blob: bbd7b3175f09ed35094487c3b055f3c38e08a1ce [file] [log] [blame]
/*
* Copyright 2008-2010 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/rtnetlink.h>
#include <linux/prefetch.h>
#include <net/ip6_checksum.h>
#include <linux/ktime.h>
#include <linux/numa.h>
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
#include <linux/crash_dump.h>
#include <net/busy_poll.h>
#include <net/vxlan.h>
#include "cq_enet_desc.h"
#include "vnic_dev.h"
#include "vnic_intr.h"
#include "vnic_stats.h"
#include "vnic_vic.h"
#include "enic_res.h"
#include "enic.h"
#include "enic_dev.h"
#include "enic_pp.h"
#include "enic_clsf.h"
#define ENIC_NOTIFY_TIMER_PERIOD (2 * HZ)
#define WQ_ENET_MAX_DESC_LEN (1 << WQ_ENET_LEN_BITS)
#define MAX_TSO (1 << 16)
#define ENIC_DESC_MAX_SPLITS (MAX_TSO / WQ_ENET_MAX_DESC_LEN + 1)
#define PCI_DEVICE_ID_CISCO_VIC_ENET 0x0043 /* ethernet vnic */
#define PCI_DEVICE_ID_CISCO_VIC_ENET_DYN 0x0044 /* enet dynamic vnic */
#define PCI_DEVICE_ID_CISCO_VIC_ENET_VF 0x0071 /* enet SRIOV VF */
#define RX_COPYBREAK_DEFAULT 256
/* Supported devices */
static const struct pci_device_id enic_id_table[] = {
{ PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET) },
{ PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET_DYN) },
{ PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET_VF) },
{ 0, } /* end of table */
};
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("Scott Feldman <scofeldm@cisco.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, enic_id_table);
#define ENIC_LARGE_PKT_THRESHOLD 1000
#define ENIC_MAX_COALESCE_TIMERS 10
/* Interrupt moderation table, which will be used to decide the
* coalescing timer values
* {rx_rate in Mbps, mapping percentage of the range}
*/
static struct enic_intr_mod_table mod_table[ENIC_MAX_COALESCE_TIMERS + 1] = {
{4000, 0},
{4400, 10},
{5060, 20},
{5230, 30},
{5540, 40},
{5820, 50},
{6120, 60},
{6435, 70},
{6745, 80},
{7000, 90},
{0xFFFFFFFF, 100}
};
/* This table helps the driver to pick different ranges for rx coalescing
* timer depending on the link speed.
*/
static struct enic_intr_mod_range mod_range[ENIC_MAX_LINK_SPEEDS] = {
{0, 0}, /* 0 - 4 Gbps */
{0, 3}, /* 4 - 10 Gbps */
{3, 6}, /* 10 - 40 Gbps */
};
static void enic_init_affinity_hint(struct enic *enic)
{
int numa_node = dev_to_node(&enic->pdev->dev);
int i;
for (i = 0; i < enic->intr_count; i++) {
if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i) ||
(cpumask_available(enic->msix[i].affinity_mask) &&
!cpumask_empty(enic->msix[i].affinity_mask)))
continue;
if (zalloc_cpumask_var(&enic->msix[i].affinity_mask,
GFP_KERNEL))
cpumask_set_cpu(cpumask_local_spread(i, numa_node),
enic->msix[i].affinity_mask);
}
}
static void enic_free_affinity_hint(struct enic *enic)
{
int i;
for (i = 0; i < enic->intr_count; i++) {
if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i))
continue;
free_cpumask_var(enic->msix[i].affinity_mask);
}
}
static void enic_set_affinity_hint(struct enic *enic)
{
int i;
int err;
for (i = 0; i < enic->intr_count; i++) {
if (enic_is_err_intr(enic, i) ||
enic_is_notify_intr(enic, i) ||
!cpumask_available(enic->msix[i].affinity_mask) ||
cpumask_empty(enic->msix[i].affinity_mask))
continue;
err = irq_set_affinity_hint(enic->msix_entry[i].vector,
enic->msix[i].affinity_mask);
if (err)
netdev_warn(enic->netdev, "irq_set_affinity_hint failed, err %d\n",
err);
}
for (i = 0; i < enic->wq_count; i++) {
int wq_intr = enic_msix_wq_intr(enic, i);
if (cpumask_available(enic->msix[wq_intr].affinity_mask) &&
!cpumask_empty(enic->msix[wq_intr].affinity_mask))
netif_set_xps_queue(enic->netdev,
enic->msix[wq_intr].affinity_mask,
i);
}
}
static void enic_unset_affinity_hint(struct enic *enic)
{
int i;
for (i = 0; i < enic->intr_count; i++)
irq_set_affinity_hint(enic->msix_entry[i].vector, NULL);
}
static void enic_udp_tunnel_add(struct net_device *netdev,
struct udp_tunnel_info *ti)
{
struct enic *enic = netdev_priv(netdev);
__be16 port = ti->port;
int err;
spin_lock_bh(&enic->devcmd_lock);
if (ti->type != UDP_TUNNEL_TYPE_VXLAN) {
netdev_info(netdev, "udp_tnl: only vxlan tunnel offload supported");
goto error;
}
switch (ti->sa_family) {
case AF_INET6:
if (!(enic->vxlan.flags & ENIC_VXLAN_OUTER_IPV6)) {
netdev_info(netdev, "vxlan: only IPv4 offload supported");
goto error;
}
/* Fall through */
case AF_INET:
break;
default:
goto error;
}
if (enic->vxlan.vxlan_udp_port_number) {
if (ntohs(port) == enic->vxlan.vxlan_udp_port_number)
netdev_warn(netdev, "vxlan: udp port already offloaded");
else
netdev_info(netdev, "vxlan: offload supported for only one UDP port");
goto error;
}
if ((vnic_dev_get_res_count(enic->vdev, RES_TYPE_WQ) != 1) &&
!(enic->vxlan.flags & ENIC_VXLAN_MULTI_WQ)) {
netdev_info(netdev, "vxlan: vxlan offload with multi wq not supported on this adapter");
goto error;
}
err = vnic_dev_overlay_offload_cfg(enic->vdev,
OVERLAY_CFG_VXLAN_PORT_UPDATE,
ntohs(port));
if (err)
goto error;
err = vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN,
enic->vxlan.patch_level);
if (err)
goto error;
enic->vxlan.vxlan_udp_port_number = ntohs(port);
netdev_info(netdev, "vxlan fw-vers-%d: offload enabled for udp port: %d, sa_family: %d ",
(int)enic->vxlan.patch_level, ntohs(port), ti->sa_family);
goto unlock;
error:
netdev_info(netdev, "failed to offload udp port: %d, sa_family: %d, type: %d",
ntohs(port), ti->sa_family, ti->type);
unlock:
spin_unlock_bh(&enic->devcmd_lock);
}
static void enic_udp_tunnel_del(struct net_device *netdev,
struct udp_tunnel_info *ti)
{
struct enic *enic = netdev_priv(netdev);
int err;
spin_lock_bh(&enic->devcmd_lock);
if ((ntohs(ti->port) != enic->vxlan.vxlan_udp_port_number) ||
ti->type != UDP_TUNNEL_TYPE_VXLAN) {
netdev_info(netdev, "udp_tnl: port:%d, sa_family: %d, type: %d not offloaded",
ntohs(ti->port), ti->sa_family, ti->type);
goto unlock;
}
err = vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN,
OVERLAY_OFFLOAD_DISABLE);
if (err) {
netdev_err(netdev, "vxlan: del offload udp port: %d failed",
ntohs(ti->port));
goto unlock;
}
enic->vxlan.vxlan_udp_port_number = 0;
netdev_info(netdev, "vxlan: del offload udp port %d, family %d\n",
ntohs(ti->port), ti->sa_family);
unlock:
spin_unlock_bh(&enic->devcmd_lock);
}
static netdev_features_t enic_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
const struct ethhdr *eth = (struct ethhdr *)skb_inner_mac_header(skb);
struct enic *enic = netdev_priv(dev);
struct udphdr *udph;
u16 port = 0;
u8 proto;
if (!skb->encapsulation)
return features;
features = vxlan_features_check(skb, features);
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IPV6):
if (!(enic->vxlan.flags & ENIC_VXLAN_OUTER_IPV6))
goto out;
proto = ipv6_hdr(skb)->nexthdr;
break;
case htons(ETH_P_IP):
proto = ip_hdr(skb)->protocol;
break;
default:
goto out;
}
switch (eth->h_proto) {
case ntohs(ETH_P_IPV6):
if (!(enic->vxlan.flags & ENIC_VXLAN_INNER_IPV6))
goto out;
/* Fall through */
case ntohs(ETH_P_IP):
break;
default:
goto out;
}
if (proto == IPPROTO_UDP) {
udph = udp_hdr(skb);
port = be16_to_cpu(udph->dest);
}
/* HW supports offload of only one UDP port. Remove CSUM and GSO MASK
* for other UDP port tunnels
*/
if (port != enic->vxlan.vxlan_udp_port_number)
goto out;
return features;
out:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
int enic_is_dynamic(struct enic *enic)
{
return enic->pdev->device == PCI_DEVICE_ID_CISCO_VIC_ENET_DYN;
}
int enic_sriov_enabled(struct enic *enic)
{
return (enic->priv_flags & ENIC_SRIOV_ENABLED) ? 1 : 0;
}
static int enic_is_sriov_vf(struct enic *enic)
{
return enic->pdev->device == PCI_DEVICE_ID_CISCO_VIC_ENET_VF;
}
int enic_is_valid_vf(struct enic *enic, int vf)
{
#ifdef CONFIG_PCI_IOV
return vf >= 0 && vf < enic->num_vfs;
#else
return 0;
#endif
}
static void enic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf)
{
struct enic *enic = vnic_dev_priv(wq->vdev);
if (buf->sop)
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
else
pci_unmap_page(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
if (buf->os_buf)
dev_kfree_skb_any(buf->os_buf);
}
static void enic_wq_free_buf(struct vnic_wq *wq,
struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque)
{
enic_free_wq_buf(wq, buf);
}
static int enic_wq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
spin_lock(&enic->wq_lock[q_number]);
vnic_wq_service(&enic->wq[q_number], cq_desc,
completed_index, enic_wq_free_buf,
opaque);
if (netif_tx_queue_stopped(netdev_get_tx_queue(enic->netdev, q_number)) &&
vnic_wq_desc_avail(&enic->wq[q_number]) >=
(MAX_SKB_FRAGS + ENIC_DESC_MAX_SPLITS))
netif_wake_subqueue(enic->netdev, q_number);
spin_unlock(&enic->wq_lock[q_number]);
return 0;
}
static bool enic_log_q_error(struct enic *enic)
{
unsigned int i;
u32 error_status;
bool err = false;
for (i = 0; i < enic->wq_count; i++) {
error_status = vnic_wq_error_status(&enic->wq[i]);
err |= error_status;
if (error_status)
netdev_err(enic->netdev, "WQ[%d] error_status %d\n",
i, error_status);
}
for (i = 0; i < enic->rq_count; i++) {
error_status = vnic_rq_error_status(&enic->rq[i]);
err |= error_status;
if (error_status)
