0; | 
|  |  | 
|  | if (count_zero && sop->sem_op == 0) | 
|  | return 1; | 
|  | if (!count_zero && sop->sem_op < 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The following counts are associated to each semaphore: | 
|  | *   semncnt        number of tasks waiting on semval being nonzero | 
|  | *   semzcnt        number of tasks waiting on semval being zero | 
|  | * | 
|  | * Per definition, a task waits only on the semaphore of the first semop | 
|  | * that cannot proceed, even if additional operation would block, too. | 
|  | */ | 
|  | static int count_semcnt(struct sem_array *sma, ushort semnum, | 
|  | bool count_zero) | 
|  | { | 
|  | struct list_head *l; | 
|  | struct sem_queue *q; | 
|  | int semcnt; | 
|  |  | 
|  | semcnt = 0; | 
|  | /* First: check the simple operations. They are easy to evaluate */ | 
|  | if (count_zero) | 
|  | l = &sma->sems[semnum].pending_const; | 
|  | else | 
|  | l = &sma->sems[semnum].pending_alter; | 
|  |  | 
|  | list_for_each_entry(q, l, list) { | 
|  | /* all task on a per-semaphore list sleep on exactly | 
|  | * that semaphore | 
|  | */ | 
|  | semcnt++; | 
|  | } | 
|  |  | 
|  | /* Then: check the complex operations. */ | 
|  | list_for_each_entry(q, &sma->pending_alter, list) { | 
|  | semcnt += check_qop(sma, semnum, q, count_zero); | 
|  | } | 
|  | if (count_zero) { | 
|  | list_for_each_entry(q, &sma->pending_const, list) { | 
|  | semcnt += check_qop(sma, semnum, q, count_zero); | 
|  | } | 
|  | } | 
|  | return semcnt; | 
|  | } | 
|  |  | 
|  | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked | 
|  | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem | 
|  | * remains locked on exit. | 
|  | */ | 
|  | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) | 
|  | { | 
|  | struct sem_undo *un, *tu; | 
|  | struct sem_queue *q, *tq; | 
|  | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | int i; | 
|  | DEFINE_WAKE_Q(wake_q); | 
|  |  | 
|  | /* Free the existing undo structures for this semaphore set.  */ | 
|  | ipc_assert_locked_object(&sma->sem_perm); | 
|  | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { | 
|  | list_del(&un->list_id); | 
|  | spin_lock(&un->ulp->lock); | 
|  | un->semid = -1; | 
|  | list_del_rcu(&un->list_proc); | 
|  | spin_unlock(&un->ulp->lock); | 
|  | kfree_rcu(un, rcu); | 
|  | } | 
|  |  | 
|  | /* Wake up all pending processes and let them fail with EIDRM. */ | 
|  | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { | 
|  | unlink_queue(sma, q); | 
|  | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | 
|  | unlink_queue(sma, q); | 
|  | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | } | 
|  | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | struct sem *sem = &sma->sems[i]; | 
|  | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { | 
|  | unlink_queue(sma, q); | 
|  | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | } | 
|  | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | 
|  | unlink_queue(sma, q); | 
|  | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | } | 
|  | ipc_update_pid(&sem->sempid, NULL); | 
|  | } | 
|  |  | 
|  | /* Remove the semaphore set from the IDR */ | 
|  | sem_rmid(ns, sma); | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | wake_up_q(&wake_q); | 
|  | ns->used_sems -= sma->sem_nsems; | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | } | 
|  |  | 
|  | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | 
|  | { | 
|  | switch (version) { | 
|  | case IPC_64: | 
|  | return copy_to_user(buf, in, sizeof(*in)); | 
|  | case IPC_OLD: | 
|  | { | 
|  | struct semid_ds out; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); | 
|  |  | 
|  | out.sem_otime	= in->sem_otime; | 
|  | out.sem_ctime	= in->sem_ctime; | 
|  | out.sem_nsems	= in->sem_nsems; | 
|  |  | 
|  | return copy_to_user(buf, &out, sizeof(out)); | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static time64_t get_semotime(struct sem_array *sma) | 
|  | { | 
|  | int i; | 
|  | time64_t res; | 
|  |  | 
|  | res = sma->sems[0].sem_otime; | 
|  | for (i = 1; i < sma->sem_nsems; i++) { | 
|  | time64_t to = sma->sems[i].sem_otime; | 
|  |  | 
|  | if (to > res) | 
|  | res = to; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int semctl_stat(struct ipc_namespace *ns, int semid, | 
|  | int cmd, struct semid64_ds *semid64) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | time64_t semotime; | 
|  | int err; | 
|  |  | 
|  | memset(semid64, 0, sizeof(*semid64)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { | 
|  | sma = sem_obtain_object(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | err = PTR_ERR(sma); | 
|  | goto out_unlock; | 
|  | } | 
|  | } else { /* IPC_STAT */ | 
|  | sma = sem_obtain_object_check(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | err = PTR_ERR(sma); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* see comment for SHM_STAT_ANY */ | 
