| /* |
| * Driver for Cirrus Logic EP93xx SPI controller. |
| * |
| * Copyright (C) 2010-2011 Mika Westerberg |
| * |
| * Explicit FIFO handling code was inspired by amba-pl022 driver. |
| * |
| * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. |
| * |
| * For more information about the SPI controller see documentation on Cirrus |
| * Logic web site: |
| * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/bitops.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/sched.h> |
| #include <linux/scatterlist.h> |
| #include <linux/spi/spi.h> |
| |
| #include <linux/platform_data/dma-ep93xx.h> |
| #include <linux/platform_data/spi-ep93xx.h> |
| |
| #define SSPCR0 0x0000 |
| #define SSPCR0_MODE_SHIFT 6 |
| #define SSPCR0_SCR_SHIFT 8 |
| |
| #define SSPCR1 0x0004 |
| #define SSPCR1_RIE BIT(0) |
| #define SSPCR1_TIE BIT(1) |
| #define SSPCR1_RORIE BIT(2) |
| #define SSPCR1_LBM BIT(3) |
| #define SSPCR1_SSE BIT(4) |
| #define SSPCR1_MS BIT(5) |
| #define SSPCR1_SOD BIT(6) |
| |
| #define SSPDR 0x0008 |
| |
| #define SSPSR 0x000c |
| #define SSPSR_TFE BIT(0) |
| #define SSPSR_TNF BIT(1) |
| #define SSPSR_RNE BIT(2) |
| #define SSPSR_RFF BIT(3) |
| #define SSPSR_BSY BIT(4) |
| #define SSPCPSR 0x0010 |
| |
| #define SSPIIR 0x0014 |
| #define SSPIIR_RIS BIT(0) |
| #define SSPIIR_TIS BIT(1) |
| #define SSPIIR_RORIS BIT(2) |
| #define SSPICR SSPIIR |
| |
| /* timeout in milliseconds */ |
| #define SPI_TIMEOUT 5 |
| /* maximum depth of RX/TX FIFO */ |
| #define SPI_FIFO_SIZE 8 |
| |
| /** |
| * struct ep93xx_spi - EP93xx SPI controller structure |
| * @clk: clock for the controller |
| * @mmio: pointer to ioremap()'d registers |
| * @sspdr_phys: physical address of the SSPDR register |
| * @tx: current byte in transfer to transmit |
| * @rx: current byte in transfer to receive |
| * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one |
| * frame decreases this level and sending one frame increases it. |
| * @dma_rx: RX DMA channel |
| * @dma_tx: TX DMA channel |
| * @dma_rx_data: RX parameters passed to the DMA engine |
| * @dma_tx_data: TX parameters passed to the DMA engine |
| * @rx_sgt: sg table for RX transfers |
| * @tx_sgt: sg table for TX transfers |
| * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by |
| * the client |
| */ |
| struct ep93xx_spi { |
| struct clk *clk; |
| void __iomem *mmio; |
| unsigned long sspdr_phys; |
| size_t tx; |
| size_t rx; |
| size_t fifo_level; |
| struct dma_chan *dma_rx; |
| struct dma_chan *dma_tx; |
| struct ep93xx_dma_data dma_rx_data; |
| struct ep93xx_dma_data dma_tx_data; |
| struct sg_table rx_sgt; |
| struct sg_table tx_sgt; |
| void *zeropage; |
| }; |
| |
| /* converts bits per word to CR0.DSS value */ |
| #define bits_per_word_to_dss(bpw) ((bpw) - 1) |
| |
| /** |
| * ep93xx_spi_calc_divisors() - calculates SPI clock divisors |
| * @master: SPI master |
| * @rate: desired SPI output clock rate |
| * @div_cpsr: pointer to return the cpsr (pre-scaler) divider |
| * @div_scr: pointer to return the scr divider |
| */ |
| static int ep93xx_spi_calc_divisors(struct spi_master *master, |
| u32 rate, u8 *div_cpsr, u8 *div_scr) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| unsigned long spi_clk_rate = clk_get_rate(espi->clk); |
| int cpsr, scr; |
| |
| /* |
| * Make sure that max value is between values supported by the |
| * controller. |
| */ |
| rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); |
| |
| /* |
| * Calculate divisors so that we can get speed according the |
| * following formula: |
| * rate = spi_clock_rate / (cpsr * (1 + scr)) |
| * |
| * cpsr must be even number and starts from 2, scr can be any number |
| * between 0 and 255. |
| */ |
| for (cpsr = 2; cpsr <= 254; cpsr += 2) { |
| for (scr = 0; scr <= 255; scr++) { |
| if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { |
| *div_scr = (u8)scr; |
| *div_cpsr = (u8)cpsr; |
| return 0; |
| } |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int ep93xx_spi_chip_setup(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *xfer) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| u8 dss = bits_per_word_to_dss(xfer->bits_per_word); |