netdev_err(enic->netdev, "RQ[%d] error_status %d\n",
i, error_status);
}
return err;
}
static void enic_msglvl_check(struct enic *enic)
{
u32 msg_enable = vnic_dev_msg_lvl(enic->vdev);
if (msg_enable != enic->msg_enable) {
netdev_info(enic->netdev, "msg lvl changed from 0x%x to 0x%x\n",
enic->msg_enable, msg_enable);
enic->msg_enable = msg_enable;
}
}
static void enic_mtu_check(struct enic *enic)
{
u32 mtu = vnic_dev_mtu(enic->vdev);
struct net_device *netdev = enic->netdev;
if (mtu && mtu != enic->port_mtu) {
enic->port_mtu = mtu;
if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) {
mtu = max_t(int, ENIC_MIN_MTU,
min_t(int, ENIC_MAX_MTU, mtu));
if (mtu != netdev->mtu)
schedule_work(&enic->change_mtu_work);
} else {
if (mtu < netdev->mtu)
netdev_warn(netdev,
"interface MTU (%d) set higher "
"than switch port MTU (%d)\n",
netdev->mtu, mtu);
}
}
}
static void enic_link_check(struct enic *enic)
{
int link_status = vnic_dev_link_status(enic->vdev);
int carrier_ok = netif_carrier_ok(enic->netdev);
if (link_status && !carrier_ok) {
netdev_info(enic->netdev, "Link UP\n");
netif_carrier_on(enic->netdev);
} else if (!link_status && carrier_ok) {
netdev_info(enic->netdev, "Link DOWN\n");
netif_carrier_off(enic->netdev);
}
}
static void enic_notify_check(struct enic *enic)
{
enic_msglvl_check(enic);
enic_mtu_check(enic);
enic_link_check(enic);
}
#define ENIC_TEST_INTR(pba, i) (pba & (1 << i))
static irqreturn_t enic_isr_legacy(int irq, void *data)
{
struct net_device *netdev = data;
struct enic *enic = netdev_priv(netdev);
unsigned int io_intr = enic_legacy_io_intr();
unsigned int err_intr = enic_legacy_err_intr();
unsigned int notify_intr = enic_legacy_notify_intr();
u32 pba;
vnic_intr_mask(&enic->intr[io_intr]);
pba = vnic_intr_legacy_pba(enic->legacy_pba);
if (!pba) {
vnic_intr_unmask(&enic->intr[io_intr]);
return IRQ_NONE; /* not our interrupt */
}
if (ENIC_TEST_INTR(pba, notify_intr)) {
enic_notify_check(enic);
vnic_intr_return_all_credits(&enic->intr[notify_intr]);
}
if (ENIC_TEST_INTR(pba, err_intr)) {
vnic_intr_return_all_credits(&enic->intr[err_intr]);
enic_log_q_error(enic);
/* schedule recovery from WQ/RQ error */
schedule_work(&enic->reset);
return IRQ_HANDLED;
}
if (ENIC_TEST_INTR(pba, io_intr))
napi_schedule_irqoff(&enic->napi[0]);
else
vnic_intr_unmask(&enic->intr[io_intr]);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msi(int irq, void *data)
{
struct enic *enic = data;
/* With MSI, there is no sharing of interrupts, so this is
* our interrupt and there is no need to ack it. The device
* is not providing per-vector masking, so the OS will not
* write to PCI config space to mask/unmask the interrupt.
* We're using mask_on_assertion for MSI, so the device
* automatically masks the interrupt when the interrupt is
* generated. Later, when exiting polling, the interrupt
* will be unmasked (see enic_poll).
*
* Also, the device uses the same PCIe Traffic Class (TC)
* for Memory Write data and MSI, so there are no ordering
* issues; the MSI will always arrive at the Root Complex
* _after_ corresponding Memory Writes (i.e. descriptor
* writes).
*/
napi_schedule_irqoff(&enic->napi[0]);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix(int irq, void *data)
{
struct napi_struct *napi = data;
napi_schedule_irqoff(napi);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_err(int irq, void *data)
{
struct enic *enic = data;
unsigned int intr = enic_msix_err_intr(enic);
vnic_intr_return_all_credits(&enic->intr[intr]);
if (enic_log_q_error(enic))
/* schedule recovery from WQ/RQ error */
schedule_work(&enic->reset);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_notify(int irq, void *data)
{
struct enic *enic = data;
unsigned int intr = enic_msix_notify_intr(enic);
enic_notify_check(enic);
vnic_intr_return_all_credits(&enic->intr[intr]);
return IRQ_HANDLED;
}
static int enic_queue_wq_skb_cont(struct enic *enic, struct vnic_wq *wq,
struct sk_buff *skb, unsigned int len_left,
int loopback)
{
const skb_frag_t *frag;
dma_addr_t dma_addr;
/* Queue additional data fragments */
for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
len_left -= skb_frag_size(frag);
dma_addr = skb_frag_dma_map(&enic->pdev->dev, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr)))
return -ENOMEM;
enic_queue_wq_desc_cont(wq, skb, dma_addr, skb_frag_size(frag),
(len_left == 0), /* EOP? */
loopback);
}
return 0;
}
static int enic_queue_wq_skb_vlan(struct enic *enic, struct vnic_wq *wq,
struct sk_buff *skb, int vlan_tag_insert,
unsigned int vlan_tag, int loopback)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
int eop = (len_left == 0);
dma_addr_t dma_addr;
int err = 0;
dma_addr = pci_map_single(enic->pdev, skb->data, head_len,
PCI_DMA_TODEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr)))
return -ENOMEM;
/* Queue the main skb fragment. The fragments are no larger
* than max MTU(9000)+ETH_HDR_LEN(14) bytes, which is less
* than WQ_ENET_MAX_DESC_LEN length. So only one descriptor
* per fragment is queued.
*/
enic_queue_wq_desc(wq, skb, dma_addr, head_len, vlan_tag_insert,
vlan_tag, eop, loopback);
if (!eop)
err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback);
return err;
}
static int enic_queue_wq_skb_csum_l4(struct enic *enic, struct vnic_wq *wq,
struct sk_buff *skb, int vlan_tag_insert,
unsigned int vlan_tag, int loopback)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
unsigned int hdr_len = skb_checksum_start_offset(skb);
unsigned int csum_offset = hdr_len + skb->csum_offset;
int eop = (len_left == 0);
dma_addr_t dma_addr;
int err = 0;
dma_addr = pci_map_single(enic->pdev, skb->data, head_len,
PCI_DMA_TODEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr)))
return -ENOMEM;
/* Queue the main skb fragment. The fragments are no larger
* than max MTU(9000)+ETH_HDR_LEN(14) bytes, which is less
* than WQ_ENET_MAX_DESC_LEN length. So only one descriptor
* per fragment is queued.
*/
enic_queue_wq_desc_csum_l4(wq, skb, dma_addr, head_len, csum_offset,
hdr_len, vlan_tag_insert, vlan_tag, eop,
loopback);
if (!eop)
err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback);
return err;
}
static void enic_preload_tcp_csum_encap(struct sk_buff *skb)
{
const struct ethhdr *eth = (struct ethhdr *)skb_inner_mac_header(skb);
switch (eth->h_proto) {
case ntohs(ETH_P_IP):
inner_ip_hdr(skb)->check = 0;
inner_tcp_hdr(skb)->check =
~csum_tcpudp_magic(inner_ip_hdr(skb)->saddr,
inner_ip_hdr(skb)->daddr, 0,
IPPROTO_TCP, 0);
break;
case ntohs(ETH_P_IPV6):
inner_tcp_hdr(skb)->check =
~csum_ipv6_magic(&inner_ipv6_hdr(skb)->saddr,
&inner_ipv6_hdr(skb)->daddr, 0,
IPPROTO_TCP, 0);
break;
default:
WARN_ONCE(1, "Non ipv4/ipv6 inner pkt for encap offload");
break;
}
}
static void enic_preload_tcp_csum(struct sk_buff *skb)
{
/* Preload TCP csum field with IP pseudo hdr calculated
* with IP length set to zero. HW will later add in length
* to each TCP segment resulting from the TSO.
*/
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
}
}
static int enic_queue_wq_skb_tso(struct enic *enic, struct vnic_wq *wq,
struct sk_buff *skb, unsigned int mss,
int vlan_tag_insert, unsigned int vlan_tag,
int loopback)
{
unsigned int frag_len_left = skb_headlen(skb);
unsigned int len_left = skb->len - frag_len_left;
int eop = (len_left == 0);
unsigned int offset = 0;
unsigned int hdr_len;
dma_addr_t dma_addr;
unsigned int len;
skb_frag_t *frag;
if (skb->encapsulation) {
hdr_len = skb_inner_transport_header(skb) - skb->data;
hdr_len += inner_tcp_hdrlen(skb);
enic_preload_tcp_csum_encap(skb);
} else {
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
enic_preload_tcp_csum(skb);
}
/* Queue WQ_ENET_MAX_DESC_LEN length descriptors
* for the main skb fragment
*/
while (frag_len_left) {
len = min(frag_len_left, (unsigned int)WQ_ENET_MAX_DESC_LEN);
dma_addr = pci_map_single(enic->pdev, skb->data + offset, len,
PCI_DMA_TODEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr)))
return -ENOMEM;
enic_queue_wq_desc_tso(wq, skb, dma_addr, len, mss, hdr_len,
vlan_tag_insert, vlan_tag,
eop && (len == frag_len_left), loopback);
frag_len_left -= len;
offset += len;
}
if (eop)
return 0;
/* Queue WQ_ENET_MAX_DESC_LEN length descriptors
* for additional data fragments
*/
for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
len_left -= skb_frag_size(frag);
frag_len_left = skb_frag_size(frag);
offset = 0;
while (frag_len_left) {
len = min(frag_len_left,
(unsigned int)WQ_ENET_MAX_DESC_LEN);
dma_addr = skb_frag_dma_map(&enic->pdev->dev, frag,
offset, len,
DMA_TO_DEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr)))
return -ENOMEM;
enic_queue_wq_desc_cont(wq, skb, dma_addr, len,
(len_left == 0) &&
(len == frag_len_left),/*EOP*/
loopback);
frag_len_left -= len;
offset += len;
}
}
return 0;
}
static inline int enic_queue_wq_skb_encap(struct enic *enic, struct vnic_wq *wq,
struct sk_buff *skb,
int vlan_tag_insert,
unsigned int vlan_tag, int loopback)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
/* Hardware will overwrite the checksum fields, calculating from
* scratch and ignoring the value placed by software.