|  | if (cmd == SEM_STAT_ANY) | 
|  | audit_ipc_obj(&sma->sem_perm); | 
|  | else { | 
|  | err = -EACCES; | 
|  | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | err = security_sem_semctl(&sma->sem_perm, cmd); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | ipc_lock_object(&sma->sem_perm); | 
|  |  | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | ipc_unlock_object(&sma->sem_perm); | 
|  | err = -EIDRM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); | 
|  | semotime = get_semotime(sma); | 
|  | semid64->sem_otime = semotime; | 
|  | semid64->sem_ctime = sma->sem_ctime; | 
|  | #ifndef CONFIG_64BIT | 
|  | semid64->sem_otime_high = semotime >> 32; | 
|  | semid64->sem_ctime_high = sma->sem_ctime >> 32; | 
|  | #endif | 
|  | semid64->sem_nsems = sma->sem_nsems; | 
|  |  | 
|  | if (cmd == IPC_STAT) { | 
|  | /* | 
|  | * As defined in SUS: | 
|  | * Return 0 on success | 
|  | */ | 
|  | err = 0; | 
|  | } else { | 
|  | /* | 
|  | * SEM_STAT and SEM_STAT_ANY (both Linux specific) | 
|  | * Return the full id, including the sequence number | 
|  | */ | 
|  | err = sma->sem_perm.id; | 
|  | } | 
|  | ipc_unlock_object(&sma->sem_perm); | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int semctl_info(struct ipc_namespace *ns, int semid, | 
|  | int cmd, void __user *p) | 
|  | { | 
|  | struct seminfo seminfo; | 
|  | int max_idx; | 
|  | int err; | 
|  |  | 
|  | err = security_sem_semctl(NULL, cmd); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | memset(&seminfo, 0, sizeof(seminfo)); | 
|  | seminfo.semmni = ns->sc_semmni; | 
|  | seminfo.semmns = ns->sc_semmns; | 
|  | seminfo.semmsl = ns->sc_semmsl; | 
|  | seminfo.semopm = ns->sc_semopm; | 
|  | seminfo.semvmx = SEMVMX; | 
|  | seminfo.semmnu = SEMMNU; | 
|  | seminfo.semmap = SEMMAP; | 
|  | seminfo.semume = SEMUME; | 
|  | down_read(&sem_ids(ns).rwsem); | 
|  | if (cmd == SEM_INFO) { | 
|  | seminfo.semusz = sem_ids(ns).in_use; | 
|  | seminfo.semaem = ns->used_sems; | 
|  | } else { | 
|  | seminfo.semusz = SEMUSZ; | 
|  | seminfo.semaem = SEMAEM; | 
|  | } | 
|  | max_idx = ipc_get_maxidx(&sem_ids(ns)); | 
|  | up_read(&sem_ids(ns).rwsem); | 
|  | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) | 
|  | return -EFAULT; | 
|  | return (max_idx < 0) ? 0 : max_idx; | 
|  | } | 
|  |  | 
|  | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, | 
|  | int val) | 
|  | { | 
|  | struct sem_undo *un; | 
|  | struct sem_array *sma; | 
|  | struct sem *curr; | 
|  | int err; | 
|  | DEFINE_WAKE_Q(wake_q); | 
|  |  | 
|  | if (val > SEMVMX || val < 0) | 
|  | return -ERANGE; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sma = sem_obtain_object_check(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | rcu_read_unlock(); | 
|  | return PTR_ERR(sma); | 
|  | } | 
|  |  | 
|  | if (semnum < 0 || semnum >= sma->sem_nsems) { | 
|  | rcu_read_unlock(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | 
|  | rcu_read_unlock(); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = security_sem_semctl(&sma->sem_perm, SETVAL); | 
|  | if (err) { | 
|  | rcu_read_unlock(); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | sem_lock(sma, NULL, -1); | 
|  |  | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | return -EIDRM; | 
|  | } | 
|  |  | 
|  | semnum = array_index_nospec(semnum, sma->sem_nsems); | 
|  | curr = &sma->sems[semnum]; | 
|  |  | 
|  | ipc_assert_locked_object(&sma->sem_perm); | 
|  | list_for_each_entry(un, &sma->list_id, list_id) | 
|  | un->semadj[semnum] = 0; | 
|  |  | 
|  | curr->semval = val; | 
|  | ipc_update_pid(&curr->sempid, task_tgid(current)); | 
|  | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | /* maybe some queued-up processes were waiting for this */ | 
|  | do_smart_update(sma, NULL, 0, 0, &wake_q); | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | wake_up_q(&wake_q); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, | 
|  | int cmd, void __user *p) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | struct sem *curr; | 
|  | int err, nsems; | 
|  | ushort fast_sem_io[SEMMSL_FAST]; | 
|  | ushort *sem_io = fast_sem_io; | 
|  | DEFINE_WAKE_Q(wake_q); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sma = sem_obtain_object_check(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | rcu_read_unlock(); | 
|  | return PTR_ERR(sma); | 
|  | } | 
|  |  | 
|  | nsems = sma->sem_nsems; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) | 
|  | goto out_rcu_wakeup; | 
|  |  | 
|  | err = security_sem_semctl(&sma->sem_perm, cmd); | 
|  | if (err) | 
|  | goto out_rcu_wakeup; | 
|  |  | 
|  | err = -EACCES; | 
|  | switch (cmd) { | 
|  | case GETALL: | 
|  | { | 
|  | ushort __user *array = p; | 
|  | int i; | 
|  |  | 