| u8 div_cpsr = 0; |
| u8 div_scr = 0; |
| u16 cr0; |
| int err; |
| |
| err = ep93xx_spi_calc_divisors(master, xfer->speed_hz, |
| &div_cpsr, &div_scr); |
| if (err) |
| return err; |
| |
| cr0 = div_scr << SSPCR0_SCR_SHIFT; |
| cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT; |
| cr0 |= dss; |
| |
| dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", |
| spi->mode, div_cpsr, div_scr, dss); |
| dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0); |
| |
| writel(div_cpsr, espi->mmio + SSPCPSR); |
| writel(cr0, espi->mmio + SSPCR0); |
| |
| return 0; |
| } |
| |
| static void ep93xx_do_write(struct spi_master *master) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct spi_transfer *xfer = master->cur_msg->state; |
| u32 val = 0; |
| |
| if (xfer->bits_per_word > 8) { |
| if (xfer->tx_buf) |
| val = ((u16 *)xfer->tx_buf)[espi->tx]; |
| espi->tx += 2; |
| } else { |
| if (xfer->tx_buf) |
| val = ((u8 *)xfer->tx_buf)[espi->tx]; |
| espi->tx += 1; |
| } |
| writel(val, espi->mmio + SSPDR); |
| } |
| |
| static void ep93xx_do_read(struct spi_master *master) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct spi_transfer *xfer = master->cur_msg->state; |
| u32 val; |
| |
| val = readl(espi->mmio + SSPDR); |
| if (xfer->bits_per_word > 8) { |
| if (xfer->rx_buf) |
| ((u16 *)xfer->rx_buf)[espi->rx] = val; |
| espi->rx += 2; |
| } else { |
| if (xfer->rx_buf) |
| ((u8 *)xfer->rx_buf)[espi->rx] = val; |
| espi->rx += 1; |
| } |
| } |
| |
| /** |
| * ep93xx_spi_read_write() - perform next RX/TX transfer |
| * @espi: ep93xx SPI controller struct |
| * |
| * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If |
| * called several times, the whole transfer will be completed. Returns |
| * %-EINPROGRESS when current transfer was not yet completed otherwise %0. |
| * |
| * When this function is finished, RX FIFO should be empty and TX FIFO should be |
| * full. |
| */ |
| static int ep93xx_spi_read_write(struct spi_master *master) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct spi_transfer *xfer = master->cur_msg->state; |
| |
| /* read as long as RX FIFO has frames in it */ |
| while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { |
| ep93xx_do_read(master); |
| espi->fifo_level--; |
| } |
| |
| /* write as long as TX FIFO has room */ |
| while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { |
| ep93xx_do_write(master); |
| espi->fifo_level++; |
| } |
| |
| if (espi->rx == xfer->len) |
| return 0; |
| |
| return -EINPROGRESS; |
| } |
| |
| static enum dma_transfer_direction |
| ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) |
| { |
| switch (dir) { |
| case DMA_TO_DEVICE: |
| return DMA_MEM_TO_DEV; |
| case DMA_FROM_DEVICE: |
| return DMA_DEV_TO_MEM; |
| default: |
| return DMA_TRANS_NONE; |
| } |
| } |
| |
| /** |
| * ep93xx_spi_dma_prepare() - prepares a DMA transfer |
| * @master: SPI master |
| * @dir: DMA transfer direction |
| * |
| * Function configures the DMA, maps the buffer and prepares the DMA |
| * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR |
| * in case of failure. |
| */ |
| static struct dma_async_tx_descriptor * |
| ep93xx_spi_dma_prepare(struct spi_master *master, |
| enum dma_data_direction dir) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct spi_transfer *xfer = master->cur_msg->state; |
| struct dma_async_tx_descriptor *txd; |
| enum dma_slave_buswidth buswidth; |
| struct dma_slave_config conf; |
| struct scatterlist *sg; |
| struct sg_table *sgt; |
| struct dma_chan *chan; |
| const void *buf, *pbuf; |
| size_t len = xfer->len; |
| int i, ret, nents; |
| |
| if (xfer->bits_per_word > 8) |
| buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| else |
| buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| |
| memset(&conf, 0, sizeof(conf)); |
| conf.direction = ep93xx_dma_data_to_trans_dir(dir); |
| |
| if (dir == DMA_FROM_DEVICE) { |
| chan = espi->dma_rx; |
| buf = xfer->rx_buf; |
| sgt = &espi->rx_sgt; |
| |
| conf.src_addr = espi->sspdr_phys; |
| conf.src_addr_width = buswidth; |