* Offload mode = 00
* mss[2], mss[1], mss[0] bits are set
*/
unsigned int mss_or_csum = 7;
int eop = (len_left == 0);
dma_addr_t dma_addr;
int err = 0;
dma_addr = pci_map_single(enic->pdev, skb->data, head_len,
PCI_DMA_TODEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr)))
return -ENOMEM;
enic_queue_wq_desc_ex(wq, skb, dma_addr, head_len, mss_or_csum, 0,
vlan_tag_insert, vlan_tag,
WQ_ENET_OFFLOAD_MODE_CSUM, eop, 1 /* SOP */, eop,
loopback);
if (!eop)
err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback);
return err;
}
static inline void enic_queue_wq_skb(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb)
{
unsigned int mss = skb_shinfo(skb)->gso_size;
unsigned int vlan_tag = 0;
int vlan_tag_insert = 0;
int loopback = 0;
int err;
if (skb_vlan_tag_present(skb)) {
/* VLAN tag from trunking driver */
vlan_tag_insert = 1;
vlan_tag = skb_vlan_tag_get(skb);
} else if (enic->loop_enable) {
vlan_tag = enic->loop_tag;
loopback = 1;
}
if (mss)
err = enic_queue_wq_skb_tso(enic, wq, skb, mss,
vlan_tag_insert, vlan_tag,
loopback);
else if (skb->encapsulation)
err = enic_queue_wq_skb_encap(enic, wq, skb, vlan_tag_insert,
vlan_tag, loopback);
else if (skb->ip_summed == CHECKSUM_PARTIAL)
err = enic_queue_wq_skb_csum_l4(enic, wq, skb, vlan_tag_insert,
vlan_tag, loopback);
else
err = enic_queue_wq_skb_vlan(enic, wq, skb, vlan_tag_insert,
vlan_tag, loopback);
if (unlikely(err)) {
struct vnic_wq_buf *buf;
buf = wq->to_use->prev;
/* while not EOP of previous pkt && queue not empty.
* For all non EOP bufs, os_buf is NULL.
*/
while (!buf->os_buf && (buf->next != wq->to_clean)) {
enic_free_wq_buf(wq, buf);
wq->ring.desc_avail++;
buf = buf->prev;
}
wq->to_use = buf->next;
dev_kfree_skb(skb);
}
}
/* netif_tx_lock held, process context with BHs disabled, or BH */
static netdev_tx_t enic_hard_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_wq *wq;
unsigned int txq_map;
struct netdev_queue *txq;
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
txq_map = skb_get_queue_mapping(skb) % enic->wq_count;
wq = &enic->wq[txq_map];
txq = netdev_get_tx_queue(netdev, txq_map);
/* Non-TSO sends must fit within ENIC_NON_TSO_MAX_DESC descs,
* which is very likely. In the off chance it's going to take
* more than * ENIC_NON_TSO_MAX_DESC, linearize the skb.
*/
if (skb_shinfo(skb)->gso_size == 0 &&
skb_shinfo(skb)->nr_frags + 1 > ENIC_NON_TSO_MAX_DESC &&
skb_linearize(skb)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
spin_lock(&enic->wq_lock[txq_map]);
if (vnic_wq_desc_avail(wq) <
skb_shinfo(skb)->nr_frags + ENIC_DESC_MAX_SPLITS) {
netif_tx_stop_queue(txq);
/* This is a hard error, log it */
netdev_err(netdev, "BUG! Tx ring full when queue awake!\n");
spin_unlock(&enic->wq_lock[txq_map]);
return NETDEV_TX_BUSY;
}
enic_queue_wq_skb(enic, wq, skb);
if (vnic_wq_desc_avail(wq) < MAX_SKB_FRAGS + ENIC_DESC_MAX_SPLITS)
netif_tx_stop_queue(txq);
skb_tx_timestamp(skb);
if (!netdev_xmit_more() || netif_xmit_stopped(txq))
vnic_wq_doorbell(wq);
spin_unlock(&enic->wq_lock[txq_map]);
return NETDEV_TX_OK;
}
/* dev_base_lock rwlock held, nominally process context */
static void enic_get_stats(struct net_device *netdev,
struct rtnl_link_stats64 *net_stats)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_stats *stats;
int err;
err = enic_dev_stats_dump(enic, &stats);
/* return only when pci_zalloc_consistent fails in vnic_dev_stats_dump
* For other failures, like devcmd failure, we return previously
* recorded stats.
*/
if (err == -ENOMEM)
return;
net_stats->tx_packets = stats->tx.tx_frames_ok;
net_stats->tx_bytes = stats->tx.tx_bytes_ok;
net_stats->tx_errors = stats->tx.tx_errors;
net_stats->tx_dropped = stats->tx.tx_drops;
net_stats->rx_packets = stats->rx.rx_frames_ok;
net_stats->rx_bytes = stats->rx.rx_bytes_ok;
net_stats->rx_errors = stats->rx.rx_errors;
net_stats->multicast = stats->rx.rx_multicast_frames_ok;
net_stats->rx_over_errors = enic->rq_truncated_pkts;
net_stats->rx_crc_errors = enic->rq_bad_fcs;
net_stats->rx_dropped = stats->rx.rx_no_bufs + stats->rx.rx_drop;
}
static int enic_mc_sync(struct net_device *netdev, const u8 *mc_addr)
{
struct enic *enic = netdev_priv(netdev);
if (enic->mc_count == ENIC_MULTICAST_PERFECT_FILTERS) {
unsigned int mc_count = netdev_mc_count(netdev);
netdev_warn(netdev, "Registering only %d out of %d multicast addresses\n",
ENIC_MULTICAST_PERFECT_FILTERS, mc_count);
return -ENOSPC;
}
enic_dev_add_addr(enic, mc_addr);
enic->mc_count++;
return 0;
}
static int enic_mc_unsync(struct net_device *netdev, const u8 *mc_addr)
{
struct enic *enic = netdev_priv(netdev);
enic_dev_del_addr(enic, mc_addr);
enic->mc_count--;
return 0;
}
static int enic_uc_sync(struct net_device *netdev, const u8 *uc_addr)
{
struct enic *enic = netdev_priv(netdev);
if (enic->uc_count == ENIC_UNICAST_PERFECT_FILTERS) {
unsigned int uc_count = netdev_uc_count(netdev);
netdev_warn(netdev, "Registering only %d out of %d unicast addresses\n",
ENIC_UNICAST_PERFECT_FILTERS, uc_count);
return -ENOSPC;
}
enic_dev_add_addr(enic, uc_addr);
enic->uc_count++;
return 0;
}
static int enic_uc_unsync(struct net_device *netdev, const u8 *uc_addr)
{
struct enic *enic = netdev_priv(netdev);
enic_dev_del_addr(enic, uc_addr);
enic->uc_count--;
return 0;
}
void enic_reset_addr_lists(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
__dev_uc_unsync(netdev, NULL);
__dev_mc_unsync(netdev, NULL);
enic->mc_count = 0;
enic->uc_count = 0;
enic->flags = 0;
}
static int enic_set_mac_addr(struct net_device *netdev, char *addr)
{
struct enic *enic = netdev_priv(netdev);
if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) {
if (!is_valid_ether_addr(addr) && !is_zero_ether_addr(addr))
return -EADDRNOTAVAIL;
} else {
if (!is_valid_ether_addr(addr))
return -EADDRNOTAVAIL;
}
memcpy(netdev->dev_addr, addr, netdev->addr_len);
return 0;
}
static int enic_set_mac_address_dynamic(struct net_device *netdev, void *p)
{
struct enic *enic = netdev_priv(netdev);
struct sockaddr *saddr = p;
char *addr = saddr->sa_data;
int err;
if (netif_running(enic->netdev)) {
err = enic_dev_del_station_addr(enic);
if (err)
return err;
}
err = enic_set_mac_addr(netdev, addr);
if (err)
return err;
if (netif_running(enic->netdev)) {
err = enic_dev_add_station_addr(enic);
if (err)
return err;
}
return err;
}
static int enic_set_mac_address(struct net_device *netdev, void *p)
{
struct sockaddr *saddr = p;
char *addr = saddr->sa_data;
struct enic *enic = netdev_priv(netdev);
int err;
err = enic_dev_del_station_addr(enic);
if (err)
return err;
err = enic_set_mac_addr(netdev, addr);
if (err)
return err;
return enic_dev_add_station_addr(enic);
}
/* netif_tx_lock held, BHs disabled */
static void enic_set_rx_mode(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
int directed = 1;
int multicast = (netdev->flags & IFF_MULTICAST) ? 1 : 0;
int broadcast = (netdev->flags & IFF_BROADCAST) ? 1 : 0;
int promisc = (netdev->flags & IFF_PROMISC) ||
netdev_uc_count(netdev) > ENIC_UNICAST_PERFECT_FILTERS;
int allmulti = (netdev->flags & IFF_ALLMULTI) ||
netdev_mc_count(netdev) > ENIC_MULTICAST_PERFECT_FILTERS;
unsigned int flags = netdev->flags |
(allmulti ? IFF_ALLMULTI : 0) |
(promisc ? IFF_PROMISC : 0);
if (enic->flags != flags) {
enic->flags = flags;
enic_dev_packet_filter(enic, directed,
multicast, broadcast, promisc, allmulti);
}
if (!promisc) {
__dev_uc_sync(netdev, enic_uc_sync, enic_uc_unsync);
if (!allmulti)
__dev_mc_sync(netdev, enic_mc_sync, enic_mc_unsync);
}
}
/* netif_tx_lock held, BHs disabled */
static void enic_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct enic *enic = netdev_priv(netdev);
schedule_work(&enic->tx_hang_reset);
}
static int enic_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct enic *enic = netdev_priv(netdev);
struct enic_port_profile *pp;
int err;
ENIC_PP_BY_INDEX(enic, vf, pp, &err);
if (err)
return err;
if (is_valid_ether_addr(mac) || is_zero_ether_addr(mac)) {
if (vf == PORT_SELF_VF) {
memcpy(pp->vf_mac, mac, ETH_ALEN);
return 0;
} else {
/*
* For sriov vf's set the mac in hw
*/
ENIC_DEVCMD_PROXY_BY_INDEX(vf, err, enic,
vnic_dev_set_mac_addr, mac);
return enic_dev_status_to_errno(err);
}
} else
return -EINVAL;
}
static int enic_set_vf_port(struct net_device *netdev, int vf,
struct nlattr *port[])
{
struct enic *enic = netdev_priv(netdev);
struct enic_port_profile prev_pp;
struct enic_port_profile *pp;
int err = 0, restore_pp = 1;
ENIC_PP_BY_INDEX(enic, vf, pp, &err);
if (err)
return err;
if (!port[IFLA_PORT_REQUEST])
return -EOPNOTSUPP;
memcpy(&prev_pp, pp, sizeof(*enic->pp));
memset(pp, 0, sizeof(*enic->pp));
pp->set |= ENIC_SET_REQUEST;
pp->request = nla_get_u8(port[IFLA_PORT_REQUEST]);
if (port[IFLA_PORT_PROFILE]) {
pp->set |= ENIC_SET_NAME;
memcpy(pp->name, nla_data(port[IFLA_PORT_PROFILE]),
PORT_PROFILE_MAX);
}
if (port[IFLA_PORT_INSTANCE_UUID]) {
pp->set |= ENIC_SET_INSTANCE;
memcpy(pp->instance_uuid,
nla_data(port[IFLA_PORT_INSTANCE_UUID]), PORT_UUID_MAX);