|  | sem_lock(sma, NULL, -1); | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | err = -EIDRM; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (nsems > SEMMSL_FAST) { | 
|  | if (!ipc_rcu_getref(&sma->sem_perm)) { | 
|  | err = -EIDRM; | 
|  | goto out_unlock; | 
|  | } | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | sem_io = kvmalloc_array(nsems, sizeof(ushort), | 
|  | GFP_KERNEL); | 
|  | if (sem_io == NULL) { | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sem_lock_and_putref(sma); | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | err = -EIDRM; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < sma->sem_nsems; i++) | 
|  | sem_io[i] = sma->sems[i].semval; | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | err = 0; | 
|  | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) | 
|  | err = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  | case SETALL: | 
|  | { | 
|  | int i; | 
|  | struct sem_undo *un; | 
|  |  | 
|  | if (!ipc_rcu_getref(&sma->sem_perm)) { | 
|  | err = -EIDRM; | 
|  | goto out_rcu_wakeup; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (nsems > SEMMSL_FAST) { | 
|  | sem_io = kvmalloc_array(nsems, sizeof(ushort), | 
|  | GFP_KERNEL); | 
|  | if (sem_io == NULL) { | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | err = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsems; i++) { | 
|  | if (sem_io[i] > SEMVMX) { | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | err = -ERANGE; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  | rcu_read_lock(); | 
|  | sem_lock_and_putref(sma); | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | err = -EIDRM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsems; i++) { | 
|  | sma->sems[i].semval = sem_io[i]; | 
|  | ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); | 
|  | } | 
|  |  | 
|  | ipc_assert_locked_object(&sma->sem_perm); | 
|  | list_for_each_entry(un, &sma->list_id, list_id) { | 
|  | for (i = 0; i < nsems; i++) | 
|  | un->semadj[i] = 0; | 
|  | } | 
|  | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | /* maybe some queued-up processes were waiting for this */ | 
|  | do_smart_update(sma, NULL, 0, 0, &wake_q); | 
|  | err = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ | 
|  | } | 
|  | err = -EINVAL; | 
|  | if (semnum < 0 || semnum >= nsems) | 
|  | goto out_rcu_wakeup; | 
|  |  | 
|  | sem_lock(sma, NULL, -1); | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | err = -EIDRM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | semnum = array_index_nospec(semnum, nsems); | 
|  | curr = &sma->sems[semnum]; | 
|  |  | 
|  | switch (cmd) { | 
|  | case GETVAL: | 
|  | err = curr->semval; | 
|  | goto out_unlock; | 
|  | case GETPID: | 
|  | err = pid_vnr(curr->sempid); | 
|  | goto out_unlock; | 
|  | case GETNCNT: | 
|  | err = count_semcnt(sma, semnum, 0); | 
|  | goto out_unlock; | 
|  | case GETZCNT: | 
|  | err = count_semcnt(sma, semnum, 1); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | sem_unlock(sma, -1); | 
|  | out_rcu_wakeup: | 
|  | rcu_read_unlock(); | 
|  | wake_up_q(&wake_q); | 
|  | out_free: | 
|  | if (sem_io != fast_sem_io) | 
|  | kvfree(sem_io); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | 
|  | { | 
|  | switch (version) { | 
|  | case IPC_64: | 
|  | if (copy_from_user(out, buf, sizeof(*out))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | case IPC_OLD: | 
|  | { | 
|  | struct semid_ds tbuf_old; | 
|  |  | 
|  | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) | 
|  | return -EFAULT; | 
|  |  | 
|  | out->sem_perm.uid	= tbuf_old.sem_perm.uid; | 
|  | out->sem_perm.gid	= tbuf_old.sem_perm.gid; | 
|  | out->sem_perm.mode	= tbuf_old.sem_perm.mode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function handles some semctl commands which require the rwsem | 
|  | * to be held in write mode. | 
|  | * NOTE: no locks must be held, the rwsem is taken inside this function. | 
|  | */ | 
|  | static int semctl_down(struct ipc_namespace *ns, int semid, | 
|  | int cmd, struct semid64_ds *semid64) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | int err; | 
|  | struct kern_ipc_perm *ipcp; | 
|  |  | 
|  | down_write(&sem_ids(ns).rwsem); | 
|  | rcu_read_lock(); | 
|  |  | 
|  | ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, | 
|  | &semid64->sem_perm, 0); | 
|  | if (IS_ERR(ipcp)) { | 
|  | err = PTR_ERR(ipcp); | 
|  | goto out_unlock1; | 
|  | } | 
|  |  | 
|  | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  |  | 
|  | err = security_sem_semctl(&sma->sem_perm, cmd); | 
|  | if (err) | 
|  | goto out_unlock1; | 
|  |  | 
|  | switch (cmd) { | 
|  | case IPC_RMID: | 
|  | sem_lock(sma, NULL, -1); | 
|  | /* freeary unlocks the ipc object and rcu */ | 
|  | freeary(ns, ipcp); | 
|  | goto out_up; | 
|  | case IPC_SET: | 
|  | sem_lock(sma, NULL, -1); | 
|  | err = ipc_update_perm(&semid64->sem_perm, ipcp); | 
|  | if (err) | 