| } else { |
| chan = espi->dma_tx; |
| buf = xfer->tx_buf; |
| sgt = &espi->tx_sgt; |
| |
| conf.dst_addr = espi->sspdr_phys; |
| conf.dst_addr_width = buswidth; |
| } |
| |
| ret = dmaengine_slave_config(chan, &conf); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| /* |
| * We need to split the transfer into PAGE_SIZE'd chunks. This is |
| * because we are using @espi->zeropage to provide a zero RX buffer |
| * for the TX transfers and we have only allocated one page for that. |
| * |
| * For performance reasons we allocate a new sg_table only when |
| * needed. Otherwise we will re-use the current one. Eventually the |
| * last sg_table is released in ep93xx_spi_release_dma(). |
| */ |
| |
| nents = DIV_ROUND_UP(len, PAGE_SIZE); |
| if (nents != sgt->nents) { |
| sg_free_table(sgt); |
| |
| ret = sg_alloc_table(sgt, nents, GFP_KERNEL); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| pbuf = buf; |
| for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| size_t bytes = min_t(size_t, len, PAGE_SIZE); |
| |
| if (buf) { |
| sg_set_page(sg, virt_to_page(pbuf), bytes, |
| offset_in_page(pbuf)); |
| } else { |
| sg_set_page(sg, virt_to_page(espi->zeropage), |
| bytes, 0); |
| } |
| |
| pbuf += bytes; |
| len -= bytes; |
| } |
| |
| if (WARN_ON(len)) { |
| dev_warn(&master->dev, "len = %zu expected 0!\n", len); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| if (!nents) |
| return ERR_PTR(-ENOMEM); |
| |
| txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, |
| DMA_CTRL_ACK); |
| if (!txd) { |
| dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| return ERR_PTR(-ENOMEM); |
| } |
| return txd; |
| } |
| |
| /** |
| * ep93xx_spi_dma_finish() - finishes with a DMA transfer |
| * @master: SPI master |
| * @dir: DMA transfer direction |
| * |
| * Function finishes with the DMA transfer. After this, the DMA buffer is |
| * unmapped. |
| */ |
| static void ep93xx_spi_dma_finish(struct spi_master *master, |
| enum dma_data_direction dir) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct dma_chan *chan; |
| struct sg_table *sgt; |
| |
| if (dir == DMA_FROM_DEVICE) { |
| chan = espi->dma_rx; |
| sgt = &espi->rx_sgt; |
| } else { |
| chan = espi->dma_tx; |
| sgt = &espi->tx_sgt; |
| } |
| |
| dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| } |
| |
| static void ep93xx_spi_dma_callback(void *callback_param) |
| { |
| struct spi_master *master = callback_param; |
| |
| ep93xx_spi_dma_finish(master, DMA_TO_DEVICE); |
| ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); |
| |
| spi_finalize_current_transfer(master); |
| } |
| |
| static int ep93xx_spi_dma_transfer(struct spi_master *master) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct dma_async_tx_descriptor *rxd, *txd; |
| |
| rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE); |
| if (IS_ERR(rxd)) { |
| dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); |
| return PTR_ERR(rxd); |
| } |
| |
| txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE); |
| if (IS_ERR(txd)) { |
| ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); |
| dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); |
| return PTR_ERR(txd); |
| } |
| |
| /* We are ready when RX is done */ |
| rxd->callback = ep93xx_spi_dma_callback; |
| rxd->callback_param = master; |
| |
| /* Now submit both descriptors and start DMA */ |
| dmaengine_submit(rxd); |
| dmaengine_submit(txd); |
| |
| dma_async_issue_pending(espi->dma_rx); |
| dma_async_issue_pending(espi->dma_tx); |
| |
| /* signal that we need to wait for completion */ |
| return 1; |
| } |
| |
| static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) |
| { |
| struct spi_master *master = dev_id; |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| u32 val; |
| |
| /* |
| * If we got ROR (receive overrun) interrupt we know that something is |
| * wrong. Just abort the message. |
| */ |
| if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { |
| /* clear the overrun interrupt */ |
| writel(0, espi->mmio + SSPICR); |
| dev_warn(&master->dev, |
| "receive overrun, aborting the message\n"); |