}
if (port[IFLA_PORT_HOST_UUID]) {
pp->set |= ENIC_SET_HOST;
memcpy(pp->host_uuid,
nla_data(port[IFLA_PORT_HOST_UUID]), PORT_UUID_MAX);
}
if (vf == PORT_SELF_VF) {
/* Special case handling: mac came from IFLA_VF_MAC */
if (!is_zero_ether_addr(prev_pp.vf_mac))
memcpy(pp->mac_addr, prev_pp.vf_mac, ETH_ALEN);
if (is_zero_ether_addr(netdev->dev_addr))
eth_hw_addr_random(netdev);
} else {
/* SR-IOV VF: get mac from adapter */
ENIC_DEVCMD_PROXY_BY_INDEX(vf, err, enic,
vnic_dev_get_mac_addr, pp->mac_addr);
if (err) {
netdev_err(netdev, "Error getting mac for vf %d\n", vf);
memcpy(pp, &prev_pp, sizeof(*pp));
return enic_dev_status_to_errno(err);
}
}
err = enic_process_set_pp_request(enic, vf, &prev_pp, &restore_pp);
if (err) {
if (restore_pp) {
/* Things are still the way they were: Implicit
* DISASSOCIATE failed
*/
memcpy(pp, &prev_pp, sizeof(*pp));
} else {
memset(pp, 0, sizeof(*pp));
if (vf == PORT_SELF_VF)
eth_zero_addr(netdev->dev_addr);
}
} else {
/* Set flag to indicate that the port assoc/disassoc
* request has been sent out to fw
*/
pp->set |= ENIC_PORT_REQUEST_APPLIED;
/* If DISASSOCIATE, clean up all assigned/saved macaddresses */
if (pp->request == PORT_REQUEST_DISASSOCIATE) {
eth_zero_addr(pp->mac_addr);
if (vf == PORT_SELF_VF)
eth_zero_addr(netdev->dev_addr);
}
}
if (vf == PORT_SELF_VF)
eth_zero_addr(pp->vf_mac);
return err;
}
static int enic_get_vf_port(struct net_device *netdev, int vf,
struct sk_buff *skb)
{
struct enic *enic = netdev_priv(netdev);
u16 response = PORT_PROFILE_RESPONSE_SUCCESS;
struct enic_port_profile *pp;
int err;
ENIC_PP_BY_INDEX(enic, vf, pp, &err);
if (err)
return err;
if (!(pp->set & ENIC_PORT_REQUEST_APPLIED))
return -ENODATA;
err = enic_process_get_pp_request(enic, vf, pp->request, &response);
if (err)
return err;
if (nla_put_u16(skb, IFLA_PORT_REQUEST, pp->request) ||
nla_put_u16(skb, IFLA_PORT_RESPONSE, response) ||
((pp->set & ENIC_SET_NAME) &&
nla_put(skb, IFLA_PORT_PROFILE, PORT_PROFILE_MAX, pp->name)) ||
((pp->set & ENIC_SET_INSTANCE) &&
nla_put(skb, IFLA_PORT_INSTANCE_UUID, PORT_UUID_MAX,
pp->instance_uuid)) ||
((pp->set & ENIC_SET_HOST) &&
nla_put(skb, IFLA_PORT_HOST_UUID, PORT_UUID_MAX, pp->host_uuid)))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
if (!buf->os_buf)
return;
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(buf->os_buf);
buf->os_buf = NULL;
}
static int enic_rq_alloc_buf(struct vnic_rq *rq)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct net_device *netdev = enic->netdev;
struct sk_buff *skb;
unsigned int len = netdev->mtu + VLAN_ETH_HLEN;
unsigned int os_buf_index = 0;
dma_addr_t dma_addr;
struct vnic_rq_buf *buf = rq->to_use;
if (buf->os_buf) {
enic_queue_rq_desc(rq, buf->os_buf, os_buf_index, buf->dma_addr,
buf->len);
return 0;
}
skb = netdev_alloc_skb_ip_align(netdev, len);
if (!skb)
return -ENOMEM;
dma_addr = pci_map_single(enic->pdev, skb->data, len,
PCI_DMA_FROMDEVICE);
if (unlikely(enic_dma_map_check(enic, dma_addr))) {
dev_kfree_skb(skb);
return -ENOMEM;
}
enic_queue_rq_desc(rq, skb, os_buf_index,
dma_addr, len);
return 0;
}
static void enic_intr_update_pkt_size(struct vnic_rx_bytes_counter *pkt_size,
u32 pkt_len)
{
if (ENIC_LARGE_PKT_THRESHOLD <= pkt_len)
pkt_size->large_pkt_bytes_cnt += pkt_len;
else
pkt_size->small_pkt_bytes_cnt += pkt_len;
}
static bool enic_rxcopybreak(struct net_device *netdev, struct sk_buff **skb,
struct vnic_rq_buf *buf, u16 len)
{
struct enic *enic = netdev_priv(netdev);
struct sk_buff *new_skb;
if (len > enic->rx_copybreak)
return false;
new_skb = netdev_alloc_skb_ip_align(netdev, len);
if (!new_skb)
return false;
pci_dma_sync_single_for_cpu(enic->pdev, buf->dma_addr, len,
DMA_FROM_DEVICE);
memcpy(new_skb->data, (*skb)->data, len);
*skb = new_skb;
return true;
}
static void enic_rq_indicate_buf(struct vnic_rq *rq,
struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
int skipped, void *opaque)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct net_device *netdev = enic->netdev;
struct sk_buff *skb;
struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];
u8 type, color, eop, sop, ingress_port, vlan_stripped;
u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
u8 packet_error;
u16 q_number, completed_index, bytes_written, vlan_tci, checksum;
u32 rss_hash;
bool outer_csum_ok = true, encap = false;
if (skipped)
return;
skb = buf->os_buf;
cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc,
&type, &color, &q_number, &completed_index,
&ingress_port, &fcoe, &eop, &sop, &rss_type,
&csum_not_calc, &rss_hash, &bytes_written,
&packet_error, &vlan_stripped, &vlan_tci, &checksum,
&fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error,
&fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp,
&ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment,
&fcs_ok);
if (packet_error) {
if (!fcs_ok) {
if (bytes_written > 0)
enic->rq_bad_fcs++;
else if (bytes_written == 0)
enic->rq_truncated_pkts++;
}
pci_unmap_single(enic->pdev, buf->dma_addr, buf->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
buf->os_buf = NULL;
return;
}
if (eop && bytes_written > 0) {
/* Good receive
*/
if (!enic_rxcopybreak(netdev, &skb, buf, bytes_written)) {
buf->os_buf = NULL;
pci_unmap_single(enic->pdev, buf->dma_addr, buf->len,
PCI_DMA_FROMDEVICE);
}
prefetch(skb->data - NET_IP_ALIGN);
skb_put(skb, bytes_written);
skb->protocol = eth_type_trans(skb, netdev);
skb_record_rx_queue(skb, q_number);
if ((netdev->features & NETIF_F_RXHASH) && rss_hash &&
(type == 3)) {
switch (rss_type) {
case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv4:
case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6:
case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6_EX:
skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L4);
break;
case CQ_ENET_RQ_DESC_RSS_TYPE_IPv4:
case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6:
case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6_EX:
skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L3);
break;
}
}
if (enic->vxlan.vxlan_udp_port_number) {
switch (enic->vxlan.patch_level) {
case 0:
if (fcoe) {
encap = true;
outer_csum_ok = fcoe_fc_crc_ok;
}
break;
case 2:
if ((type == 7) &&
(rss_hash & BIT(0))) {
encap = true;
outer_csum_ok = (rss_hash & BIT(1)) &&
(rss_hash & BIT(2));
}
break;
}
}
/* Hardware does not provide whole packet checksum. It only
* provides pseudo checksum. Since hw validates the packet
* checksum but not provide us the checksum value. use
* CHECSUM_UNNECESSARY.
*
* In case of encap pkt tcp_udp_csum_ok/tcp_udp_csum_ok is
* inner csum_ok. outer_csum_ok is set by hw when outer udp
* csum is correct or is zero.
*/
if ((netdev->features & NETIF_F_RXCSUM) && !csum_not_calc &&
tcp_udp_csum_ok && outer_csum_ok &&
(ipv4_csum_ok || ipv6)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = encap;
}
if (vlan_stripped)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
skb_mark_napi_id(skb, &enic->napi[rq->index]);
if (!(netdev->features & NETIF_F_GRO))
netif_receive_skb(skb);
else
napi_gro_receive(&enic->napi[q_number], skb);
if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
enic_intr_update_pkt_size(&cq->pkt_size_counter,
bytes_written);
} else {
/* Buffer overflow
*/
pci_unmap_single(enic->pdev, buf->dma_addr, buf->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
buf->os_buf = NULL;
}
}
static int enic_rq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
vnic_rq_service(&enic->rq[q_number], cq_desc,
completed_index, VNIC_RQ_RETURN_DESC,
enic_rq_indicate_buf, opaque);
return 0;
}
static void enic_set_int_moderation(struct enic *enic, struct vnic_rq *rq)
{
unsigned int intr = enic_msix_rq_intr(enic, rq->index);
struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];
u32 timer = cq->tobe_rx_coal_timeval;
if (cq->tobe_rx_coal_timeval != cq->cur_rx_coal_timeval) {
vnic_intr_coalescing_timer_set(&enic->intr[intr], timer);
cq->cur_rx_coal_timeval = cq->tobe_rx_coal_timeval;
}
}
static void enic_calc_int_moderation(struct enic *enic, struct vnic_rq *rq)
{
struct enic_rx_coal *rx_coal = &enic->rx_coalesce_setting;
struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];
struct vnic_rx_bytes_counter *pkt_size_counter = &cq->pkt_size_counter;
int index;
u32 timer;
u32 range_start;
u32 traffic;
u64 delta;
ktime_t now = ktime_get();
delta = ktime_us_delta(now, cq->prev_ts);
if (delta < ENIC_AIC_TS_BREAK)
return;
cq->prev_ts = now;
traffic = pkt_size_counter->large_pkt_bytes_cnt +
pkt_size_counter->small_pkt_bytes_cnt;
/* The table takes Mbps
* traffic *= 8 => bits
* traffic *= (10^6 / delta) => bps
* traffic /= 10^6 => Mbps
*
* Combining, traffic *= (8 / delta)
*/
traffic <<= 3;
traffic = delta > UINT_MAX ? 0 : traffic / (u32)delta;
for (index = 0; index < ENIC_MAX_COALESCE_TIMERS; index++)
if (traffic < mod_table[index].rx_rate)
break;
range_start = (pkt_size_counter->small_pkt_bytes_cnt >
pkt_size_counter->large_pkt_bytes_cnt << 1) ?