|  | goto out_unlock0; | 
|  | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | break; | 
|  | default: | 
|  | err = -EINVAL; | 
|  | goto out_unlock1; | 
|  | } | 
|  |  | 
|  | out_unlock0: | 
|  | sem_unlock(sma, -1); | 
|  | out_unlock1: | 
|  | rcu_read_unlock(); | 
|  | out_up: | 
|  | up_write(&sem_ids(ns).rwsem); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) | 
|  | { | 
|  | struct ipc_namespace *ns; | 
|  | void __user *p = (void __user *)arg; | 
|  | struct semid64_ds semid64; | 
|  | int err; | 
|  |  | 
|  | if (semid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | switch (cmd) { | 
|  | case IPC_INFO: | 
|  | case SEM_INFO: | 
|  | return semctl_info(ns, semid, cmd, p); | 
|  | case IPC_STAT: | 
|  | case SEM_STAT: | 
|  | case SEM_STAT_ANY: | 
|  | err = semctl_stat(ns, semid, cmd, &semid64); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (copy_semid_to_user(p, &semid64, version)) | 
|  | err = -EFAULT; | 
|  | return err; | 
|  | case GETALL: | 
|  | case GETVAL: | 
|  | case GETPID: | 
|  | case GETNCNT: | 
|  | case GETZCNT: | 
|  | case SETALL: | 
|  | return semctl_main(ns, semid, semnum, cmd, p); | 
|  | case SETVAL: { | 
|  | int val; | 
|  | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | 
|  | /* big-endian 64bit */ | 
|  | val = arg >> 32; | 
|  | #else | 
|  | /* 32bit or little-endian 64bit */ | 
|  | val = arg; | 
|  | #endif | 
|  | return semctl_setval(ns, semid, semnum, val); | 
|  | } | 
|  | case IPC_SET: | 
|  | if (copy_semid_from_user(&semid64, p, version)) | 
|  | return -EFAULT; | 
|  | /* fall through */ | 
|  | case IPC_RMID: | 
|  | return semctl_down(ns, semid, cmd, &semid64); | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) | 
|  | { | 
|  | return ksys_semctl(semid, semnum, cmd, arg, IPC_64); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION | 
|  | long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) | 
|  | { | 
|  | int version = ipc_parse_version(&cmd); | 
|  |  | 
|  | return ksys_semctl(semid, semnum, cmd, arg, version); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) | 
|  | { | 
|  | return ksys_old_semctl(semid, semnum, cmd, arg); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  |  | 
|  | struct compat_semid_ds { | 
|  | struct compat_ipc_perm sem_perm; | 
|  | old_time32_t sem_otime; | 
|  | old_time32_t sem_ctime; | 
|  | compat_uptr_t sem_base; | 
|  | compat_uptr_t sem_pending; | 
|  | compat_uptr_t sem_pending_last; | 
|  | compat_uptr_t undo; | 
|  | unsigned short sem_nsems; | 
|  | }; | 
|  |  | 
|  | static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, | 
|  | int version) | 
|  | { | 
|  | memset(out, 0, sizeof(*out)); | 
|  | if (version == IPC_64) { | 
|  | struct compat_semid64_ds __user *p = buf; | 
|  | return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); | 
|  | } else { | 
|  | struct compat_semid_ds __user *p = buf; | 
|  | return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, | 
|  | int version) | 
|  | { | 
|  | if (version == IPC_64) { | 
|  | struct compat_semid64_ds v; | 
|  | memset(&v, 0, sizeof(v)); | 
|  | to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); | 
|  | v.sem_otime	 = lower_32_bits(in->sem_otime); | 
|  | v.sem_otime_high = upper_32_bits(in->sem_otime); | 
|  | v.sem_ctime	 = lower_32_bits(in->sem_ctime); | 
|  | v.sem_ctime_high = upper_32_bits(in->sem_ctime); | 
|  | v.sem_nsems = in->sem_nsems; | 
|  | return copy_to_user(buf, &v, sizeof(v)); | 
|  | } else { | 
|  | struct compat_semid_ds v; | 
|  | memset(&v, 0, sizeof(v)); | 
|  | to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); | 
|  | v.sem_otime = in->sem_otime; | 
|  | v.sem_ctime = in->sem_ctime; | 
|  | v.sem_nsems = in->sem_nsems; | 
|  | return copy_to_user(buf, &v, sizeof(v)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) | 
|  | { | 
|  | void __user *p = compat_ptr(arg); | 
|  | struct ipc_namespace *ns; | 
|  | struct semid64_ds semid64; | 
|  | int err; | 
|  |  | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | if (semid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (cmd & (~IPC_64)) { | 
|  | case IPC_INFO: | 
|  | case SEM_INFO: | 
|  | return semctl_info(ns, semid, cmd, p); | 
|  | case IPC_STAT: | 
|  | case SEM_STAT: | 
|  | case SEM_STAT_ANY: | 
|  | err = semctl_stat(ns, semid, cmd, &semid64); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (copy_compat_semid_to_user(p, &semid64, version)) | 
|  | err = -EFAULT; | 
|  | return err; | 
|  | case GETVAL: | 
|  | case GETPID: | 
|  | case GETNCNT: | 
|  | case GETZCNT: | 
|  | case GETALL: | 
|  | case SETALL: | 
|  | return semctl_main(ns, semid, semnum, cmd, p); | 
|  | case SETVAL: | 
|  | return semctl_setval(ns, semid, semnum, arg); | 
|  | case IPC_SET: | 
|  | if (copy_compat_semid_from_user(&semid64, p, version)) | 
|  | return -EFAULT; | 