| master->cur_msg->status = -EIO; |
| } else { |
| /* |
| * Interrupt is either RX (RIS) or TX (TIS). For both cases we |
| * simply execute next data transfer. |
| */ |
| if (ep93xx_spi_read_write(master)) { |
| /* |
| * In normal case, there still is some processing left |
| * for current transfer. Let's wait for the next |
| * interrupt then. |
| */ |
| return IRQ_HANDLED; |
| } |
| } |
| |
| /* |
| * Current transfer is finished, either with error or with success. In |
| * any case we disable interrupts and notify the worker to handle |
| * any post-processing of the message. |
| */ |
| val = readl(espi->mmio + SSPCR1); |
| val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
| writel(val, espi->mmio + SSPCR1); |
| |
| spi_finalize_current_transfer(master); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int ep93xx_spi_transfer_one(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *xfer) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| u32 val; |
| int ret; |
| |
| ret = ep93xx_spi_chip_setup(master, spi, xfer); |
| if (ret) { |
| dev_err(&master->dev, "failed to setup chip for transfer\n"); |
| return ret; |
| } |
| |
| master->cur_msg->state = xfer; |
| espi->rx = 0; |
| espi->tx = 0; |
| |
| /* |
| * There is no point of setting up DMA for the transfers which will |
| * fit into the FIFO and can be transferred with a single interrupt. |
| * So in these cases we will be using PIO and don't bother for DMA. |
| */ |
| if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) |
| return ep93xx_spi_dma_transfer(master); |
| |
| /* Using PIO so prime the TX FIFO and enable interrupts */ |
| ep93xx_spi_read_write(master); |
| |
| val = readl(espi->mmio + SSPCR1); |
| val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
| writel(val, espi->mmio + SSPCR1); |
| |
| /* signal that we need to wait for completion */ |
| return 1; |
| } |
| |
| static int ep93xx_spi_prepare_message(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| unsigned long timeout; |
| |
| /* |
| * Just to be sure: flush any data from RX FIFO. |
| */ |
| timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); |
| while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { |
| if (time_after(jiffies, timeout)) { |
| dev_warn(&master->dev, |
| "timeout while flushing RX FIFO\n"); |
| return -ETIMEDOUT; |
| } |
| readl(espi->mmio + SSPDR); |
| } |
| |
| /* |
| * We explicitly handle FIFO level. This way we don't have to check TX |
| * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. |
| */ |
| espi->fifo_level = 0; |
| |
| return 0; |
| } |
| |
| static int ep93xx_spi_prepare_hardware(struct spi_master *master) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| u32 val; |
| int ret; |
| |
| ret = clk_enable(espi->clk); |
| if (ret) |
| return ret; |
| |
| val = readl(espi->mmio + SSPCR1); |
| val |= SSPCR1_SSE; |
| writel(val, espi->mmio + SSPCR1); |
| |
| return 0; |
| } |
| |
| static int ep93xx_spi_unprepare_hardware(struct spi_master *master) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| u32 val; |
| |
| val = readl(espi->mmio + SSPCR1); |
| val &= ~SSPCR1_SSE; |
| writel(val, espi->mmio + SSPCR1); |
| |
| clk_disable(espi->clk); |
| |
| return 0; |
| } |
| |
| static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) |
| { |
| if (ep93xx_dma_chan_is_m2p(chan)) |
| return false; |
| |
| chan->private = filter_param; |
| return true; |
| } |
| |
| static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) |
| { |
| dma_cap_mask_t mask; |
| int ret; |
| |
| espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!espi->zeropage) |
| return -ENOMEM; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| espi->dma_rx_data.port = EP93XX_DMA_SSP; |
| espi->dma_rx_data.direction = DMA_DEV_TO_MEM; |
| espi->dma_rx_data.name = "ep93xx-spi-rx"; |
| |
| espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
| &espi->dma_rx_data); |
| if (!espi->dma_rx) { |
| ret = -ENODEV; |
| goto fail_free_page; |
| } |
| |
| espi->dma_tx_data.port = EP93XX_DMA_SSP; |
| espi->dma_tx_data.direction = DMA_MEM_TO_DEV; |