rx_coal->small_pkt_range_start :
rx_coal->large_pkt_range_start;
timer = range_start + ((rx_coal->range_end - range_start) *
mod_table[index].range_percent / 100);
/* Damping */
cq->tobe_rx_coal_timeval = (timer + cq->tobe_rx_coal_timeval) >> 1;
pkt_size_counter->large_pkt_bytes_cnt = 0;
pkt_size_counter->small_pkt_bytes_cnt = 0;
}
static int enic_poll(struct napi_struct *napi, int budget)
{
struct net_device *netdev = napi->dev;
struct enic *enic = netdev_priv(netdev);
unsigned int cq_rq = enic_cq_rq(enic, 0);
unsigned int cq_wq = enic_cq_wq(enic, 0);
unsigned int intr = enic_legacy_io_intr();
unsigned int rq_work_to_do = budget;
unsigned int wq_work_to_do = ENIC_WQ_NAPI_BUDGET;
unsigned int work_done, rq_work_done = 0, wq_work_done;
int err;
wq_work_done = vnic_cq_service(&enic->cq[cq_wq], wq_work_to_do,
enic_wq_service, NULL);
if (budget > 0)
rq_work_done = vnic_cq_service(&enic->cq[cq_rq],
rq_work_to_do, enic_rq_service, NULL);
/* Accumulate intr event credits for this polling
* cycle. An intr event is the completion of a
* a WQ or RQ packet.
*/
work_done = rq_work_done + wq_work_done;
if (work_done > 0)
vnic_intr_return_credits(&enic->intr[intr],
work_done,
0 /* don't unmask intr */,
0 /* don't reset intr timer */);
err = vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf);
/* Buffer allocation failed. Stay in polling
* mode so we can try to fill the ring again.
*/
if (err)
rq_work_done = rq_work_to_do;
if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
/* Call the function which refreshes the intr coalescing timer
* value based on the traffic.
*/
enic_calc_int_moderation(enic, &enic->rq[0]);
if ((rq_work_done < budget) && napi_complete_done(napi, rq_work_done)) {
/* Some work done, but not enough to stay in polling,
* exit polling
*/
if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
enic_set_int_moderation(enic, &enic->rq[0]);
vnic_intr_unmask(&enic->intr[intr]);
}
return rq_work_done;
}
#ifdef CONFIG_RFS_ACCEL
static void enic_free_rx_cpu_rmap(struct enic *enic)
{
free_irq_cpu_rmap(enic->netdev->rx_cpu_rmap);
enic->netdev->rx_cpu_rmap = NULL;
}
static void enic_set_rx_cpu_rmap(struct enic *enic)
{
int i, res;
if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX) {
enic->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(enic->rq_count);
if (unlikely(!enic->netdev->rx_cpu_rmap))
return;
for (i = 0; i < enic->rq_count; i++) {
res = irq_cpu_rmap_add(enic->netdev->rx_cpu_rmap,
enic->msix_entry[i].vector);
if (unlikely(res)) {
enic_free_rx_cpu_rmap(enic);
return;
}
}
}
}
#else
static void enic_free_rx_cpu_rmap(struct enic *enic)
{
}
static void enic_set_rx_cpu_rmap(struct enic *enic)
{
}
#endif /* CONFIG_RFS_ACCEL */
static int enic_poll_msix_wq(struct napi_struct *napi, int budget)
{
struct net_device *netdev = napi->dev;
struct enic *enic = netdev_priv(netdev);
unsigned int wq_index = (napi - &enic->napi[0]) - enic->rq_count;
struct vnic_wq *wq = &enic->wq[wq_index];
unsigned int cq;
unsigned int intr;
unsigned int wq_work_to_do = ENIC_WQ_NAPI_BUDGET;
unsigned int wq_work_done;
unsigned int wq_irq;
wq_irq = wq->index;
cq = enic_cq_wq(enic, wq_irq);
intr = enic_msix_wq_intr(enic, wq_irq);
wq_work_done = vnic_cq_service(&enic->cq[cq], wq_work_to_do,
enic_wq_service, NULL);
vnic_intr_return_credits(&enic->intr[intr], wq_work_done,
0 /* don't unmask intr */,
1 /* reset intr timer */);
if (!wq_work_done) {
napi_complete(napi);
vnic_intr_unmask(&enic->intr[intr]);
return 0;
}
return budget;
}
static int enic_poll_msix_rq(struct napi_struct *napi, int budget)
{
struct net_device *netdev = napi->dev;
struct enic *enic = netdev_priv(netdev);
unsigned int rq = (napi - &enic->napi[0]);
unsigned int cq = enic_cq_rq(enic, rq);
unsigned int intr = enic_msix_rq_intr(enic, rq);
unsigned int work_to_do = budget;
unsigned int work_done = 0;
int err;
/* Service RQ
*/
if (budget > 0)
work_done = vnic_cq_service(&enic->cq[cq],
work_to_do, enic_rq_service, NULL);
/* Return intr event credits for this polling
* cycle. An intr event is the completion of a
* RQ packet.
*/
if (work_done > 0)
vnic_intr_return_credits(&enic->intr[intr],
work_done,
0 /* don't unmask intr */,
0 /* don't reset intr timer */);
err = vnic_rq_fill(&enic->rq[rq], enic_rq_alloc_buf);
/* Buffer allocation failed. Stay in polling mode
* so we can try to fill the ring again.
*/
if (err)
work_done = work_to_do;
if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
/* Call the function which refreshes the intr coalescing timer
* value based on the traffic.
*/
enic_calc_int_moderation(enic, &enic->rq[rq]);
if ((work_done < budget) && napi_complete_done(napi, work_done)) {
/* Some work done, but not enough to stay in polling,
* exit polling
*/
if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
enic_set_int_moderation(enic, &enic->rq[rq]);
vnic_intr_unmask(&enic->intr[intr]);
}
return work_done;
}
static void enic_notify_timer(struct timer_list *t)
{
struct enic *enic = from_timer(enic, t, notify_timer);
enic_notify_check(enic);
mod_timer(&enic->notify_timer,
round_jiffies(jiffies + ENIC_NOTIFY_TIMER_PERIOD));
}
static void enic_free_intr(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
unsigned int i;
enic_free_rx_cpu_rmap(enic);
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
free_irq(enic->pdev->irq, netdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
free_irq(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < ARRAY_SIZE(enic->msix); i++)
if (enic->msix[i].requested)
free_irq(enic->msix_entry[i].vector,
enic->msix[i].devid);
break;
default:
break;
}
}
static int enic_request_intr(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
unsigned int i, intr;
int err = 0;
enic_set_rx_cpu_rmap(enic);
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
err = request_irq(enic->pdev->irq, enic_isr_legacy,
IRQF_SHARED, netdev->name, netdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
err = request_irq(enic->pdev->irq, enic_isr_msi,
0, netdev->name, enic);
break;
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < enic->rq_count; i++) {
intr = enic_msix_rq_intr(enic, i);
snprintf(enic->msix[intr].devname,
sizeof(enic->msix[intr].devname),
"%s-rx-%u", netdev->name, i);
enic->msix[intr].isr = enic_isr_msix;
enic->msix[intr].devid = &enic->napi[i];
}
for (i = 0; i < enic->wq_count; i++) {
int wq = enic_cq_wq(enic, i);
intr = enic_msix_wq_intr(enic, i);
snprintf(enic->msix[intr].devname,
sizeof(enic->msix[intr].devname),
"%s-tx-%u", netdev->name, i);
enic->msix[intr].isr = enic_isr_msix;
enic->msix[intr].devid = &enic->napi[wq];
}
intr = enic_msix_err_intr(enic);
snprintf(enic->msix[intr].devname,
sizeof(enic->msix[intr].devname),
"%s-err", netdev->name);
enic->msix[intr].isr = enic_isr_msix_err;
enic->msix[intr].devid = enic;
intr = enic_msix_notify_intr(enic);
snprintf(enic->msix[intr].devname,
sizeof(enic->msix[intr].devname),
"%s-notify", netdev->name);
enic->msix[intr].isr = enic_isr_msix_notify;
enic->msix[intr].devid = enic;
for (i = 0; i < ARRAY_SIZE(enic->msix); i++)
enic->msix[i].requested = 0;
for (i = 0; i < enic->intr_count; i++) {
err = request_irq(enic->msix_entry[i].vector,
enic->msix[i].isr, 0,
enic->msix[i].devname,
enic->msix[i].devid);
if (err) {
enic_free_intr(enic);
break;
}
enic->msix[i].requested = 1;
}
break;
default:
break;
}
return err;
}
static void enic_synchronize_irqs(struct enic *enic)
{
unsigned int i;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
case VNIC_DEV_INTR_MODE_MSI:
synchronize_irq(enic->pdev->irq);
break;
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < enic->intr_count; i++)
synchronize_irq(enic->msix_entry[i].vector);
break;
default:
break;
}
}
static void enic_set_rx_coal_setting(struct enic *enic)
{
unsigned int speed;
int index = -1;
struct enic_rx_coal *rx_coal = &enic->rx_coalesce_setting;
/* 1. Read the link speed from fw
* 2. Pick the default range for the speed
* 3. Update it in enic->rx_coalesce_setting
*/
speed = vnic_dev_port_speed(enic->vdev);
if (ENIC_LINK_SPEED_10G < speed)
index = ENIC_LINK_40G_INDEX;
else if (ENIC_LINK_SPEED_4G < speed)
index = ENIC_LINK_10G_INDEX;
else
index = ENIC_LINK_4G_INDEX;
rx_coal->small_pkt_range_start = mod_range[index].small_pkt_range_start;
rx_coal->large_pkt_range_start = mod_range[index].large_pkt_range_start;
rx_coal->range_end = ENIC_RX_COALESCE_RANGE_END;
/* Start with the value provided by UCSM */
for (index = 0; index < enic->rq_count; index++)
enic->cq[index].cur_rx_coal_timeval =