|  | /* fallthru */ | 
|  | case IPC_RMID: | 
|  | return semctl_down(ns, semid, cmd, &semid64); | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) | 
|  | { | 
|  | return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION | 
|  | long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) | 
|  | { | 
|  | int version = compat_ipc_parse_version(&cmd); | 
|  |  | 
|  | return compat_ksys_semctl(semid, semnum, cmd, arg, version); | 
|  | } | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) | 
|  | { | 
|  | return compat_ksys_old_semctl(semid, semnum, cmd, arg); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* If the task doesn't already have a undo_list, then allocate one | 
|  | * here.  We guarantee there is only one thread using this undo list, | 
|  | * and current is THE ONE | 
|  | * | 
|  | * If this allocation and assignment succeeds, but later | 
|  | * portions of this code fail, there is no need to free the sem_undo_list. | 
|  | * Just let it stay associated with the task, and it'll be freed later | 
|  | * at exit time. | 
|  | * | 
|  | * This can block, so callers must hold no locks. | 
|  | */ | 
|  | static inline int get_undo_list(struct sem_undo_list **undo_listp) | 
|  | { | 
|  | struct sem_undo_list *undo_list; | 
|  |  | 
|  | undo_list = current->sysvsem.undo_list; | 
|  | if (!undo_list) { | 
|  | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); | 
|  | if (undo_list == NULL) | 
|  | return -ENOMEM; | 
|  | spin_lock_init(&undo_list->lock); | 
|  | refcount_set(&undo_list->refcnt, 1); | 
|  | INIT_LIST_HEAD(&undo_list->list_proc); | 
|  |  | 
|  | current->sysvsem.undo_list = undo_list; | 
|  | } | 
|  | *undo_listp = undo_list; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) | 
|  | { | 
|  | struct sem_undo *un; | 
|  |  | 
|  | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, | 
|  | spin_is_locked(&ulp->lock)) { | 
|  | if (un->semid == semid) | 
|  | return un; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) | 
|  | { | 
|  | struct sem_undo *un; | 
|  |  | 
|  | assert_spin_locked(&ulp->lock); | 
|  |  | 
|  | un = __lookup_undo(ulp, semid); | 
|  | if (un) { | 
|  | list_del_rcu(&un->list_proc); | 
|  | list_add_rcu(&un->list_proc, &ulp->list_proc); | 
|  | } | 
|  | return un; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_alloc_undo - lookup (and if not present create) undo array | 
|  | * @ns: namespace | 
|  | * @semid: semaphore array id | 
|  | * | 
|  | * The function looks up (and if not present creates) the undo structure. | 
|  | * The size of the undo structure depends on the size of the semaphore | 
|  | * array, thus the alloc path is not that straightforward. | 
|  | * Lifetime-rules: sem_undo is rcu-protected, on success, the function | 
|  | * performs a rcu_read_lock(). | 
|  | */ | 
|  | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | struct sem_undo_list *ulp; | 
|  | struct sem_undo *un, *new; | 
|  | int nsems, error; | 
|  |  | 
|  | error = get_undo_list(&ulp); | 
|  | if (error) | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | spin_lock(&ulp->lock); | 
|  | un = lookup_undo(ulp, semid); | 
|  | spin_unlock(&ulp->lock); | 
|  | if (likely(un != NULL)) | 
|  | goto out; | 
|  |  | 
|  | /* no undo structure around - allocate one. */ | 
|  | /* step 1: figure out the size of the semaphore array */ | 
|  | sma = sem_obtain_object_check(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | rcu_read_unlock(); | 
|  | return ERR_CAST(sma); | 
|  | } | 
|  |  | 
|  | nsems = sma->sem_nsems; | 
|  | if (!ipc_rcu_getref(&sma->sem_perm)) { | 
|  | rcu_read_unlock(); | 
|  | un = ERR_PTR(-EIDRM); | 
|  | goto out; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* step 2: allocate new undo structure */ | 
|  | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); | 
|  | if (!new) { | 
|  | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* step 3: Acquire the lock on semaphore array */ | 
|  | rcu_read_lock(); | 
|  | sem_lock_and_putref(sma); | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | kfree(new); | 
|  | un = ERR_PTR(-EIDRM); | 
|  | goto out; | 
|  | } | 
|  | spin_lock(&ulp->lock); | 
|  |  | 
|  | /* | 
|  | * step 4: check for races: did someone else allocate the undo struct? | 
|  | */ | 
|  | un = lookup_undo(ulp, semid); | 
|  | if (un) { | 
|  | kfree(new); | 
|  | goto success; | 
|  | } | 
|  | /* step 5: initialize & link new undo structure */ | 
|  | new->semadj = (short *) &new[1]; | 
|  | new->ulp = ulp; | 
|  | new->semid = semid; | 
|  | assert_spin_locked(&ulp->lock); | 
|  | list_add_rcu(&new->list_proc, &ulp->list_proc); | 
|  | ipc_assert_locked_object(&sma->sem_perm); | 
|  | list_add(&new->list_id, &sma->list_id); | 
|  | un = new; | 
|  |  | 
|  | success: | 
|  | spin_unlock(&ulp->lock); | 
|  | sem_unlock(sma, -1); | 
|  | out: | 
|  | return un; | 