| espi->dma_tx_data.name = "ep93xx-spi-tx"; |
| |
| espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
| &espi->dma_tx_data); |
| if (!espi->dma_tx) { |
| ret = -ENODEV; |
| goto fail_release_rx; |
| } |
| |
| return 0; |
| |
| fail_release_rx: |
| dma_release_channel(espi->dma_rx); |
| espi->dma_rx = NULL; |
| fail_free_page: |
| free_page((unsigned long)espi->zeropage); |
| |
| return ret; |
| } |
| |
| static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) |
| { |
| if (espi->dma_rx) { |
| dma_release_channel(espi->dma_rx); |
| sg_free_table(&espi->rx_sgt); |
| } |
| if (espi->dma_tx) { |
| dma_release_channel(espi->dma_tx); |
| sg_free_table(&espi->tx_sgt); |
| } |
| |
| if (espi->zeropage) |
| free_page((unsigned long)espi->zeropage); |
| } |
| |
| static int ep93xx_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct ep93xx_spi_info *info; |
| struct ep93xx_spi *espi; |
| struct resource *res; |
| int irq; |
| int error; |
| |
| info = dev_get_platdata(&pdev->dev); |
| if (!info) { |
| dev_err(&pdev->dev, "missing platform data\n"); |
| return -EINVAL; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "failed to get irq resources\n"); |
| return -EBUSY; |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(&pdev->dev, "unable to get iomem resource\n"); |
| return -ENODEV; |
| } |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(*espi)); |
| if (!master) |
| return -ENOMEM; |
| |
| master->use_gpio_descriptors = true; |
| master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; |
| master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; |
| master->prepare_message = ep93xx_spi_prepare_message; |
| master->transfer_one = ep93xx_spi_transfer_one; |
| master->bus_num = pdev->id; |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
| master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); |
| /* |
| * The SPI core will count the number of GPIO descriptors to figure |
| * out the number of chip selects available on the platform. |
| */ |
| master->num_chipselect = 0; |
| |
| platform_set_drvdata(pdev, master); |
| |
| espi = spi_master_get_devdata(master); |
| |
| espi->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(espi->clk)) { |
| dev_err(&pdev->dev, "unable to get spi clock\n"); |
| error = PTR_ERR(espi->clk); |
| goto fail_release_master; |
| } |
| |
| /* |
| * Calculate maximum and minimum supported clock rates |
| * for the controller. |
| */ |
| master->max_speed_hz = clk_get_rate(espi->clk) / 2; |
| master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); |
| |
| espi->sspdr_phys = res->start + SSPDR; |
| |
| espi->mmio = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(espi->mmio)) { |
| error = PTR_ERR(espi->mmio); |
| goto fail_release_master; |
| } |
| |
| error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, |
| 0, "ep93xx-spi", master); |
| if (error) { |
| dev_err(&pdev->dev, "failed to request irq\n"); |
| goto fail_release_master; |
| } |
| |
| if (info->use_dma && ep93xx_spi_setup_dma(espi)) |
| dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); |
| |
| /* make sure that the hardware is disabled */ |
| writel(0, espi->mmio + SSPCR1); |
| |
| error = devm_spi_register_master(&pdev->dev, master); |
| if (error) { |
| dev_err(&pdev->dev, "failed to register SPI master\n"); |
| goto fail_free_dma; |
| } |
| |
| dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", |
| (unsigned long)res->start, irq); |
| |
| return 0; |
| |
| fail_free_dma: |
| ep93xx_spi_release_dma(espi); |
| fail_release_master: |
| spi_master_put(master); |
| |
| return error; |
| } |
| |
| static int ep93xx_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| |
| ep93xx_spi_release_dma(espi); |
| |
| return 0; |
| } |
| |
| static struct platform_driver ep93xx_spi_driver = { |
| .driver = { |
| .name = "ep93xx-spi", |
| }, |
| .probe = ep93xx_spi_probe, |
| .remove = ep93xx_spi_remove, |
| }; |
| module_platform_driver(ep93xx_spi_driver); |
| |
| MODULE_DESCRIPTION("EP93xx SPI Controller driver"); |
| MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:ep93xx-spi"); |