enic->config.intr_timer_usec;
rx_coal->use_adaptive_rx_coalesce = 1;
}
static int enic_dev_notify_set(struct enic *enic)
{
int err;
spin_lock_bh(&enic->devcmd_lock);
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
err = vnic_dev_notify_set(enic->vdev,
enic_legacy_notify_intr());
break;
case VNIC_DEV_INTR_MODE_MSIX:
err = vnic_dev_notify_set(enic->vdev,
enic_msix_notify_intr(enic));
break;
default:
err = vnic_dev_notify_set(enic->vdev, -1 /* no intr */);
break;
}
spin_unlock_bh(&enic->devcmd_lock);
return err;
}
static void enic_notify_timer_start(struct enic *enic)
{
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_MSI:
mod_timer(&enic->notify_timer, jiffies);
break;
default:
/* Using intr for notification for INTx/MSI-X */
break;
}
}
/* rtnl lock is held, process context */
static int enic_open(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
unsigned int i;
int err, ret;
err = enic_request_intr(enic);
if (err) {
netdev_err(netdev, "Unable to request irq.\n");
return err;
}
enic_init_affinity_hint(enic);
enic_set_affinity_hint(enic);
err = enic_dev_notify_set(enic);
if (err) {
netdev_err(netdev,
"Failed to alloc notify buffer, aborting.\n");
goto err_out_free_intr;
}
for (i = 0; i < enic->rq_count; i++) {
/* enable rq before updating rq desc */
vnic_rq_enable(&enic->rq[i]);
vnic_rq_fill(&enic->rq[i], enic_rq_alloc_buf);
/* Need at least one buffer on ring to get going */
if (vnic_rq_desc_used(&enic->rq[i]) == 0) {
netdev_err(netdev, "Unable to alloc receive buffers\n");
err = -ENOMEM;
goto err_out_free_rq;
}
}
for (i = 0; i < enic->wq_count; i++)
vnic_wq_enable(&enic->wq[i]);
if (!enic_is_dynamic(enic) && !enic_is_sriov_vf(enic))
enic_dev_add_station_addr(enic);
enic_set_rx_mode(netdev);
netif_tx_wake_all_queues(netdev);
for (i = 0; i < enic->rq_count; i++)
napi_enable(&enic->napi[i]);
if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX)
for (i = 0; i < enic->wq_count; i++)
napi_enable(&enic->napi[enic_cq_wq(enic, i)]);
enic_dev_enable(enic);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_unmask(&enic->intr[i]);
enic_notify_timer_start(enic);
enic_rfs_timer_start(enic);
return 0;
err_out_free_rq:
for (i = 0; i < enic->rq_count; i++) {
ret = vnic_rq_disable(&enic->rq[i]);
if (!ret)
vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
}
enic_dev_notify_unset(enic);
err_out_free_intr:
enic_unset_affinity_hint(enic);
enic_free_intr(enic);
return err;
}
/* rtnl lock is held, process context */
static int enic_stop(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
unsigned int i;
int err;
for (i = 0; i < enic->intr_count; i++) {
vnic_intr_mask(&enic->intr[i]);
(void)vnic_intr_masked(&enic->intr[i]); /* flush write */
}
enic_synchronize_irqs(enic);
del_timer_sync(&enic->notify_timer);
enic_rfs_flw_tbl_free(enic);
enic_dev_disable(enic);
for (i = 0; i < enic->rq_count; i++)
napi_disable(&enic->napi[i]);
netif_carrier_off(netdev);
netif_tx_disable(netdev);
if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX)
for (i = 0; i < enic->wq_count; i++)
napi_disable(&enic->napi[enic_cq_wq(enic, i)]);
if (!enic_is_dynamic(enic) && !enic_is_sriov_vf(enic))
enic_dev_del_station_addr(enic);
for (i = 0; i < enic->wq_count; i++) {
err = vnic_wq_disable(&enic->wq[i]);
if (err)
return err;
}
for (i = 0; i < enic->rq_count; i++) {
err = vnic_rq_disable(&enic->rq[i]);
if (err)
return err;
}
enic_dev_notify_unset(enic);
enic_unset_affinity_hint(enic);
enic_free_intr(enic);
for (i = 0; i < enic->wq_count; i++)
vnic_wq_clean(&enic->wq[i], enic_free_wq_buf);
for (i = 0; i < enic->rq_count; i++)
vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
for (i = 0; i < enic->cq_count; i++)
vnic_cq_clean(&enic->cq[i]);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_clean(&enic->intr[i]);
return 0;
}
static int _enic_change_mtu(struct net_device *netdev, int new_mtu)
{
bool running = netif_running(netdev);
int err = 0;
ASSERT_RTNL();
if (running) {
err = enic_stop(netdev);
if (err)
return err;
}
netdev->mtu = new_mtu;
if (running) {
err = enic_open(netdev);
if (err)
return err;
}
return 0;
}
static int enic_change_mtu(struct net_device *netdev, int new_mtu)
{
struct enic *enic = netdev_priv(netdev);
if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic))
return -EOPNOTSUPP;
if (netdev->mtu > enic->port_mtu)
netdev_warn(netdev,
"interface MTU (%d) set higher than port MTU (%d)\n",
netdev->mtu, enic->port_mtu);
return _enic_change_mtu(netdev, new_mtu);
}
static void enic_change_mtu_work(struct work_struct *work)
{
struct enic *enic = container_of(work, struct enic, change_mtu_work);
struct net_device *netdev = enic->netdev;
int new_mtu = vnic_dev_mtu(enic->vdev);
rtnl_lock();
(void)_enic_change_mtu(netdev, new_mtu);
rtnl_unlock();
netdev_info(netdev, "interface MTU set as %d\n", netdev->mtu);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void enic_poll_controller(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_dev *vdev = enic->vdev;
unsigned int i, intr;
switch (vnic_dev_get_intr_mode(vdev)) {
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < enic->rq_count; i++) {
intr = enic_msix_rq_intr(enic, i);
enic_isr_msix(enic->msix_entry[intr].vector,
&enic->napi[i]);
}
for (i = 0; i < enic->wq_count; i++) {
intr = enic_msix_wq_intr(enic, i);
enic_isr_msix(enic->msix_entry[intr].vector,
&enic->napi[enic_cq_wq(enic, i)]);
}
break;
case VNIC_DEV_INTR_MODE_MSI:
enic_isr_msi(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_INTX:
enic_isr_legacy(enic->pdev->irq, netdev);
break;
default:
break;
}
}
#endif
static int enic_dev_wait(struct vnic_dev *vdev,
int (*start)(struct vnic_dev *, int),
int (*finished)(struct vnic_dev *, int *),
int arg)
{
unsigned long time;
int done;
int err;
BUG_ON(in_interrupt());
err = start(vdev, arg);
if (err)
return err;
/* Wait for func to complete...2 seconds max
*/
time = jiffies + (HZ * 2);
do {
err = finished(vdev, &done);
if (err)
return err;
if (done)
return 0;
schedule_timeout_uninterruptible(HZ / 10);
} while (time_after(time, jiffies));
return -ETIMEDOUT;
}
static int enic_dev_open(struct enic *enic)
{
int err;
u32 flags = CMD_OPENF_IG_DESCCACHE;
err = enic_dev_wait(enic->vdev, vnic_dev_open,
vnic_dev_open_done, flags);
if (err)
dev_err(enic_get_dev(enic), "vNIC device open failed, err %d\n",
err);
return err;
}
static int enic_dev_soft_reset(struct enic *enic)
{
int err;
err = enic_dev_wait(enic->vdev, vnic_dev_soft_reset,
vnic_dev_soft_reset_done, 0);
if (err)
netdev_err(enic->netdev, "vNIC soft reset failed, err %d\n",
err);
return err;
}
static int enic_dev_hang_reset(struct enic *enic)
{
int err;
err = enic_dev_wait(enic->vdev, vnic_dev_hang_reset,
vnic_dev_hang_reset_done, 0);
if (err)
netdev_err(enic->netdev, "vNIC hang reset failed, err %d\n",
err);
return err;
}
int __enic_set_rsskey(struct enic *enic)
{
union vnic_rss_key *rss_key_buf_va;
dma_addr_t rss_key_buf_pa;
int i, kidx, bidx, err;
rss_key_buf_va = pci_zalloc_consistent(enic->pdev,
sizeof(union vnic_rss_key),
&rss_key_buf_pa);
if (!rss_key_buf_va)
return -ENOMEM;
for (i = 0; i < ENIC_RSS_LEN; i++) {
kidx = i / ENIC_RSS_BYTES_PER_KEY;
bidx = i % ENIC_RSS_BYTES_PER_KEY;
rss_key_buf_va->key[kidx].b[bidx] = enic->rss_key[i];
}
spin_lock_bh(&enic->devcmd_lock);
err = enic_set_rss_key(enic,
rss_key_buf_pa,
sizeof(union vnic_rss_key));
spin_unlock_bh(&enic->devcmd_lock);
pci_free_consistent(enic->pdev, sizeof(union vnic_rss_key),
rss_key_buf_va, rss_key_buf_pa);
return err;
}
static int enic_set_rsskey(struct enic *enic)
{
netdev_rss_key_fill(enic->rss_key, ENIC_RSS_LEN);
return __enic_set_rsskey(enic);
}
static int enic_set_rsscpu(struct enic *enic, u8 rss_hash_bits)
{
dma_addr_t rss_cpu_buf_pa;
union vnic_rss_cpu *rss_cpu_buf_va = NULL;
unsigned int i;
int err;
rss_cpu_buf_va = pci_alloc_consistent(enic->pdev,
sizeof(union vnic_rss_cpu), &rss_cpu_buf_pa);
if (!rss_cpu_buf_va)
return -ENOMEM;
for (i = 0; i < (1 << rss_hash_bits); i++)
(*rss_cpu_buf_va).cpu[i/4].b[i%4] = i % enic->rq_count;
spin_lock_bh(&enic->devcmd_lock);
err = enic_set_rss_cpu(enic,
rss_cpu_buf_pa,
sizeof(union vnic_rss_cpu));
spin_unlock_bh(&enic->devcmd_lock);
pci_free_consistent(enic->pdev, sizeof(union vnic_rss_cpu),
rss_cpu_buf_va, rss_cpu_buf_pa);
return err;
}
static int enic_set_niccfg(struct enic *enic, u8 rss_default_cpu,
u8 rss_hash_type, u8 rss_hash_bits, u8 rss_base_cpu, u8 rss_enable)
{
const u8 tso_ipid_split_en = 0;
const u8 ig_vlan_strip_en = 1;
int err;
/* Enable VLAN tag stripping.