|  | } | 
|  |  | 
|  | static long do_semtimedop(int semid, struct sembuf __user *tsops, | 
|  | unsigned nsops, const struct timespec64 *timeout) | 
|  | { | 
|  | int error = -EINVAL; | 
|  | struct sem_array *sma; | 
|  | struct sembuf fast_sops[SEMOPM_FAST]; | 
|  | struct sembuf *sops = fast_sops, *sop; | 
|  | struct sem_undo *un; | 
|  | int max, locknum; | 
|  | bool undos = false, alter = false, dupsop = false; | 
|  | struct sem_queue queue; | 
|  | unsigned long dup = 0, jiffies_left = 0; | 
|  | struct ipc_namespace *ns; | 
|  |  | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | if (nsops < 1 || semid < 0) | 
|  | return -EINVAL; | 
|  | if (nsops > ns->sc_semopm) | 
|  | return -E2BIG; | 
|  | if (nsops > SEMOPM_FAST) { | 
|  | sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); | 
|  | if (sops == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { | 
|  | error =  -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if (timeout) { | 
|  | if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || | 
|  | timeout->tv_nsec >= 1000000000L) { | 
|  | error = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  | jiffies_left = timespec64_to_jiffies(timeout); | 
|  | } | 
|  |  | 
|  | max = 0; | 
|  | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); | 
|  |  | 
|  | if (sop->sem_num >= max) | 
|  | max = sop->sem_num; | 
|  | if (sop->sem_flg & SEM_UNDO) | 
|  | undos = true; | 
|  | if (dup & mask) { | 
|  | /* | 
|  | * There was a previous alter access that appears | 
|  | * to have accessed the same semaphore, thus use | 
|  | * the dupsop logic. "appears", because the detection | 
|  | * can only check % BITS_PER_LONG. | 
|  | */ | 
|  | dupsop = true; | 
|  | } | 
|  | if (sop->sem_op != 0) { | 
|  | alter = true; | 
|  | dup |= mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (undos) { | 
|  | /* On success, find_alloc_undo takes the rcu_read_lock */ | 
|  | un = find_alloc_undo(ns, semid); | 
|  | if (IS_ERR(un)) { | 
|  | error = PTR_ERR(un); | 
|  | goto out_free; | 
|  | } | 
|  | } else { | 
|  | un = NULL; | 
|  | rcu_read_lock(); | 
|  | } | 
|  |  | 
|  | sma = sem_obtain_object_check(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | rcu_read_unlock(); | 
|  | error = PTR_ERR(sma); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | error = -EFBIG; | 
|  | if (max >= sma->sem_nsems) { | 
|  | rcu_read_unlock(); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | error = -EACCES; | 
|  | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { | 
|  | rcu_read_unlock(); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); | 
|  | if (error) { | 
|  | rcu_read_unlock(); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | error = -EIDRM; | 
|  | locknum = sem_lock(sma, sops, nsops); | 
|  | /* | 
|  | * We eventually might perform the following check in a lockless | 
|  | * fashion, considering ipc_valid_object() locking constraints. | 
|  | * If nsops == 1 and there is no contention for sem_perm.lock, then | 
|  | * only a per-semaphore lock is held and it's OK to proceed with the | 
|  | * check below. More details on the fine grained locking scheme | 
|  | * entangled here and why it's RMID race safe on comments at sem_lock() | 
|  | */ | 
|  | if (!ipc_valid_object(&sma->sem_perm)) | 
|  | goto out_unlock_free; | 
|  | /* | 
|  | * semid identifiers are not unique - find_alloc_undo may have | 
|  | * allocated an undo structure, it was invalidated by an RMID | 
|  | * and now a new array with received the same id. Check and fail. | 
|  | * This case can be detected checking un->semid. The existence of | 
|  | * "un" itself is guaranteed by rcu. | 
|  | */ | 
|  | if (un && un->semid == -1) | 
|  | goto out_unlock_free; | 
|  |  | 
|  | queue.sops = sops; | 
|  | queue.nsops = nsops; | 
|  | queue.undo = un; | 
|  | queue.pid = task_tgid(current); | 
|  | queue.alter = alter; | 
|  | queue.dupsop = dupsop; | 
|  |  | 
|  | error = perform_atomic_semop(sma, &queue); | 
|  | if (error == 0) { /* non-blocking succesfull path */ | 
|  | DEFINE_WAKE_Q(wake_q); | 
|  |  | 
|  | /* | 
|  | * If the operation was successful, then do | 
|  | * the required updates. | 
|  | */ | 
|  | if (alter) | 
|  | do_smart_update(sma, sops, nsops, 1, &wake_q); | 
|  | else | 
|  | set_semotime(sma, sops); | 
|  |  | 
|  | sem_unlock(sma, locknum); | 
|  | rcu_read_unlock(); | 
|  | wake_up_q(&wake_q); | 
|  |  | 
|  | goto out_free; | 
|  | } | 
|  | if (error < 0) /* non-blocking error path */ | 
|  | goto out_unlock_free; | 
|  |  | 
|  | /* | 
|  | * We need to sleep on this operation, so we put the current | 
|  | * task into the pending queue and go to sleep. | 
|  | */ | 
|  | if (nsops == 1) { | 
|  | struct sem *curr; | 
|  | int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); | 
|  | curr = &sma->sems[idx]; | 
|  |  | 