*/
spin_lock_bh(&enic->devcmd_lock);
err = enic_set_nic_cfg(enic,
rss_default_cpu, rss_hash_type,
rss_hash_bits, rss_base_cpu,
rss_enable, tso_ipid_split_en,
ig_vlan_strip_en);
spin_unlock_bh(&enic->devcmd_lock);
return err;
}
static int enic_set_rss_nic_cfg(struct enic *enic)
{
struct device *dev = enic_get_dev(enic);
const u8 rss_default_cpu = 0;
const u8 rss_hash_bits = 7;
const u8 rss_base_cpu = 0;
u8 rss_hash_type;
int res;
u8 rss_enable = ENIC_SETTING(enic, RSS) && (enic->rq_count > 1);
spin_lock_bh(&enic->devcmd_lock);
res = vnic_dev_capable_rss_hash_type(enic->vdev, &rss_hash_type);
spin_unlock_bh(&enic->devcmd_lock);
if (res) {
/* defaults for old adapters
*/
rss_hash_type = NIC_CFG_RSS_HASH_TYPE_IPV4 |
NIC_CFG_RSS_HASH_TYPE_TCP_IPV4 |
NIC_CFG_RSS_HASH_TYPE_IPV6 |
NIC_CFG_RSS_HASH_TYPE_TCP_IPV6;
}
if (rss_enable) {
if (!enic_set_rsskey(enic)) {
if (enic_set_rsscpu(enic, rss_hash_bits)) {
rss_enable = 0;
dev_warn(dev, "RSS disabled, "
"Failed to set RSS cpu indirection table.");
}
} else {
rss_enable = 0;
dev_warn(dev, "RSS disabled, Failed to set RSS key.\n");
}
}
return enic_set_niccfg(enic, rss_default_cpu, rss_hash_type,
rss_hash_bits, rss_base_cpu, rss_enable);
}
static void enic_reset(struct work_struct *work)
{
struct enic *enic = container_of(work, struct enic, reset);
if (!netif_running(enic->netdev))
return;
rtnl_lock();
spin_lock(&enic->enic_api_lock);
enic_stop(enic->netdev);
enic_dev_soft_reset(enic);
enic_reset_addr_lists(enic);
enic_init_vnic_resources(enic);
enic_set_rss_nic_cfg(enic);
enic_dev_set_ig_vlan_rewrite_mode(enic);
enic_open(enic->netdev);
spin_unlock(&enic->enic_api_lock);
call_netdevice_notifiers(NETDEV_REBOOT, enic->netdev);
rtnl_unlock();
}
static void enic_tx_hang_reset(struct work_struct *work)
{
struct enic *enic = container_of(work, struct enic, tx_hang_reset);
rtnl_lock();
spin_lock(&enic->enic_api_lock);
enic_dev_hang_notify(enic);
enic_stop(enic->netdev);
enic_dev_hang_reset(enic);
enic_reset_addr_lists(enic);
enic_init_vnic_resources(enic);
enic_set_rss_nic_cfg(enic);
enic_dev_set_ig_vlan_rewrite_mode(enic);
enic_open(enic->netdev);
spin_unlock(&enic->enic_api_lock);
call_netdevice_notifiers(NETDEV_REBOOT, enic->netdev);
rtnl_unlock();
}
static int enic_set_intr_mode(struct enic *enic)
{
unsigned int n = min_t(unsigned int, enic->rq_count, ENIC_RQ_MAX);
unsigned int m = min_t(unsigned int, enic->wq_count, ENIC_WQ_MAX);
unsigned int i;
/* Set interrupt mode (INTx, MSI, MSI-X) depending
* on system capabilities.
*
* Try MSI-X first
*
* We need n RQs, m WQs, n+m CQs, and n+m+2 INTRs
* (the second to last INTR is used for WQ/RQ errors)
* (the last INTR is used for notifications)
*/
BUG_ON(ARRAY_SIZE(enic->msix_entry) < n + m + 2);
for (i = 0; i < n + m + 2; i++)
enic->msix_entry[i].entry = i;
/* Use multiple RQs if RSS is enabled
*/
if (ENIC_SETTING(enic, RSS) &&
enic->config.intr_mode < 1 &&
enic->rq_count >= n &&
enic->wq_count >= m &&
enic->cq_count >= n + m &&
enic->intr_count >= n + m + 2) {
if (pci_enable_msix_range(enic->pdev, enic->msix_entry,
n + m + 2, n + m + 2) > 0) {
enic->rq_count = n;
enic->wq_count = m;
enic->cq_count = n + m;
enic->intr_count = n + m + 2;
vnic_dev_set_intr_mode(enic->vdev,
VNIC_DEV_INTR_MODE_MSIX);
return 0;
}
}
if (enic->config.intr_mode < 1 &&
enic->rq_count >= 1 &&
enic->wq_count >= m &&
enic->cq_count >= 1 + m &&
enic->intr_count >= 1 + m + 2) {
if (pci_enable_msix_range(enic->pdev, enic->msix_entry,
1 + m + 2, 1 + m + 2) > 0) {
enic->rq_count = 1;
enic->wq_count = m;
enic->cq_count = 1 + m;
enic->intr_count = 1 + m + 2;
vnic_dev_set_intr_mode(enic->vdev,
VNIC_DEV_INTR_MODE_MSIX);
return 0;
}
}
/* Next try MSI
*
* We need 1 RQ, 1 WQ, 2 CQs, and 1 INTR
*/
if (enic->config.intr_mode < 2 &&
enic->rq_count >= 1 &&
enic->wq_count >= 1 &&
enic->cq_count >= 2 &&
enic->intr_count >= 1 &&
!pci_enable_msi(enic->pdev)) {
enic->rq_count = 1;
enic->wq_count = 1;
enic->cq_count = 2;
enic->intr_count = 1;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSI);
return 0;
}
/* Next try INTx
*
* We need 1 RQ, 1 WQ, 2 CQs, and 3 INTRs
* (the first INTR is used for WQ/RQ)
* (the second INTR is used for WQ/RQ errors)
* (the last INTR is used for notifications)
*/
if (enic->config.intr_mode < 3 &&
enic->rq_count >= 1 &&
enic->wq_count >= 1 &&
enic->cq_count >= 2 &&
enic->intr_count >= 3) {
enic->rq_count = 1;
enic->wq_count = 1;
enic->cq_count = 2;
enic->intr_count = 3;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_INTX);
return 0;
}
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
return -EINVAL;
}
static void enic_clear_intr_mode(struct enic *enic)
{
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_MSIX:
pci_disable_msix(enic->pdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
pci_disable_msi(enic->pdev);
break;
default:
break;
}
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
}
static const struct net_device_ops enic_netdev_dynamic_ops = {
.ndo_open = enic_open,
.ndo_stop = enic_stop,
.ndo_start_xmit = enic_hard_start_xmit,
.ndo_get_stats64 = enic_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = enic_set_rx_mode,
.ndo_set_mac_address = enic_set_mac_address_dynamic,
.ndo_change_mtu = enic_change_mtu,
.ndo_vlan_rx_add_vid = enic_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = enic_vlan_rx_kill_vid,
.ndo_tx_timeout = enic_tx_timeout,
.ndo_set_vf_port = enic_set_vf_port,
.ndo_get_vf_port = enic_get_vf_port,
.ndo_set_vf_mac = enic_set_vf_mac,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = enic_poll_controller,
#endif
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = enic_rx_flow_steer,
#endif
.ndo_udp_tunnel_add = enic_udp_tunnel_add,
.ndo_udp_tunnel_del = enic_udp_tunnel_del,
.ndo_features_check = enic_features_check,
};
static const struct net_device_ops enic_netdev_ops = {
.ndo_open = enic_open,
.ndo_stop = enic_stop,
.ndo_start_xmit = enic_hard_start_xmit,
.ndo_get_stats64 = enic_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = enic_set_mac_address,
.ndo_set_rx_mode = enic_set_rx_mode,
.ndo_change_mtu = enic_change_mtu,
.ndo_vlan_rx_add_vid = enic_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = enic_vlan_rx_kill_vid,
.ndo_tx_timeout = enic_tx_timeout,
.ndo_set_vf_port = enic_set_vf_port,
.ndo_get_vf_port = enic_get_vf_port,
.ndo_set_vf_mac = enic_set_vf_mac,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = enic_poll_controller,
#endif
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = enic_rx_flow_steer,
#endif
.ndo_udp_tunnel_add = enic_udp_tunnel_add,
.ndo_udp_tunnel_del = enic_udp_tunnel_del,
.ndo_features_check = enic_features_check,
};
static void enic_dev_deinit(struct enic *enic)
{
unsigned int i;
for (i = 0; i < enic->rq_count; i++) {
napi_hash_del(&enic->napi[i]);
netif_napi_del(&enic->napi[i]);
}
if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX)
for (i = 0; i < enic->wq_count; i++)
netif_napi_del(&enic->napi[enic_cq_wq(enic, i)]);
enic_free_vnic_resources(enic);
enic_clear_intr_mode(enic);
enic_free_affinity_hint(enic);
}
static void enic_kdump_kernel_config(struct enic *enic)
{
if (is_kdump_kernel()) {
dev_info(enic_get_dev(enic), "Running from within kdump kernel. Using minimal resources\n");
enic->rq_count = 1;
enic->wq_count = 1;
enic->config.rq_desc_count = ENIC_MIN_RQ_DESCS;
enic->config.wq_desc_count = ENIC_MIN_WQ_DESCS;
enic->config.mtu = min_t(u16, 1500, enic->config.mtu);
}
}
static int enic_dev_init(struct enic *enic)
{
struct device *dev = enic_get_dev(enic);
struct net_device *netdev = enic->netdev;
unsigned int i;
int err;
/* Get interrupt coalesce timer info */
err = enic_dev_intr_coal_timer_info(enic);
if (err) {
dev_warn(dev, "Using default conversion factor for "
"interrupt coalesce timer\n");
vnic_dev_intr_coal_timer_info_default(enic->vdev);
}
/* Get vNIC configuration
*/
err = enic_get_vnic_config(enic);
if (err) {
dev_err(dev, "Get vNIC configuration failed, aborting\n");
return err;
}
/* Get available resource counts
*/
enic_get_res_counts(enic);
/* modify resource count if we are in kdump_kernel
*/
enic_kdump_kernel_config(enic);
/* Set interrupt mode based on resource counts and system
* capabilities
*/
err = enic_set_intr_mode(enic);
if (err) {
dev_err(dev, "Failed to set intr mode based on resource "
"counts and system capabilities, aborting\n");
return err;
}
/* Allocate and configure vNIC resources
*/
err = enic_alloc_vnic_resources(enic);
if (err) {
dev_err(dev, "Failed to alloc vNIC resources, aborting\n");
goto err_out_free_vnic_resources;
}
enic_init_vnic_resources(enic);
err = enic_set_rss_nic_cfg(enic);
if (err) {
dev_err(dev, "Failed to config nic, aborting\n");
goto err_out_free_vnic_resources;
}
switch (vnic_dev_get_intr_mode(enic->vdev)) {
default:
netif_napi_add(netdev, &enic->napi[0], enic_poll, 64);
break;
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < enic->rq_count; i++) {
netif_napi_add(netdev, &enic->napi[i],
enic_poll_msix_rq, NAPI_POLL_WEIGHT);
}
for (i = 0; i < enic->wq_count; i++)
netif_napi_add(netdev, &enic->napi[enic_cq_wq(enic, i)],
enic_poll_msix_wq, NAPI_POLL_WEIGHT);
break;
}
return 0;
err_out_free_vnic_resources:
enic_free_affinity_hint(enic);
enic_clear_intr_mode(enic);
enic_free_vnic_resources(enic);
return err;
}
static void enic_iounmap(struct enic *enic)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(enic->bar); i++)
if (enic->bar[i].vaddr)
iounmap(enic->bar[i].vaddr);
}
static int enic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct net_device *netdev;
struct enic *enic;
int using_dac = 0;
unsigned int i;
int err;
#ifdef CONFIG_PCI_IOV
int pos = 0;
#endif
int num_pps = 1;
/* Allocate net device structure and initialize. Private
* instance data is initialized to zero.
*/
netdev = alloc_etherdev_mqs(sizeof(struct enic),
ENIC_RQ_MAX, ENIC_WQ_MAX);
if (!netdev)
return -ENOMEM;
pci_set_drvdata(pdev, netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
enic = netdev_priv(netdev);
enic->netdev = netdev;
enic->pdev = pdev;
/* Setup PCI resources
*/
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(dev, "Cannot enable PCI device, aborting\n");
goto err_out_free_netdev;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "Cannot request PCI regions, aborting\n");
goto err_out_disable_device;
}
pci_set_master(pdev);
/* Query PCI controller on system for DMA addressing
* limitation for the device. Try 47-bit first, and
* fail to 32-bit.
*/
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(47));
if (err) {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(dev, "No usable DMA configuration, aborting\n");
goto err_out_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(dev, "Unable to obtain %u-bit DMA "
"for consistent allocations, aborting\n", 32);
goto err_out_release_regions;
}
} else {
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(47));
if (err) {
dev_err(dev, "Unable to obtain %u-bit DMA "
"for consistent allocations, aborting\n", 47);
goto err_out_release_regions;
}
using_dac = 1;
}
/* Map vNIC resources from BAR0-5
*/
for (i = 0; i < ARRAY_SIZE(enic->bar); i++) {
if (!(pci_resource_flags(pdev, i) & IORESOURCE_MEM))
continue;
enic->bar[i].len = pci_resource_len(pdev, i);
enic->bar[i].vaddr = pci_iomap(pdev, i, enic->bar[i].len);
if (!enic->bar[i].vaddr) {
dev_err(dev, "Cannot memory-map BAR %d, aborting\n", i);
err = -ENODEV;
goto err_out_iounmap;
}
enic->bar[i].bus_addr = pci_resource_start(pdev, i);
}
/* Register vNIC device
*/
enic->vdev = vnic_dev_register(NULL, enic, pdev, enic->bar,
ARRAY_SIZE(enic->bar));
if (!enic->vdev) {
dev_err(dev, "vNIC registration failed, aborting\n");
err = -ENODEV;
goto err_out_iounmap;
}
err = vnic_devcmd_init(enic->vdev);
if (err)
goto err_out_vnic_unregister;
#ifdef CONFIG_PCI_IOV
/* Get number of subvnics */
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (pos) {
pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF,
&enic->num_vfs);
if (enic->num_vfs) {
err = pci_enable_sriov(pdev, enic->num_vfs);
if (err) {
dev_err(dev, "SRIOV enable failed, aborting."
" pci_enable_sriov() returned %d\n",
err);
goto err_out_vnic_unregister;
}
enic->priv_flags |= ENIC_SRIOV_ENABLED;
num_pps = enic->num_vfs;
}
}
#endif
/* Allocate structure for port profiles */
enic->pp = kcalloc(num_pps, sizeof(*enic->pp), GFP_KERNEL);
if (!enic->pp) {
err = -ENOMEM;
goto err_out_disable_sriov_pp;
}
/* Issue device open to get device in known state
*/
err = enic_dev_open(enic);
if (err) {
dev_err(dev, "vNIC dev open failed, aborting\n");
goto err_out_disable_sriov;
}
/* Setup devcmd lock
*/
spin_lock_init(&enic->devcmd_lock);
spin_lock_init(&enic->enic_api_lock);
/*
* Set ingress vlan rewrite mode before vnic initialization
*/
err = enic_dev_set_ig_vlan_rewrite_mode(enic);
if (err) {
dev_err(dev,
"Failed to set ingress vlan rewrite mode, aborting.\n");
goto err_out_dev_close;
}
/* Issue device init to initialize the vnic-to-switch link.
* We'll start with carrier off and wait for link UP
* notification later to turn on carrier. We don't need
* to wait here for the vnic-to-switch link initialization
* to complete; link UP notification is the indication that
* the process is complete.
*/
netif_carrier_off(netdev);
/* Do not call dev_init for a dynamic vnic.
* For a dynamic vnic, init_prov_info will be
* called later by an upper layer.
*/
if (!enic_is_dynamic(enic)) {
err = vnic_dev_init(enic->vdev, 0);
if (err) {
dev_err(dev, "vNIC dev init failed, aborting\n");
goto err_out_dev_close;
}
}
err = enic_dev_init(enic);
if (err) {
dev_err(dev, "Device initialization failed, aborting\n");
goto err_out_dev_close;
}
netif_set_real_num_tx_queues(netdev, enic->wq_count);
netif_set_real_num_rx_queues(netdev, enic->rq_count);
/* Setup notification timer, HW reset task, and wq locks
*/
timer_setup(&enic->notify_timer, enic_notify_timer, 0);
enic_rfs_flw_tbl_init(enic);
enic_set_rx_coal_setting(enic);
INIT_WORK(&enic->reset, enic_reset);
INIT_WORK(&enic->tx_hang_reset, enic_tx_hang_reset);
INIT_WORK(&enic->change_mtu_work, enic_change_mtu_work);
for (i = 0; i < enic->wq_count; i++)
spin_lock_init(&enic->wq_lock[i]);
/* Register net device
*/
enic->port_mtu = enic->config.mtu;
err = enic_set_mac_addr(netdev, enic->mac_addr);
if (err) {
dev_err(dev, "Invalid MAC address, aborting\n");
goto err_out_dev_deinit;
}
enic->tx_coalesce_usecs = enic->config.intr_timer_usec;
/* rx coalesce time already got initialized. This gets used
* if adaptive coal is turned off
*/
enic->rx_coalesce_usecs = enic->tx_coalesce_usecs;
if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic))
netdev->netdev_ops = &enic_netdev_dynamic_ops;
else
netdev->netdev_ops = &enic_netdev_ops;
netdev->watchdog_timeo = 2 * HZ;
enic_set_ethtool_ops(netdev);
netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
if (ENIC_SETTING(enic, LOOP)) {
netdev->features &= ~NETIF_F_HW_VLAN_CTAG_TX;
enic->loop_enable = 1;
enic->loop_tag = enic->config.loop_tag;
dev_info(dev, "loopback tag=0x%04x\n", enic->loop_tag);
}
if (ENIC_SETTING(enic, TXCSUM))
netdev->hw_features |= NETIF_F_SG | NETIF_F_HW_CSUM;
if (ENIC_SETTING(enic, TSO))
netdev->hw_features |= NETIF_F_TSO |
NETIF_F_TSO6 | NETIF_F_TSO_ECN;
if (ENIC_SETTING(enic, RSS))
netdev->hw_features |= NETIF_F_RXHASH;
if (ENIC_SETTING(enic, RXCSUM))
netdev->hw_features |= NETIF_F_RXCSUM;
if (ENIC_SETTING(enic, VXLAN)) {
u64 patch_level;
u64 a1 = 0;
netdev->hw_enc_features |= NETIF_F_RXCSUM |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_TSO_ECN |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_HW_CSUM |
NETIF_F_GSO_UDP_TUNNEL_CSUM;
netdev->hw_features |= netdev->hw_enc_features;
/* get bit mask from hw about supported offload bit level
* BIT(0) = fw supports patch_level 0
* fcoe bit = encap
* fcoe_fc_crc_ok = outer csum ok
* BIT(1) = always set by fw
* BIT(2) = fw supports patch_level 2
* BIT(0) in rss_hash = encap
* BIT(1,2) in rss_hash = outer_ip_csum_ok/
* outer_tcp_csum_ok
* used in enic_rq_indicate_buf
*/
err = vnic_dev_get_supported_feature_ver(enic->vdev,
VIC_FEATURE_VXLAN,
&patch_level, &a1);
if (err)
patch_level = 0;
enic->vxlan.flags = (u8)a1;
/* mask bits that are supported by driver
*/
patch_level &= BIT_ULL(0) | BIT_ULL(2);
patch_level = fls(patch_level);
patch_level = patch_level ? patch_level - 1 : 0;
enic->vxlan.patch_level = patch_level;
}
netdev->features |= netdev->hw_features;
netdev->vlan_features |= netdev->features;
#ifdef CONFIG_RFS_ACCEL
netdev->hw_features |= NETIF_F_NTUPLE;
#endif
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
netdev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 68 - 9000 */
netdev->min_mtu = ENIC_MIN_MTU;
netdev->max_mtu = ENIC_MAX_MTU;
netdev->mtu = enic->port_mtu;
err = register_netdev(netdev);
if (err) {
dev_err(dev, "Cannot register net device, aborting\n");
goto err_out_dev_deinit;
}
enic->rx_copybreak = RX_COPYBREAK_DEFAULT;
return 0;
err_out_dev_deinit:
enic_dev_deinit(enic);
err_out_dev_close:
vnic_dev_close(enic->vdev);
err_out_disable_sriov:
kfree(enic->pp);
err_out_disable_sriov_pp:
#ifdef CONFIG_PCI_IOV
if (enic_sriov_enabled(enic)) {
pci_disable_sriov(pdev);
enic->priv_flags &= ~ENIC_SRIOV_ENABLED;
}
#endif
err_out_vnic_unregister:
vnic_dev_unregister(enic->vdev);
err_out_iounmap:
enic_iounmap(enic);
err_out_release_regions:
pci_release_regions(pdev);
err_out_disable_device:
pci_disable_device(pdev);
err_out_free_netdev:
free_netdev(netdev);
return err;
}
static void enic_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
if (netdev) {
struct enic *enic = netdev_priv(netdev);
cancel_work_sync(&enic->reset);
cancel_work_sync(&enic->change_mtu_work);
unregister_netdev(netdev);
enic_dev_deinit(enic);
vnic_dev_close(enic->vdev);
#ifdef CONFIG_PCI_IOV
if (enic_sriov_enabled(enic)) {
pci_disable_sriov(pdev);
enic->priv_flags &= ~ENIC_SRIOV_ENABLED;
}
#endif
kfree(enic->pp);
vnic_dev_unregister(enic->vdev);
enic_iounmap(enic);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(netdev);
}
}
static struct pci_driver enic_driver = {
.name = DRV_NAME,
.id_table = enic_id_table,
.probe = enic_probe,
.remove = enic_remove,
};
static int __init enic_init_module(void)
{
pr_info("%s, ver %s\n", DRV_DESCRIPTION, DRV_VERSION);
return pci_register_driver(&enic_driver);
}
static void __exit enic_cleanup_module(void)
{
pci_unregister_driver(&enic_driver);
}
module_init(enic_init_module);
module_exit(enic_cleanup_module);