|  | if (alter) { | 
|  | if (sma->complex_count) { | 
|  | list_add_tail(&queue.list, | 
|  | &sma->pending_alter); | 
|  | } else { | 
|  |  | 
|  | list_add_tail(&queue.list, | 
|  | &curr->pending_alter); | 
|  | } | 
|  | } else { | 
|  | list_add_tail(&queue.list, &curr->pending_const); | 
|  | } | 
|  | } else { | 
|  | if (!sma->complex_count) | 
|  | merge_queues(sma); | 
|  |  | 
|  | if (alter) | 
|  | list_add_tail(&queue.list, &sma->pending_alter); | 
|  | else | 
|  | list_add_tail(&queue.list, &sma->pending_const); | 
|  |  | 
|  | sma->complex_count++; | 
|  | } | 
|  |  | 
|  | do { | 
|  | /* memory ordering ensured by the lock in sem_lock() */ | 
|  | WRITE_ONCE(queue.status, -EINTR); | 
|  | queue.sleeper = current; | 
|  |  | 
|  | /* memory ordering is ensured by the lock in sem_lock() */ | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | sem_unlock(sma, locknum); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (timeout) | 
|  | jiffies_left = schedule_timeout(jiffies_left); | 
|  | else | 
|  | schedule(); | 
|  |  | 
|  | /* | 
|  | * fastpath: the semop has completed, either successfully or | 
|  | * not, from the syscall pov, is quite irrelevant to us at this | 
|  | * point; we're done. | 
|  | * | 
|  | * We _do_ care, nonetheless, about being awoken by a signal or | 
|  | * spuriously.  The queue.status is checked again in the | 
|  | * slowpath (aka after taking sem_lock), such that we can detect | 
|  | * scenarios where we were awakened externally, during the | 
|  | * window between wake_q_add() and wake_up_q(). | 
|  | */ | 
|  | error = READ_ONCE(queue.status); | 
|  | if (error != -EINTR) { | 
|  | /* see SEM_BARRIER_2 for purpose/pairing */ | 
|  | smp_acquire__after_ctrl_dep(); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | locknum = sem_lock(sma, sops, nsops); | 
|  |  | 
|  | if (!ipc_valid_object(&sma->sem_perm)) | 
|  | goto out_unlock_free; | 
|  |  | 
|  | /* | 
|  | * No necessity for any barrier: We are protect by sem_lock() | 
|  | */ | 
|  | error = READ_ONCE(queue.status); | 
|  |  | 
|  | /* | 
|  | * If queue.status != -EINTR we are woken up by another process. | 
|  | * Leave without unlink_queue(), but with sem_unlock(). | 
|  | */ | 
|  | if (error != -EINTR) | 
|  | goto out_unlock_free; | 
|  |  | 
|  | /* | 
|  | * If an interrupt occurred we have to clean up the queue. | 
|  | */ | 
|  | if (timeout && jiffies_left == 0) | 
|  | error = -EAGAIN; | 
|  | } while (error == -EINTR && !signal_pending(current)); /* spurious */ | 
|  |  | 
|  | unlink_queue(sma, &queue); | 
|  |  | 
|  | out_unlock_free: | 
|  | sem_unlock(sma, locknum); | 
|  | rcu_read_unlock(); | 
|  | out_free: | 
|  | if (sops != fast_sops) | 
|  | kvfree(sops); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | long ksys_semtimedop(int semid, struct sembuf __user *tsops, | 
|  | unsigned int nsops, const struct __kernel_timespec __user *timeout) | 
|  | { | 
|  | if (timeout) { | 
|  | struct timespec64 ts; | 
|  | if (get_timespec64(&ts, timeout)) | 
|  | return -EFAULT; | 
|  | return do_semtimedop(semid, tsops, nsops, &ts); | 
|  | } | 
|  | return do_semtimedop(semid, tsops, nsops, NULL); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, | 
|  | unsigned int, nsops, const struct __kernel_timespec __user *, timeout) | 
|  | { | 
|  | return ksys_semtimedop(semid, tsops, nsops, timeout); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|  | long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, | 
|  | unsigned int nsops, | 
|  | const struct old_timespec32 __user *timeout) | 
|  | { | 
|  | if (timeout) { | 
|  | struct timespec64 ts; | 
|  | if (get_old_timespec32(&ts, timeout)) | 
|  | return -EFAULT; | 
|  | return do_semtimedop(semid, tsems, nsops, &ts); | 
|  | } | 
|  | return do_semtimedop(semid, tsems, nsops, NULL); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, | 
|  | unsigned int, nsops, | 
|  | const struct old_timespec32 __user *, timeout) | 
|  | { | 
|  | return compat_ksys_semtimedop(semid, tsems, nsops, timeout); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, | 
|  | unsigned, nsops) | 
|  | { | 
|  | return do_semtimedop(semid, tsops, nsops, NULL); | 
|  | } | 
|  |  | 
|  | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | 
|  | * parent and child tasks. | 
|  | */ | 
|  |  | 
|  | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct sem_undo_list *undo_list; | 
|  | int error; | 
|  |  | 
|  | if (clone_flags & CLONE_SYSVSEM) { | 
|  | error = get_undo_list(&undo_list); | 
|  | if (error) | 
|  | return error; | 
|  | refcount_inc(&undo_list->refcnt); | 
|  | tsk->sysvsem.undo_list = undo_list; | 
|  | } else | 
|  | tsk->sysvsem.undo_list = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add semadj values to semaphores, free undo structures. | 
|  | * undo structures are not freed when semaphore arrays are destroyed | 
|  | * so some of them may be out of date. | 
|  | * IMPLEMENTATION NOTE: There is some confusion over whether the | 
|  | * set of adjustments that needs to be done should be done in an atomic | 
|  | * manner or not. That is, if we are attempting to decrement the semval | 
|  | * should we queue up and wait until we can do so legally? | 
|  | * The original implementation attempted to do this (queue and wait). | 
|  | * The current implementation does not do so. The POSIX standard | 
|  | * and SVID should be consulted to determine what behavior is mandated. | 
|  | */ | 
|  | void exit_sem(struct task_struct *tsk) | 
|  | { | 
|  | struct sem_undo_list *ulp; | 
|  |  | 
|  | ulp = tsk->sysvsem.undo_list; | 
|  | if (!ulp) | 
|  | return; | 
|  | tsk->sysvsem.undo_list = NULL; | 
|  |  | 
|  | if (!refcount_dec_and_test(&ulp->refcnt)) | 
|  | return; | 
|  |  | 
|  | for (;;) { | 
|  | struct sem_array *sma; | 
|  | struct sem_undo *un; | 
|  | int semid, i; | 
|  | DEFINE_WAKE_Q(wake_q); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | un = list_entry_rcu(ulp->list_proc.next, | 
|  | struct sem_undo, list_proc); | 
|  | if (&un->list_proc == &ulp->list_proc) { | 
|  | /* | 
|  | * We must wait for freeary() before freeing this ulp, | 
|  | * in case we raced with last sem_undo. There is a small | 
|  | * possibility where we exit while freeary() didn't | 
|  | * finish unlocking sem_undo_list. | 
|  | */ | 
|  | spin_lock(&ulp->lock); | 
|  | spin_unlock(&ulp->lock); | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  | spin_lock(&ulp->lock); | 
|  | semid = un->semid; | 
|  | spin_unlock(&ulp->lock); | 
|  |  | 
|  | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | if (semid == -1) { | 
|  | rcu_read_unlock(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); | 
|  | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | if (IS_ERR(sma)) { | 
|  | rcu_read_unlock(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sem_lock(sma, NULL, -1); | 
|  | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | continue; | 
|  | } | 
|  | un = __lookup_undo(ulp, semid); | 
|  | if (un == NULL) { | 
|  | /* exit_sem raced with IPC_RMID+semget() that created | 
|  | * exactly the same semid. Nothing to do. | 
|  | */ | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* remove un from the linked lists */ | 
|  | ipc_assert_locked_object(&sma->sem_perm); | 
|  | list_del(&un->list_id); | 
|  |  | 
|  | spin_lock(&ulp->lock); | 
|  | list_del_rcu(&un->list_proc); | 
|  | spin_unlock(&ulp->lock); | 
|  |  | 
|  | /* perform adjustments registered in un */ | 
|  | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | struct sem *semaphore = &sma->sems[i]; | 
|  | if (un->semadj[i]) { | 
|  | semaphore->semval += un->semadj[i]; | 
|  | /* | 
|  | * Range checks of the new semaphore value, | 
|  | * not defined by sus: | 
|  | * - Some unices ignore the undo entirely | 
|  | *   (e.g. HP UX 11i 11.22, Tru64 V5.1) | 
|  | * - some cap the value (e.g. FreeBSD caps | 
|  | *   at 0, but doesn't enforce SEMVMX) | 
|  | * | 
|  | * Linux caps the semaphore value, both at 0 | 
|  | * and at SEMVMX. | 
|  | * | 
|  | *	Manfred <manfred@colorfullife.com> | 
|  | */ | 
|  | if (semaphore->semval < 0) | 
|  | semaphore->semval = 0; | 
|  | if (semaphore->semval > SEMVMX) | 
|  | semaphore->semval = SEMVMX; | 
|  | ipc_update_pid(&semaphore->sempid, task_tgid(current)); | 
|  | } | 
|  | } | 
|  | /* maybe some queued-up processes were waiting for this */ | 
|  | do_smart_update(sma, NULL, 0, 1, &wake_q); | 
|  | sem_unlock(sma, -1); | 
|  | rcu_read_unlock(); | 
|  | wake_up_q(&wake_q); | 
|  |  | 
|  | kfree_rcu(un, rcu); | 
|  | } | 
|  | kfree(ulp); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) | 
|  | { | 
|  | struct user_namespace *user_ns = seq_user_ns(s); | 
|  | struct kern_ipc_perm *ipcp = it; | 
|  | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | time64_t sem_otime; | 
|  |  | 
|  | /* | 
|  | * The proc interface isn't aware of sem_lock(), it calls | 
|  | * ipc_lock_object() directly (in sysvipc_find_ipc). | 
|  | * In order to stay compatible with sem_lock(), we must | 
|  | * enter / leave complex_mode. | 
|  | */ | 
|  | complexmode_enter(sma); | 
|  |  | 
|  | sem_otime = get_semotime(sma); | 
|  |  | 
|  | seq_printf(s, | 
|  | "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n", | 
|  | sma->sem_perm.key, | 
|  | sma->sem_perm.id, | 
|  | sma->sem_perm.mode, | 
|  | sma->sem_nsems, | 
|  | from_kuid_munged(user_ns, sma->sem_perm.uid), | 
|  | from_kgid_munged(user_ns, sma->sem_perm.gid), | 
|  | from_kuid_munged(user_ns, sma->sem_perm.cuid), | 
|  | from_kgid_munged(user_ns, sma->sem_perm.cgid), | 
|  | sem_otime, | 
|  | sma->sem_ctime); | 
|  |  | 
|  | complexmode_tryleave(sma); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif |