| /* Copyright 2008 - 2016 Freescale Semiconductor Inc. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of Freescale Semiconductor nor the |
| * names of its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * ALTERNATIVELY, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") as published by the Free Software |
| * Foundation, either version 2 of that License or (at your option) any |
| * later version. |
| * |
| * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/io.h> |
| #include <linux/if_arp.h> |
| #include <linux/if_vlan.h> |
| #include <linux/icmp.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/udp.h> |
| #include <linux/tcp.h> |
| #include <linux/net.h> |
| #include <linux/skbuff.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_ether.h> |
| #include <linux/highmem.h> |
| #include <linux/percpu.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/sort.h> |
| #include <soc/fsl/bman.h> |
| #include <soc/fsl/qman.h> |
| |
| #include "fman.h" |
| #include "fman_port.h" |
| #include "mac.h" |
| #include "dpaa_eth.h" |
| |
| /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files |
| * using trace events only need to #include <trace/events/sched.h> |
| */ |
| #define CREATE_TRACE_POINTS |
| #include "dpaa_eth_trace.h" |
| |
| static int debug = -1; |
| module_param(debug, int, 0444); |
| MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); |
| |
| static u16 tx_timeout = 1000; |
| module_param(tx_timeout, ushort, 0444); |
| MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); |
| |
| #define FM_FD_STAT_RX_ERRORS \ |
| (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ |
| FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ |
| FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ |
| FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ |
| FM_FD_ERR_PRS_HDR_ERR) |
| |
| #define FM_FD_STAT_TX_ERRORS \ |
| (FM_FD_ERR_UNSUPPORTED_FORMAT | \ |
| FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) |
| |
| #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ |
| NETIF_MSG_LINK | NETIF_MSG_IFUP | \ |
| NETIF_MSG_IFDOWN) |
| |
| #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 |
| /* Ingress congestion threshold on FMan ports |
| * The size in bytes of the ingress tail-drop threshold on FMan ports. |
| * Traffic piling up above this value will be rejected by QMan and discarded |
| * by FMan. |
| */ |
| |
| /* Size in bytes of the FQ taildrop threshold */ |
| #define DPAA_FQ_TD 0x200000 |
| |
| #define DPAA_CS_THRESHOLD_1G 0x06000000 |
| /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 |
| * The size in bytes of the egress Congestion State notification threshold on |
| * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a |
| * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), |
| * and the larger the frame size, the more acute the problem. |
| * So we have to find a balance between these factors: |
| * - avoiding the device staying congested for a prolonged time (risking |
| * the netdev watchdog to fire - see also the tx_timeout module param); |
| * - affecting performance of protocols such as TCP, which otherwise |
| * behave well under the congestion notification mechanism; |
| * - preventing the Tx cores from tightly-looping (as if the congestion |
| * threshold was too low to be effective); |
| * - running out of memory if the CS threshold is set too high. |
| */ |
| |
| #define DPAA_CS_THRESHOLD_10G 0x10000000 |
| /* The size in bytes of the egress Congestion State notification threshold on |
| * 10G ports, range 0x1000 .. 0x10000000 |
| */ |
| |
| /* Largest value that the FQD's OAL field can hold */ |
| #define FSL_QMAN_MAX_OAL 127 |
| |
| /* Default alignment for start of data in an Rx FD */ |
| #define DPAA_FD_DATA_ALIGNMENT 16 |
| |
| /* Values for the L3R field of the FM Parse Results |
| */ |
| /* L3 Type field: First IP Present IPv4 */ |
| #define FM_L3_PARSE_RESULT_IPV4 0x8000 |
| /* L3 Type field: First IP Present IPv6 */ |
| #define FM_L3_PARSE_RESULT_IPV6 0x4000 |
| /* Values for the L4R field of the FM Parse Results */ |
| /* L4 Type field: UDP */ |
| #define FM_L4_PARSE_RESULT_UDP 0x40 |
| /* L4 Type field: TCP */ |
| #define FM_L4_PARSE_RESULT_TCP 0x20 |
| |
| #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ |
| #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ |
| |
| #define FSL_DPAA_BPID_INV 0xff |
| #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 |
| #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 |
| |
| #define DPAA_TX_PRIV_DATA_SIZE 16 |
| #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) |
| #define DPAA_TIME_STAMP_SIZE 8 |
| #define DPAA_HASH_RESULTS_SIZE 8 |
| #define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \ |
| dpaa_rx_extra_headroom) |
| |
| #define DPAA_ETH_RX_QUEUES 128 |
| |
| #define DPAA_ENQUEUE_RETRIES 100000 |
| |
| enum port_type {RX, TX}; |
| |
| struct fm_port_fqs { |
| struct dpaa_fq *tx_defq; |
| struct dpaa_fq *tx_errq; |
| struct dpaa_fq *rx_defq; |
| struct dpaa_fq *rx_errq; |
| }; |
| |
| /* All the dpa bps in use at any moment */ |
| static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; |
| |
| /* The raw buffer size must be cacheline aligned */ |
| #define DPAA_BP_RAW_SIZE 4096 |
| /* When using more than one buffer pool, the raw sizes are as follows: |
| * 1 bp: 4KB |
| * 2 bp: 2KB, 4KB |
| * 3 bp: 1KB, 2KB, 4KB |
| * 4 bp: 1KB, 2KB, 4KB, 8KB |
| */ |
| static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt) |
| { |
| size_t res = DPAA_BP_RAW_SIZE / 4; |
| u8 i; |
| |
| for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++) |
| res *= 2; |
| return res; |
| } |
| |
| /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is |
| * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that, |
| * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us |
| * half-page-aligned buffers, so we reserve some more space for start-of-buffer |
| * alignment. |
| */ |
| #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES) |
| |
| static int dpaa_max_frm; |
| |
| static int dpaa_rx_extra_headroom; |
| |
| #define dpaa_get_max_mtu() \ |
| (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) |
| |
| static int dpaa_netdev_init(struct net_device *net_dev, |
| const struct net_device_ops *dpaa_ops, |
| u16 tx_timeout) |
| { |
| struct dpaa_priv *priv = netdev_priv(net_dev); |
| struct device *dev = net_dev->dev.parent; |
| struct dpaa_percpu_priv *percpu_priv; |
| const u8 *mac_addr; |
| int i, err; |
| |
| /* Although we access another CPU's private data here |
| * we do it at initialization so it is safe |
| */ |
| for_each_possible_cpu(i) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| percpu_priv->net_dev = net_dev; |
| } |
| |
| net_dev->netdev_ops = dpaa_ops; |
| mac_addr = priv->mac_dev->addr; |
| |
| net_dev->mem_start = priv->mac_dev->res->start; |
| net_dev->mem_end = priv->mac_dev->res->end; |
| |
| net_dev->min_mtu = ETH_MIN_MTU; |
| net_dev->max_mtu = dpaa_get_max_mtu(); |
| |
| net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_LLTX); |
| |
| net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; |
| /* The kernels enables GSO automatically, if we declare NETIF_F_SG. |
| * For conformity, we'll still declare GSO explicitly. |
| */ |
| net_dev->features |= NETIF_F_GSO; |
| |
| net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| /* we do not want shared skbs on TX */ |
| net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; |
| |
| net_dev->features |= net_dev->hw_features; |
| net_dev->vlan_features = net_dev->features; |
| |
| memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); |
| memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); |
| |
| net_dev->ethtool_ops = &dpaa_ethtool_ops; |
| |
| net_dev->needed_headroom = priv->tx_headroom; |
| net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); |
| |
| /* start without the RUNNING flag, phylib controls it later */ |
| netif_carrier_off(net_dev); |
| |
| err = register_netdev(net_dev); |
| if (err < 0) { |
| dev_err(dev, "register_netdev() = %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int dpaa_stop(struct net_device *net_dev) |
| { |
| struct mac_device *mac_dev; |
| struct dpaa_priv *priv; |
| int i, err, error; |
| |
| priv = netdev_priv(net_dev); |
| mac_dev = priv->mac_dev; |
| |
| netif_tx_stop_all_queues(net_dev); |
| /* Allow the Fman (Tx) port to process in-flight frames before we |
| * try switching it off. |
| */ |
| usleep_range(5000, 10000); |
| |
| err = mac_dev->stop(mac_dev); |
| if (err < 0) |
| netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n", |
| err); |
| |
| for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { |
| error = fman_port_disable(mac_dev->port[i]); |
| if (error) |
| err = error; |
| } |
| |
| if (net_dev->phydev) |
| phy_disconnect(net_dev->phydev); |
| net_dev->phydev = NULL; |
| |
| return err; |
| } |
| |
| static void dpaa_tx_timeout(struct net_device *net_dev) |
| { |
| struct dpaa_percpu_priv *percpu_priv; |
| const struct dpaa_priv *priv; |
| |
| priv = netdev_priv(net_dev); |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| |
| netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", |
| jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); |
| |
| percpu_priv->stats.tx_errors++; |
| } |
| |
| /* Calculates the statistics for the given device by adding the statistics |
| * collected by each CPU. |
| */ |
| static void dpaa_get_stats64(struct net_device *net_dev, |
| struct rtnl_link_stats64 *s) |
| { |
| int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); |
| struct dpaa_priv *priv = netdev_priv(net_dev); |
| struct dpaa_percpu_priv *percpu_priv; |
| u64 *netstats = (u64 *)s; |
| u64 *cpustats; |
| int i, j; |
| |
| for_each_possible_cpu(i) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| |
| cpustats = (u64 *)&percpu_priv->stats; |
| |
| /* add stats from all CPUs */ |
| for (j = 0; j < numstats; j++) |
| netstats[j] += cpustats[j]; |
| } |
| } |
| |
| static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) |
| { |
| struct platform_device *of_dev; |
| struct dpaa_eth_data *eth_data; |
| struct device *dpaa_dev, *dev; |
| struct device_node *mac_node; |
| struct mac_device *mac_dev; |
| |
| dpaa_dev = &pdev->dev; |
| eth_data = dpaa_dev->platform_data; |
| if (!eth_data) |
| return ERR_PTR(-ENODEV); |
| |
| mac_node = eth_data->mac_node; |
| |
| of_dev = of_find_device_by_node(mac_node); |
| if (!of_dev) { |
| dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n", |
| mac_node->full_name); |
| of_node_put(mac_node); |
| return ERR_PTR(-EINVAL); |
| } |
| of_node_put(mac_node); |
| |
| dev = &of_dev->dev; |
| |
| mac_dev = dev_get_drvdata(dev); |
| if (!mac_dev) { |
| dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n", |
| dev_name(dev)); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return mac_dev; |
| } |
| |
| static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) |
| { |
| const struct dpaa_priv *priv; |
| struct mac_device *mac_dev; |
| struct sockaddr old_addr; |
| int err; |
| |
| priv = netdev_priv(net_dev); |
| |
| memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); |
| |
| err = eth_mac_addr(net_dev, addr); |
| if (err < 0) { |
| netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); |
| return err; |
| } |
| |
| mac_dev = priv->mac_dev; |
| |
| err = mac_dev->change_addr(mac_dev->fman_mac, |
| (enet_addr_t *)net_dev->dev_addr); |
| if (err < 0) { |
| netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", |
| err); |
| /* reverting to previous address */ |
| eth_mac_addr(net_dev, &old_addr); |
| |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void dpaa_set_rx_mode(struct net_device *net_dev) |
| { |
| const struct dpaa_priv *priv; |
| int err; |
| |
| priv = netdev_priv(net_dev); |
| |
| if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { |
| priv->mac_dev->promisc = !priv->mac_dev->promisc; |
| err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, |
| priv->mac_dev->promisc); |
| if (err < 0) |
| netif_err(priv, drv, net_dev, |
| "mac_dev->set_promisc() = %d\n", |
| err); |
| } |
| |
| err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); |
| if (err < 0) |
| netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", |
| err); |
| } |
| |
| static struct dpaa_bp *dpaa_bpid2pool(int bpid) |
| { |
| if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) |
| return NULL; |
| |
| return dpaa_bp_array[bpid]; |
| } |
| |
| /* checks if this bpool is already allocated */ |
| static bool dpaa_bpid2pool_use(int bpid) |
| { |
| if (dpaa_bpid2pool(bpid)) { |
| atomic_inc(&dpaa_bp_array[bpid]->refs); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* called only once per bpid by dpaa_bp_alloc_pool() */ |
| static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) |
| { |
| dpaa_bp_array[bpid] = dpaa_bp; |
| atomic_set(&dpaa_bp->refs, 1); |
| } |
| |
| static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) |
| { |
| int err; |
| |
| if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { |
| pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* If the pool is already specified, we only create one per bpid */ |
| if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && |
| dpaa_bpid2pool_use(dpaa_bp->bpid)) |
| return 0; |
| |
| if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { |
| dpaa_bp->pool = bman_new_pool(); |
| if (!dpaa_bp->pool) { |
| pr_err("%s: bman_new_pool() failed\n", |
| __func__); |
| return -ENODEV; |
| } |
| |
| dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); |
| } |
| |
| if (dpaa_bp->seed_cb) { |
| err = dpaa_bp->seed_cb(dpaa_bp); |
| if (err) |
| goto pool_seed_failed; |
| } |
| |
| dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); |
| |
| return 0; |
| |
| pool_seed_failed: |
| pr_err("%s: pool seeding failed\n", __func__); |
| bman_free_pool(dpaa_bp->pool); |
| |
| return err; |
| } |
| |
| /* remove and free all the buffers from the given buffer pool */ |
| static void dpaa_bp_drain(struct dpaa_bp *bp) |
| { |
| u8 num = 8; |
| int ret; |
| |
| do { |
| struct bm_buffer bmb[8]; |
| int i; |
| |
| ret = bman_acquire(bp->pool, bmb, num); |
| if (ret < 0) { |
| if (num == 8) { |
| /* we have less than 8 buffers left; |
| * drain them one by one |
| */ |
| num = 1; |
| ret = 1; |
| continue; |
| } else { |
| /* Pool is fully drained */ |
| break; |
| } |
| } |
| |
| if (bp->free_buf_cb) |
| for (i = 0; i < num; i++) |
| bp->free_buf_cb(bp, &bmb[i]); |
| } while (ret > 0); |
| } |
| |
| static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) |
| { |
| struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); |
| |
| /* the mapping between bpid and dpaa_bp is done very late in the |
| * allocation procedure; if something failed before the mapping, the bp |
| * was not configured, therefore we don't need the below instructions |
| */ |
| if (!bp) |
| return; |
| |
| if (!atomic_dec_and_test(&bp->refs)) |
| return; |
| |
| if (bp->free_buf_cb) |
| dpaa_bp_drain(bp); |
| |
| dpaa_bp_array[bp->bpid] = NULL; |
| bman_free_pool(bp->pool); |
| } |
| |
| static void dpaa_bps_free(struct dpaa_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < DPAA_BPS_NUM; i++) |
| dpaa_bp_free(priv->dpaa_bps[i]); |
| } |
| |
| /* Use multiple WQs for FQ assignment: |
| * - Tx Confirmation queues go to WQ1. |
| * - Rx Error and Tx Error queues go to WQ2 (giving them a better chance |
| * to be scheduled, in case there are many more FQs in WQ3). |
| * - Rx Default and Tx queues go to WQ3 (no differentiation between |
| * Rx and Tx traffic). |
| * This ensures that Tx-confirmed buffers are timely released. In particular, |
| * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they |
| * are greatly outnumbered by other FQs in the system, while |
| * dequeue scheduling is round-robin. |
| */ |
| static inline void dpaa_assign_wq(struct dpaa_fq *fq) |
| { |
| switch (fq->fq_type) { |
| case FQ_TYPE_TX_CONFIRM: |
| case FQ_TYPE_TX_CONF_MQ: |
| fq->wq = 1; |
| break; |
| case FQ_TYPE_RX_ERROR: |
| case FQ_TYPE_TX_ERROR: |
| fq->wq = 2; |
| break; |
| case FQ_TYPE_RX_DEFAULT: |
| case FQ_TYPE_TX: |
| fq->wq = 3; |
| break; |
| default: |
| WARN(1, "Invalid FQ type %d for FQID %d!\n", |
| fq->fq_type, fq->fqid); |
| } |
| } |
| |
| static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, |
| u32 start, u32 count, |
| struct list_head *list, |
| enum dpaa_fq_type fq_type) |
| { |
| struct dpaa_fq *dpaa_fq; |
| int i; |
| |
| dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count, |
| GFP_KERNEL); |
| if (!dpaa_fq) |
| return NULL; |
| |
| for (i = 0; i < count; i++) { |
| dpaa_fq[i].fq_type = fq_type; |
| dpaa_fq[i].fqid = start ? start + i : 0; |
| list_add_tail(&dpaa_fq[i].list, list); |
| } |
| |
| for (i = 0; i < count; i++) |
| dpaa_assign_wq(dpaa_fq + i); |
| |
| return dpaa_fq; |
| } |
| |
| static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, |
| struct fm_port_fqs *port_fqs) |
| { |
| struct dpaa_fq *dpaa_fq; |
| |
| dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); |
| if (!dpaa_fq) |
| goto fq_alloc_failed; |
| |
| port_fqs->rx_errq = &dpaa_fq[0]; |
| |
| dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); |
| if (!dpaa_fq) |
| goto fq_alloc_failed; |
| |
| port_fqs->rx_defq = &dpaa_fq[0]; |
| |
| if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) |
| goto fq_alloc_failed; |
| |
| dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); |
| if (!dpaa_fq) |
| goto fq_alloc_failed; |
| |
| port_fqs->tx_errq = &dpaa_fq[0]; |
| |
| dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); |
| if (!dpaa_fq) |
| goto fq_alloc_failed; |
| |
| port_fqs->tx_defq = &dpaa_fq[0]; |
| |
| if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) |
| goto fq_alloc_failed; |
| |
| return 0; |
| |
| fq_alloc_failed: |
| dev_err(dev, "dpaa_fq_alloc() failed\n"); |
| return -ENOMEM; |
| } |
| |
| static u32 rx_pool_channel; |
| static DEFINE_SPINLOCK(rx_pool_channel_init); |
| |
| static int dpaa_get_channel(void) |
| { |
| spin_lock(&rx_pool_channel_init); |
| if (!rx_pool_channel) { |
| u32 pool; |
| int ret; |
| |
| ret = qman_alloc_pool(&pool); |
| |
| if (!ret) |
| rx_pool_channel = pool; |
| } |
| spin_unlock(&rx_pool_channel_init); |
| if (!rx_pool_channel) |
| return -ENOMEM; |
| return rx_pool_channel; |
| } |
| |
| static void dpaa_release_channel(void) |
| { |
| qman_release_pool(rx_pool_channel); |
| } |
| |
| static void dpaa_eth_add_channel(u16 channel) |
| { |
| u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); |
| const cpumask_t *cpus = qman_affine_cpus(); |
| struct qman_portal *portal; |
| int cpu; |
| |
| for_each_cpu(cpu, cpus) { |
| portal = qman_get_affine_portal(cpu); |
| qman_p_static_dequeue_add(portal, pool); |
| } |
| } |
| |
| /* Congestion group state change notification callback. |
| * Stops the device's egress queues while they are congested and |
| * wakes them upon exiting congested state. |
| * Also updates some CGR-related stats. |
| */ |
| static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, |
| int congested) |
| { |
| struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, |
| struct dpaa_priv, cgr_data.cgr); |
| |
| if (congested) { |
| priv->cgr_data.congestion_start_jiffies = jiffies; |
| netif_tx_stop_all_queues(priv->net_dev); |
| priv->cgr_data.cgr_congested_count++; |
| } else { |
| priv->cgr_data.congested_jiffies += |
| (jiffies - priv->cgr_data.congestion_start_jiffies); |
| netif_tx_wake_all_queues(priv->net_dev); |
| } |
| } |
| |
| static int dpaa_eth_cgr_init(struct dpaa_priv *priv) |
| { |
| struct qm_mcc_initcgr initcgr; |
| u32 cs_th; |
| int err; |
| |
| err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); |
| if (err < 0) { |
| if (netif_msg_drv(priv)) |
| pr_err("%s: Error %d allocating CGR ID\n", |
| __func__, err); |
| goto out_error; |
| } |
| priv->cgr_data.cgr.cb = dpaa_eth_cgscn; |
| |
| /* Enable Congestion State Change Notifications and CS taildrop */ |
| memset(&initcgr, 0, sizeof(initcgr)); |
| initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); |
| initcgr.cgr.cscn_en = QM_CGR_EN; |
| |
| /* Set different thresholds based on the MAC speed. |
| * This may turn suboptimal if the MAC is reconfigured at a speed |
| * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link. |
| * In such cases, we ought to reconfigure the threshold, too. |
| */ |
| if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full) |
| cs_th = DPAA_CS_THRESHOLD_10G; |
| else |
| cs_th = DPAA_CS_THRESHOLD_1G; |
| qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); |
| |
| initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); |
| initcgr.cgr.cstd_en = QM_CGR_EN; |
| |
| err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, |
| &initcgr); |
| if (err < 0) { |
| if (netif_msg_drv(priv)) |
| pr_err("%s: Error %d creating CGR with ID %d\n", |
| __func__, err, priv->cgr_data.cgr.cgrid); |
| qman_release_cgrid(priv->cgr_data.cgr.cgrid); |
| goto out_error; |
| } |
| if (netif_msg_drv(priv)) |
| pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", |
| priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, |
| priv->cgr_data.cgr.chan); |
| |
| out_error: |
| return err; |
| } |
| |
| static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, |
| struct dpaa_fq *fq, |
| const struct qman_fq *template) |
| { |
| fq->fq_base = *template; |
| fq->net_dev = priv->net_dev; |
| |
| fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; |
| fq->channel = priv->channel; |
| } |
| |
| static inline void dpaa_setup_egress(const struct dpaa_priv *priv, |
| struct dpaa_fq *fq, |
| struct fman_port *port, |
| const struct qman_fq *template) |
| { |
| fq->fq_base = *template; |
| fq->net_dev = priv->net_dev; |
| |
| if (port) { |
| fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; |
| fq->channel = (u16)fman_port_get_qman_channel_id(port); |
| } else { |
| fq->flags = QMAN_FQ_FLAG_NO_MODIFY; |
| } |
| } |
| |
| static void dpaa_fq_setup(struct dpaa_priv *priv, |
| const struct dpaa_fq_cbs *fq_cbs, |
| struct fman_port *tx_port) |
| { |
| int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu; |
| const cpumask_t *affine_cpus = qman_affine_cpus(); |
| u16 portals[NR_CPUS]; |
| struct dpaa_fq *fq; |
| |
| for_each_cpu(cpu, affine_cpus) |
| portals[num_portals++] = qman_affine_channel(cpu); |
| if (num_portals == 0) |
| dev_err(priv->net_dev->dev.parent, |
| "No Qman software (affine) channels found"); |
| |
| /* Initialize each FQ in the list */ |
| list_for_each_entry(fq, &priv->dpaa_fq_list, list) { |
| switch (fq->fq_type) { |
| case FQ_TYPE_RX_DEFAULT: |
| dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); |
| break; |
| case FQ_TYPE_RX_ERROR: |
| dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); |
| break; |
| case FQ_TYPE_TX: |
| dpaa_setup_egress(priv, fq, tx_port, |
| &fq_cbs->egress_ern); |
| /* If we have more Tx queues than the number of cores, |
| * just ignore the extra ones. |
| */ |
| if (egress_cnt < DPAA_ETH_TXQ_NUM) |
| priv->egress_fqs[egress_cnt++] = &fq->fq_base; |
| break; |
| case FQ_TYPE_TX_CONF_MQ: |
| priv->conf_fqs[conf_cnt++] = &fq->fq_base; |
| /* fall through */ |
| case FQ_TYPE_TX_CONFIRM: |
| dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); |
| break; |
| case FQ_TYPE_TX_ERROR: |
| dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); |
| break; |
| default: |
| dev_warn(priv->net_dev->dev.parent, |
| "Unknown FQ type detected!\n"); |
| break; |
| } |
| } |
| |
| /* Make sure all CPUs receive a corresponding Tx queue. */ |
| while (egress_cnt < DPAA_ETH_TXQ_NUM) { |
| list_for_each_entry(fq, &priv->dpaa_fq_list, list) { |
| if (fq->fq_type != FQ_TYPE_TX) |
| continue; |
| priv->egress_fqs[egress_cnt++] = &fq->fq_base; |
| if (egress_cnt == DPAA_ETH_TXQ_NUM) |
| break; |
| } |
| } |
| } |
| |
| static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, |
| struct qman_fq *tx_fq) |
| { |
| int i; |
| |
| for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) |
| if (priv->egress_fqs[i] == tx_fq) |
| return i; |
| |
| return -EINVAL; |
| } |
| |
| static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) |
| { |
| const struct dpaa_priv *priv; |
| struct qman_fq *confq = NULL; |
| struct qm_mcc_initfq initfq; |
| struct device *dev; |
| struct qman_fq *fq; |
| int queue_id; |
| int err; |
| |
| priv = netdev_priv(dpaa_fq->net_dev); |
| dev = dpaa_fq->net_dev->dev.parent; |
| |
| if (dpaa_fq->fqid == 0) |
| dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; |
| |
| dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); |
| |
| err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); |
| if (err) { |
| dev_err(dev, "qman_create_fq() failed\n"); |
| return err; |
| } |
| fq = &dpaa_fq->fq_base; |
| |
| if (dpaa_fq->init) { |
| memset(&initfq, 0, sizeof(initfq)); |
| |
| initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); |
| /* Note: we may get to keep an empty FQ in cache */ |
| initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); |
| |
| /* Try to reduce the number of portal interrupts for |
| * Tx Confirmation FQs. |
| */ |
| if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) |
| initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE); |
| |
| /* FQ placement */ |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); |
| |
| qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); |
| |
| /* Put all egress queues in a congestion group of their own. |
| * Sensu stricto, the Tx confirmation queues are Rx FQs, |
| * rather than Tx - but they nonetheless account for the |
| * memory footprint on behalf of egress traffic. We therefore |
| * place them in the netdev's CGR, along with the Tx FQs. |
| */ |
| if (dpaa_fq->fq_type == FQ_TYPE_TX || |
| dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || |
| dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); |
| initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); |
| initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; |
| /* Set a fixed overhead accounting, in an attempt to |
| * reduce the impact of fixed-size skb shells and the |
| * driver's needed headroom on system memory. This is |
| * especially the case when the egress traffic is |
| * composed of small datagrams. |
| * Unfortunately, QMan's OAL value is capped to an |
| * insufficient value, but even that is better than |
| * no overhead accounting at all. |
| */ |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); |
| qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); |
| qm_fqd_set_oal(&initfq.fqd, |
| min(sizeof(struct sk_buff) + |
| priv->tx_headroom, |
| (size_t)FSL_QMAN_MAX_OAL)); |
| } |
| |
| if (td_enable) { |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); |
| qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); |
| initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); |
| } |
| |
| if (dpaa_fq->fq_type == FQ_TYPE_TX) { |
| queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); |
| if (queue_id >= 0) |
| confq = priv->conf_fqs[queue_id]; |
| if (confq) { |
| initfq.we_mask |= |
| cpu_to_be16(QM_INITFQ_WE_CONTEXTA); |
| /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) |
| * A2V=1 (contextA A2 field is valid) |
| * A0V=1 (contextA A0 field is valid) |
| * B0V=1 (contextB field is valid) |
| * ContextA A2: EBD=1 (deallocate buffers inside FMan) |
| * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) |
| */ |
| qm_fqd_context_a_set64(&initfq.fqd, |
| 0x1e00000080000000ULL); |
| } |
| } |
| |
| /* Put all the ingress queues in our "ingress CGR". */ |
| if (priv->use_ingress_cgr && |
| (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || |
| dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) { |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); |
| initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); |
| initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; |
| /* Set a fixed overhead accounting, just like for the |
| * egress CGR. |
| */ |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); |
| qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); |
| qm_fqd_set_oal(&initfq.fqd, |
| min(sizeof(struct sk_buff) + |
| priv->tx_headroom, |
| (size_t)FSL_QMAN_MAX_OAL)); |
| } |
| |
| /* Initialization common to all ingress queues */ |
| if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { |
| initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); |
| initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE); |
| initfq.fqd.context_a.stashing.exclusive = |
| QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | |
| QM_STASHING_EXCL_ANNOTATION; |
| qm_fqd_set_stashing(&initfq.fqd, 1, 2, |
| DIV_ROUND_UP(sizeof(struct qman_fq), |
| 64)); |
| } |
| |
| err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); |
| if (err < 0) { |
| dev_err(dev, "qman_init_fq(%u) = %d\n", |
| qman_fq_fqid(fq), err); |
| qman_destroy_fq(fq); |
| return err; |
| } |
| } |
| |
| dpaa_fq->fqid = qman_fq_fqid(fq); |
| |
| return 0; |
| } |
| |
| static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) |
| { |
| const struct dpaa_priv *priv; |
| struct dpaa_fq *dpaa_fq; |
| int err, error; |
| |
| err = 0; |
| |
| dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
| priv = netdev_priv(dpaa_fq->net_dev); |
| |
| if (dpaa_fq->init) { |
| err = qman_retire_fq(fq, NULL); |
| if (err < 0 && netif_msg_drv(priv)) |
| dev_err(dev, "qman_retire_fq(%u) = %d\n", |
| qman_fq_fqid(fq), err); |
| |
| error = qman_oos_fq(fq); |
| if (error < 0 && netif_msg_drv(priv)) { |
| dev_err(dev, "qman_oos_fq(%u) = %d\n", |
| qman_fq_fqid(fq), error); |
| if (err >= 0) |
| err = error; |
| } |
| } |
| |
| qman_destroy_fq(fq); |
| list_del(&dpaa_fq->list); |
| |
| return err; |
| } |
| |
| static int dpaa_fq_free(struct device *dev, struct list_head *list) |
| { |
| struct dpaa_fq *dpaa_fq, *tmp; |
| int err, error; |
| |
| err = 0; |
| list_for_each_entry_safe(dpaa_fq, tmp, list, list) { |
| error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); |
| if (error < 0 && err >= 0) |
| err = error; |
| } |
| |
| return err; |
| } |
| |
| static void dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, |
| struct dpaa_fq *defq, |
| struct dpaa_buffer_layout *buf_layout) |
| { |
| struct fman_buffer_prefix_content buf_prefix_content; |
| struct fman_port_params params; |
| int err; |
| |
| memset(¶ms, 0, sizeof(params)); |
| memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); |
| |
| buf_prefix_content.priv_data_size = buf_layout->priv_data_size; |
| buf_prefix_content.pass_prs_result = true; |
| buf_prefix_content.pass_hash_result = true; |
| buf_prefix_content.pass_time_stamp = false; |
| buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; |
| |
| params.specific_params.non_rx_params.err_fqid = errq->fqid; |
| params.specific_params.non_rx_params.dflt_fqid = defq->fqid; |
| |
| err = fman_port_config(port, ¶ms); |
| if (err) |
| pr_err("%s: fman_port_config failed\n", __func__); |
| |
| err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); |
| if (err) |
| pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", |
| __func__); |
| |
| err = fman_port_init(port); |
| if (err) |
| pr_err("%s: fm_port_init failed\n", __func__); |
| } |
| |
| static void dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps, |
| size_t count, struct dpaa_fq *errq, |
| struct dpaa_fq *defq, |
| struct dpaa_buffer_layout *buf_layout) |
| { |
| struct fman_buffer_prefix_content buf_prefix_content; |
| struct fman_port_rx_params *rx_p; |
| struct fman_port_params params; |
| int i, err; |
| |
| memset(¶ms, 0, sizeof(params)); |
| memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); |
| |
| buf_prefix_content.priv_data_size = buf_layout->priv_data_size; |
| buf_prefix_content.pass_prs_result = true; |
| buf_prefix_content.pass_hash_result = true; |
| buf_prefix_content.pass_time_stamp = false; |
| buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; |
| |
| rx_p = ¶ms.specific_params.rx_params; |
| rx_p->err_fqid = errq->fqid; |
| rx_p->dflt_fqid = defq->fqid; |
| |
| count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count); |
| rx_p->ext_buf_pools.num_of_pools_used = (u8)count; |
| for (i = 0; i < count; i++) { |
| rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid; |
| rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size; |
| } |
| |
| err = fman_port_config(port, ¶ms); |
| if (err) |
| pr_err("%s: fman_port_config failed\n", __func__); |
| |
| err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); |
| if (err) |
| pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", |
| __func__); |
| |
| err = fman_port_init(port); |
| if (err) |
| pr_err("%s: fm_port_init failed\n", __func__); |
| } |
| |
| static void dpaa_eth_init_ports(struct mac_device *mac_dev, |
| struct dpaa_bp **bps, size_t count, |
| struct fm_port_fqs *port_fqs, |
| struct dpaa_buffer_layout *buf_layout, |
| struct device *dev) |
| { |
| struct fman_port *rxport = mac_dev->port[RX]; |
| struct fman_port *txport = mac_dev->port[TX]; |
| |
| dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, |
| port_fqs->tx_defq, &buf_layout[TX]); |
| dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq, |
| port_fqs->rx_defq, &buf_layout[RX]); |
| } |
| |
| static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, |
| struct bm_buffer *bmb, int cnt) |
| { |
| int err; |
| |
| err = bman_release(dpaa_bp->pool, bmb, cnt); |
| /* Should never occur, address anyway to avoid leaking the buffers */ |
| if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb) |
| while (cnt-- > 0) |
| dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); |
| |
| return cnt; |
| } |
| |
| static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) |
| { |
| struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; |
| struct dpaa_bp *dpaa_bp; |
| int i = 0, j; |
| |
| memset(bmb, 0, sizeof(bmb)); |
| |
| do { |
| dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| if (!dpaa_bp) |
| return; |
| |
| j = 0; |
| do { |
| WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
| |
| bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); |
| |
| j++; i++; |
| } while (j < ARRAY_SIZE(bmb) && |
| !qm_sg_entry_is_final(&sgt[i - 1]) && |
| sgt[i - 1].bpid == sgt[i].bpid); |
| |
| dpaa_bman_release(dpaa_bp, bmb, j); |
| } while (!qm_sg_entry_is_final(&sgt[i - 1])); |
| } |
| |
| static void dpaa_fd_release(const struct net_device *net_dev, |
| const struct qm_fd *fd) |
| { |
| struct qm_sg_entry *sgt; |
| struct dpaa_bp *dpaa_bp; |
| struct bm_buffer bmb; |
| dma_addr_t addr; |
| void *vaddr; |
| |
| bmb.data = 0; |
| bm_buffer_set64(&bmb, qm_fd_addr(fd)); |
| |
| dpaa_bp = dpaa_bpid2pool(fd->bpid); |
| if (!dpaa_bp) |
| return; |
| |
| if (qm_fd_get_format(fd) == qm_fd_sg) { |
| vaddr = phys_to_virt(qm_fd_addr(fd)); |
| sgt = vaddr + qm_fd_get_offset(fd); |
| |
| dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size, |
| DMA_FROM_DEVICE); |
| |
| dpaa_release_sgt_members(sgt); |
| |
| addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(dpaa_bp->dev, addr)) { |
| dev_err(dpaa_bp->dev, "DMA mapping failed"); |
| return; |
| } |
| bm_buffer_set64(&bmb, addr); |
| } |
| |
| dpaa_bman_release(dpaa_bp, &bmb, 1); |
| } |
| |
| static void count_ern(struct dpaa_percpu_priv *percpu_priv, |
| const union qm_mr_entry *msg) |
| { |
| switch (msg->ern.rc & QM_MR_RC_MASK) { |
| case QM_MR_RC_CGR_TAILDROP: |
| percpu_priv->ern_cnt.cg_tdrop++; |
| break; |
| case QM_MR_RC_WRED: |
| percpu_priv->ern_cnt.wred++; |
| break; |
| case QM_MR_RC_ERROR: |
| percpu_priv->ern_cnt.err_cond++; |
| break; |
| case QM_MR_RC_ORPWINDOW_EARLY: |
| percpu_priv->ern_cnt.early_window++; |
| break; |
| case QM_MR_RC_ORPWINDOW_LATE: |
| percpu_priv->ern_cnt.late_window++; |
| break; |
| case QM_MR_RC_FQ_TAILDROP: |
| percpu_priv->ern_cnt.fq_tdrop++; |
| break; |
| case QM_MR_RC_ORPWINDOW_RETIRED: |
| percpu_priv->ern_cnt.fq_retired++; |
| break; |
| case QM_MR_RC_ORP_ZERO: |
| percpu_priv->ern_cnt.orp_zero++; |
| break; |
| } |
| } |
| |
| /* Turn on HW checksum computation for this outgoing frame. |
| * If the current protocol is not something we support in this regard |
| * (or if the stack has already computed the SW checksum), we do nothing. |
| * |
| * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value |
| * otherwise. |
| * |
| * Note that this function may modify the fd->cmd field and the skb data buffer |
| * (the Parse Results area). |
| */ |
| static int dpaa_enable_tx_csum(struct dpaa_priv *priv, |
| struct sk_buff *skb, |
| struct qm_fd *fd, |
| char *parse_results) |
| { |
| struct fman_prs_result *parse_result; |
| u16 ethertype = ntohs(skb->protocol); |
| struct ipv6hdr *ipv6h = NULL; |
| struct iphdr *iph; |
| int retval = 0; |
| u8 l4_proto; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| /* Note: L3 csum seems to be already computed in sw, but we can't choose |
| * L4 alone from the FM configuration anyway. |
| */ |
| |
| /* Fill in some fields of the Parse Results array, so the FMan |
| * can find them as if they came from the FMan Parser. |
| */ |
| parse_result = (struct fman_prs_result *)parse_results; |
| |
| /* If we're dealing with VLAN, get the real Ethernet type */ |
| if (ethertype == ETH_P_8021Q) { |
| /* We can't always assume the MAC header is set correctly |
| * by the stack, so reset to beginning of skb->data |
| */ |
| skb_reset_mac_header(skb); |
| ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); |
| } |
| |
| /* Fill in the relevant L3 parse result fields |
| * and read the L4 protocol type |
| */ |
| switch (ethertype) { |
| case ETH_P_IP: |
| parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); |
| iph = ip_hdr(skb); |
| WARN_ON(!iph); |
| l4_proto = iph->protocol; |
| break; |
| case ETH_P_IPV6: |
| parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); |
| ipv6h = ipv6_hdr(skb); |
| WARN_ON(!ipv6h); |
| l4_proto = ipv6h->nexthdr; |
| break; |
| default: |
| /* We shouldn't even be here */ |
| if (net_ratelimit()) |
| netif_alert(priv, tx_err, priv->net_dev, |
| "Can't compute HW csum for L3 proto 0x%x\n", |
| ntohs(skb->protocol)); |
| retval = -EIO; |
| goto return_error; |
| } |
| |
| /* Fill in the relevant L4 parse result fields */ |
| switch (l4_proto) { |
| case IPPROTO_UDP: |
| parse_result->l4r = FM_L4_PARSE_RESULT_UDP; |
| break; |
| case IPPROTO_TCP: |
| parse_result->l4r = FM_L4_PARSE_RESULT_TCP; |
| break; |
| default: |
| if (net_ratelimit()) |
| netif_alert(priv, tx_err, priv->net_dev, |
| "Can't compute HW csum for L4 proto 0x%x\n", |
| l4_proto); |
| retval = -EIO; |
| goto return_error; |
| } |
| |
| /* At index 0 is IPOffset_1 as defined in the Parse Results */ |
| parse_result->ip_off[0] = (u8)skb_network_offset(skb); |
| parse_result->l4_off = (u8)skb_transport_offset(skb); |
| |
| /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ |
| fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); |
| |
| /* On P1023 and similar platforms fd->cmd interpretation could |
| * be disabled by setting CONTEXT_A bit ICMD; currently this bit |
| * is not set so we do not need to check; in the future, if/when |
| * using context_a we need to check this bit |
| */ |
| |
| return_error: |
| return retval; |
| } |
| |
| static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) |
| { |
| struct device *dev = dpaa_bp->dev; |
| struct bm_buffer bmb[8]; |
| dma_addr_t addr; |
| void *new_buf; |
| u8 i; |
| |
| for (i = 0; i < 8; i++) { |
| new_buf = netdev_alloc_frag(dpaa_bp->raw_size); |
| if (unlikely(!new_buf)) { |
| dev_err(dev, "netdev_alloc_frag() failed, size %zu\n", |
| dpaa_bp->raw_size); |
| goto release_previous_buffs; |
| } |
| new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES); |
| |
| addr = dma_map_single(dev, new_buf, |
| dpaa_bp->size, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(dev, addr))) { |
| dev_err(dpaa_bp->dev, "DMA map failed"); |
| goto release_previous_buffs; |
| } |
| |
| bmb[i].data = 0; |
| bm_buffer_set64(&bmb[i], addr); |
| } |
| |
| release_bufs: |
| return dpaa_bman_release(dpaa_bp, bmb, i); |
| |
| release_previous_buffs: |
| WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); |
| |
| bm_buffer_set64(&bmb[i], 0); |
| /* Avoid releasing a completely null buffer; bman_release() requires |
| * at least one buffer. |
| */ |
| if (likely(i)) |
| goto release_bufs; |
| |
| return 0; |
| } |
| |
| static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) |
| { |
| int i; |
| |
| /* Give each CPU an allotment of "config_count" buffers */ |
| for_each_possible_cpu(i) { |
| int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); |
| int j; |
| |
| /* Although we access another CPU's counters here |
| * we do it at boot time so it is safe |
| */ |
| for (j = 0; j < dpaa_bp->config_count; j += 8) |
| *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); |
| } |
| return 0; |
| } |
| |
| /* Add buffers/(pages) for Rx processing whenever bpool count falls below |
| * REFILL_THRESHOLD. |
| */ |
| static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) |
| { |
| int count = *countptr; |
| int new_bufs; |
| |
| if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { |
| do { |
| new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); |
| if (unlikely(!new_bufs)) { |
| /* Avoid looping forever if we've temporarily |
| * run out of memory. We'll try again at the |
| * next NAPI cycle. |
| */ |
| break; |
| } |
| count += new_bufs; |
| } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); |
| |
| *countptr = count; |
| if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) |
| { |
| struct dpaa_bp *dpaa_bp; |
| int *countptr; |
| int res, i; |
| |
| for (i = 0; i < DPAA_BPS_NUM; i++) { |
| dpaa_bp = priv->dpaa_bps[i]; |
| if (!dpaa_bp) |
| return -EINVAL; |
| countptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| res = dpaa_eth_refill_bpool(dpaa_bp, countptr); |
| if (res) |
| return res; |
| } |
| return 0; |
| } |
| |
| /* Cleanup function for outgoing frame descriptors that were built on Tx path, |
| * either contiguous frames or scatter/gather ones. |
| * Skb freeing is not handled here. |
| * |
| * This function may be called on error paths in the Tx function, so guard |
| * against cases when not all fd relevant fields were filled in. |
| * |
| * Return the skb backpointer, since for S/G frames the buffer containing it |
| * gets freed here. |
| */ |
| static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, |
| const struct qm_fd *fd) |
| { |
| const enum dma_data_direction dma_dir = DMA_TO_DEVICE; |
| struct device *dev = priv->net_dev->dev.parent; |
| dma_addr_t addr = qm_fd_addr(fd); |
| const struct qm_sg_entry *sgt; |
| struct sk_buff **skbh, *skb; |
| int nr_frags, i; |
| |
| skbh = (struct sk_buff **)phys_to_virt(addr); |
| skb = *skbh; |
| |
| if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| dma_unmap_single(dev, addr, qm_fd_get_offset(fd) + |
| sizeof(struct qm_sg_entry) * (1 + nr_frags), |
| dma_dir); |
| |
| /* The sgt buffer has been allocated with netdev_alloc_frag(), |
| * it's from lowmem. |
| */ |
| sgt = phys_to_virt(addr + qm_fd_get_offset(fd)); |
| |
| /* sgt[0] is from lowmem, was dma_map_single()-ed */ |
| dma_unmap_single(dev, qm_sg_addr(&sgt[0]), |
| qm_sg_entry_get_len(&sgt[0]), dma_dir); |
| |
| /* remaining pages were mapped with skb_frag_dma_map() */ |
| for (i = 1; i < nr_frags; i++) { |
| WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
| |
| dma_unmap_page(dev, qm_sg_addr(&sgt[i]), |
| qm_sg_entry_get_len(&sgt[i]), dma_dir); |
| } |
| |
| /* Free the page frag that we allocated on Tx */ |
| skb_free_frag(phys_to_virt(addr)); |
| } else { |
| dma_unmap_single(dev, addr, |
| skb_tail_pointer(skb) - (u8 *)skbh, dma_dir); |
| } |
| |
| return skb; |
| } |
| |
| /* Build a linear skb around the received buffer. |
| * We are guaranteed there is enough room at the end of the data buffer to |
| * accommodate the shared info area of the skb. |
| */ |
| static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, |
| const struct qm_fd *fd) |
| { |
| ssize_t fd_off = qm_fd_get_offset(fd); |
| dma_addr_t addr = qm_fd_addr(fd); |
| struct dpaa_bp *dpaa_bp; |
| struct sk_buff *skb; |
| void *vaddr; |
| |
| vaddr = phys_to_virt(addr); |
| WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); |
| |
| dpaa_bp = dpaa_bpid2pool(fd->bpid); |
| if (!dpaa_bp) |
| goto free_buffer; |
| |
| skb = build_skb(vaddr, dpaa_bp->size + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); |
| if (unlikely(!skb)) { |
| WARN_ONCE(1, "Build skb failure on Rx\n"); |
| goto free_buffer; |
| } |
| WARN_ON(fd_off != priv->rx_headroom); |
| skb_reserve(skb, fd_off); |
| skb_put(skb, qm_fd_get_length(fd)); |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| return skb; |
| |
| free_buffer: |
| skb_free_frag(vaddr); |
| return NULL; |
| } |
| |
| /* Build an skb with the data of the first S/G entry in the linear portion and |
| * the rest of the frame as skb fragments. |
| * |
| * The page fragment holding the S/G Table is recycled here. |
| */ |
| static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, |
| const struct qm_fd *fd) |
| { |
| ssize_t fd_off = qm_fd_get_offset(fd); |
| dma_addr_t addr = qm_fd_addr(fd); |
| const struct qm_sg_entry *sgt; |
| struct page *page, *head_page; |
| struct dpaa_bp *dpaa_bp; |
| void *vaddr, *sg_vaddr; |
| int frag_off, frag_len; |
| struct sk_buff *skb; |
| dma_addr_t sg_addr; |
| int page_offset; |
| unsigned int sz; |
| int *count_ptr; |
| int i; |
| |
| vaddr = phys_to_virt(addr); |
| WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); |
| |
| /* Iterate through the SGT entries and add data buffers to the skb */ |
| sgt = vaddr + fd_off; |
| for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { |
| /* Extension bit is not supported */ |
| WARN_ON(qm_sg_entry_is_ext(&sgt[i])); |
| |
| sg_addr = qm_sg_addr(&sgt[i]); |
| sg_vaddr = phys_to_virt(sg_addr); |
| WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr, |
| SMP_CACHE_BYTES)); |
| |
| /* We may use multiple Rx pools */ |
| dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| if (!dpaa_bp) |
| goto free_buffers; |
| |
| count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size, |
| DMA_FROM_DEVICE); |
| if (i == 0) { |
| sz = dpaa_bp->size + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| skb = build_skb(sg_vaddr, sz); |
| if (WARN_ON(unlikely(!skb))) |
| goto free_buffers; |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* Make sure forwarded skbs will have enough space |
| * on Tx, if extra headers are added. |
| */ |
| WARN_ON(fd_off != priv->rx_headroom); |
| skb_reserve(skb, fd_off); |
| skb_put(skb, qm_sg_entry_get_len(&sgt[i])); |
| } else { |
| /* Not the first S/G entry; all data from buffer will |
| * be added in an skb fragment; fragment index is offset |
| * by one since first S/G entry was incorporated in the |
| * linear part of the skb. |
| * |
| * Caution: 'page' may be a tail page. |
| */ |
| page = virt_to_page(sg_vaddr); |
| head_page = virt_to_head_page(sg_vaddr); |
| |
| /* Compute offset in (possibly tail) page */ |
| page_offset = ((unsigned long)sg_vaddr & |
| (PAGE_SIZE - 1)) + |
| (page_address(page) - page_address(head_page)); |
| /* page_offset only refers to the beginning of sgt[i]; |
| * but the buffer itself may have an internal offset. |
| */ |
| frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; |
| frag_len = qm_sg_entry_get_len(&sgt[i]); |
| /* skb_add_rx_frag() does no checking on the page; if |
| * we pass it a tail page, we'll end up with |
| * bad page accounting and eventually with segafults. |
| */ |
| skb_add_rx_frag(skb, i - 1, head_page, frag_off, |
| frag_len, dpaa_bp->size); |
| } |
| /* Update the pool count for the current {cpu x bpool} */ |
| (*count_ptr)--; |
| |
| if (qm_sg_entry_is_final(&sgt[i])) |
| break; |
| } |
| WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); |
| |
| /* free the SG table buffer */ |
| skb_free_frag(vaddr); |
| |
| return skb; |
| |
| free_buffers: |
| /* compensate sw bpool counter changes */ |
| for (i--; i > 0; i--) { |
| dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| if (dpaa_bp) { |
| count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| (*count_ptr)++; |
| } |
| } |
| /* free all the SG entries */ |
| for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) { |
| sg_addr = qm_sg_addr(&sgt[i]); |
| sg_vaddr = phys_to_virt(sg_addr); |
| skb_free_frag(sg_vaddr); |
| dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); |
| if (dpaa_bp) { |
| count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| (*count_ptr)--; |
| } |
| |
| if (qm_sg_entry_is_final(&sgt[i])) |
| break; |
| } |
| /* free the SGT fragment */ |
| skb_free_frag(vaddr); |
| |
| return NULL; |
| } |
| |
| static int skb_to_contig_fd(struct dpaa_priv *priv, |
| struct sk_buff *skb, struct qm_fd *fd, |
| int *offset) |
| { |
| struct net_device *net_dev = priv->net_dev; |
| struct device *dev = net_dev->dev.parent; |
| enum dma_data_direction dma_dir; |
| unsigned char *buffer_start; |
| struct sk_buff **skbh; |
| dma_addr_t addr; |
| int err; |
| |
| /* We are guaranteed to have at least tx_headroom bytes |
| * available, so just use that for offset. |
| */ |
| fd->bpid = FSL_DPAA_BPID_INV; |
| buffer_start = skb->data - priv->tx_headroom; |
| dma_dir = DMA_TO_DEVICE; |
| |
| skbh = (struct sk_buff **)buffer_start; |
| *skbh = skb; |
| |
| /* Enable L3/L4 hardware checksum computation. |
| * |
| * We must do this before dma_map_single(DMA_TO_DEVICE), because we may |
| * need to write into the skb. |
| */ |
| err = dpaa_enable_tx_csum(priv, skb, fd, |
| ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE); |
| if (unlikely(err < 0)) { |
| if (net_ratelimit()) |
| netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", |
| err); |
| return err; |
| } |
| |
| /* Fill in the rest of the FD fields */ |
| qm_fd_set_contig(fd, priv->tx_headroom, skb->len); |
| fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
| |
| /* Map the entire buffer size that may be seen by FMan, but no more */ |
| addr = dma_map_single(dev, skbh, |
| skb_tail_pointer(skb) - buffer_start, dma_dir); |
| if (unlikely(dma_mapping_error(dev, addr))) { |
| if (net_ratelimit()) |
| netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); |
| return -EINVAL; |
| } |
| qm_fd_addr_set64(fd, addr); |
| |
| return 0; |
| } |
| |
| static int skb_to_sg_fd(struct dpaa_priv *priv, |
| struct sk_buff *skb, struct qm_fd *fd) |
| { |
| const enum dma_data_direction dma_dir = DMA_TO_DEVICE; |
| const int nr_frags = skb_shinfo(skb)->nr_frags; |
| struct net_device *net_dev = priv->net_dev; |
| struct device *dev = net_dev->dev.parent; |
| struct qm_sg_entry *sgt; |
| struct sk_buff **skbh; |
| int i, j, err, sz; |
| void *buffer_start; |
| skb_frag_t *frag; |
| dma_addr_t addr; |
| size_t frag_len; |
| void *sgt_buf; |
| |
| /* get a page frag to store the SGTable */ |
| sz = SKB_DATA_ALIGN(priv->tx_headroom + |
| sizeof(struct qm_sg_entry) * (1 + nr_frags)); |
| sgt_buf = netdev_alloc_frag(sz); |
| if (unlikely(!sgt_buf)) { |
| netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n", |
| sz); |
| return -ENOMEM; |
| } |
| |
| /* Enable L3/L4 hardware checksum computation. |
| * |
| * We must do this before dma_map_single(DMA_TO_DEVICE), because we may |
| * need to write into the skb. |
| */ |
| err = dpaa_enable_tx_csum(priv, skb, fd, |
| sgt_buf + DPAA_TX_PRIV_DATA_SIZE); |
| if (unlikely(err < 0)) { |
| if (net_ratelimit()) |
| netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", |
| err); |
| goto csum_failed; |
| } |
| |
| sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom); |
| qm_sg_entry_set_len(&sgt[0], skb_headlen(skb)); |
| sgt[0].bpid = FSL_DPAA_BPID_INV; |
| sgt[0].offset = 0; |
| addr = dma_map_single(dev, skb->data, |
| skb_headlen(skb), dma_dir); |
| if (unlikely(dma_mapping_error(dev, addr))) { |
| dev_err(dev, "DMA mapping failed"); |
| err = -EINVAL; |
| goto sg0_map_failed; |
| } |
| qm_sg_entry_set64(&sgt[0], addr); |
| |
| /* populate the rest of SGT entries */ |
| frag = &skb_shinfo(skb)->frags[0]; |
| frag_len = frag->size; |
| for (i = 1; i <= nr_frags; i++, frag++) { |
| WARN_ON(!skb_frag_page(frag)); |
| addr = skb_frag_dma_map(dev, frag, 0, |
| frag_len, dma_dir); |
| if (unlikely(dma_mapping_error(dev, addr))) { |
| dev_err(dev, "DMA mapping failed"); |
| err = -EINVAL; |
| goto sg_map_failed; |
| } |
| |
| qm_sg_entry_set_len(&sgt[i], frag_len); |
| sgt[i].bpid = FSL_DPAA_BPID_INV; |
| sgt[i].offset = 0; |
| |
| /* keep the offset in the address */ |
| qm_sg_entry_set64(&sgt[i], addr); |
| frag_len = frag->size; |
| } |
| qm_sg_entry_set_f(&sgt[i - 1], frag_len); |
| |
| qm_fd_set_sg(fd, priv->tx_headroom, skb->len); |
| |
| /* DMA map the SGT page */ |
| buffer_start = (void *)sgt - priv->tx_headroom; |
| skbh = (struct sk_buff **)buffer_start; |
| *skbh = skb; |
| |
| addr = dma_map_single(dev, buffer_start, priv->tx_headroom + |
| sizeof(struct qm_sg_entry) * (1 + nr_frags), |
| dma_dir); |
| if (unlikely(dma_mapping_error(dev, addr))) { |
| dev_err(dev, "DMA mapping failed"); |
| err = -EINVAL; |
| goto sgt_map_failed; |
| } |
| |
| fd->bpid = FSL_DPAA_BPID_INV; |
| fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); |
| qm_fd_addr_set64(fd, addr); |
| |
| return 0; |
| |
| sgt_map_failed: |
| sg_map_failed: |
| for (j = 0; j < i; j++) |
| dma_unmap_page(dev, qm_sg_addr(&sgt[j]), |
| qm_sg_entry_get_len(&sgt[j]), dma_dir); |
| sg0_map_failed: |
| csum_failed: |
| skb_free_frag(sgt_buf); |
| |
| return err; |
| } |
| |
| static inline int dpaa_xmit(struct dpaa_priv *priv, |
| struct rtnl_link_stats64 *percpu_stats, |
| int queue, |
| struct qm_fd *fd) |
| { |
| struct qman_fq *egress_fq; |
| int err, i; |
| |
| egress_fq = priv->egress_fqs[queue]; |
| if (fd->bpid == FSL_DPAA_BPID_INV) |
| fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); |
| |
| /* Trace this Tx fd */ |
| trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); |
| |
| for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { |
| err = qman_enqueue(egress_fq, fd); |
| if (err != -EBUSY) |
| break; |
| } |
| |
| if (unlikely(err < 0)) { |
| percpu_stats->tx_errors++; |
| percpu_stats->tx_fifo_errors++; |
| return err; |
| } |
| |
| percpu_stats->tx_packets++; |
| percpu_stats->tx_bytes += qm_fd_get_length(fd); |
| |
| return 0; |
| } |
| |
| static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) |
| { |
| const int queue_mapping = skb_get_queue_mapping(skb); |
| bool nonlinear = skb_is_nonlinear(skb); |
| struct rtnl_link_stats64 *percpu_stats; |
| struct dpaa_percpu_priv *percpu_priv; |
| struct dpaa_priv *priv; |
| struct qm_fd fd; |
| int offset = 0; |
| int err = 0; |
| |
| priv = netdev_priv(net_dev); |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| percpu_stats = &percpu_priv->stats; |
| |
| qm_fd_clear_fd(&fd); |
| |
| if (!nonlinear) { |
| /* We're going to store the skb backpointer at the beginning |
| * of the data buffer, so we need a privately owned skb |
| * |
| * We've made sure skb is not shared in dev->priv_flags, |
| * we need to verify the skb head is not cloned |
| */ |
| if (skb_cow_head(skb, priv->tx_headroom)) |
| goto enomem; |
| |
| WARN_ON(skb_is_nonlinear(skb)); |
| } |
| |
| /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; |
| * make sure we don't feed FMan with more fragments than it supports. |
| */ |
| if (nonlinear && |
| likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) { |
| /* Just create a S/G fd based on the skb */ |
| err = skb_to_sg_fd(priv, skb, &fd); |
| percpu_priv->tx_frag_skbuffs++; |
| } else { |
| /* If the egress skb contains more fragments than we support |
| * we have no choice but to linearize it ourselves. |
| */ |
| if (unlikely(nonlinear) && __skb_linearize(skb)) |
| goto enomem; |
| |
| /* Finally, create a contig FD from this skb */ |
| err = skb_to_contig_fd(priv, skb, &fd, &offset); |
| } |
| if (unlikely(err < 0)) |
| goto skb_to_fd_failed; |
| |
| if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) |
| return NETDEV_TX_OK; |
| |
| dpaa_cleanup_tx_fd(priv, &fd); |
| skb_to_fd_failed: |
| enomem: |
| percpu_stats->tx_errors++; |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| static void dpaa_rx_error(struct net_device *net_dev, |
| const struct dpaa_priv *priv, |
| struct dpaa_percpu_priv *percpu_priv, |
| const struct qm_fd *fd, |
| u32 fqid) |
| { |
| if (net_ratelimit()) |
| netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", |
| be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); |
| |
| percpu_priv->stats.rx_errors++; |
| |
| if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) |
| percpu_priv->rx_errors.dme++; |
| if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) |
| percpu_priv->rx_errors.fpe++; |
| if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) |
| percpu_priv->rx_errors.fse++; |
| if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) |
| percpu_priv->rx_errors.phe++; |
| |
| dpaa_fd_release(net_dev, fd); |
| } |
| |
| static void dpaa_tx_error(struct net_device *net_dev, |
| const struct dpaa_priv *priv, |
| struct dpaa_percpu_priv *percpu_priv, |
| const struct qm_fd *fd, |
| u32 fqid) |
| { |
| struct sk_buff *skb; |
| |
| if (net_ratelimit()) |
| netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
| be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); |
| |
| percpu_priv->stats.tx_errors++; |
| |
| skb = dpaa_cleanup_tx_fd(priv, fd); |
| dev_kfree_skb(skb); |
| } |
| |
| static int dpaa_eth_poll(struct napi_struct *napi, int budget) |
| { |
| struct dpaa_napi_portal *np = |
| container_of(napi, struct dpaa_napi_portal, napi); |
| |
| int cleaned = qman_p_poll_dqrr(np->p, budget); |
| |
| if (cleaned < budget) { |
| napi_complete(napi); |
| qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); |
| |
| } else if (np->down) { |
| qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); |
| } |
| |
| return cleaned; |
| } |
| |
| static void dpaa_tx_conf(struct net_device *net_dev, |
| const struct dpaa_priv *priv, |
| struct dpaa_percpu_priv *percpu_priv, |
| const struct qm_fd *fd, |
| u32 fqid) |
| { |
| struct sk_buff *skb; |
| |
| if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { |
| if (net_ratelimit()) |
| netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
| be32_to_cpu(fd->status) & |
| FM_FD_STAT_TX_ERRORS); |
| |
| percpu_priv->stats.tx_errors++; |
| } |
| |
| percpu_priv->tx_confirm++; |
| |
| skb = dpaa_cleanup_tx_fd(priv, fd); |
| |
| consume_skb(skb); |
| } |
| |
| static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, |
| struct qman_portal *portal) |
| { |
| if (unlikely(in_irq() || !in_serving_softirq())) { |
| /* Disable QMan IRQ and invoke NAPI */ |
| qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); |
| |
| percpu_priv->np.p = portal; |
| napi_schedule(&percpu_priv->np.napi); |
| percpu_priv->in_interrupt++; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, |
| struct qman_fq *fq, |
| const struct qm_dqrr_entry *dq) |
| { |
| struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); |
| struct dpaa_percpu_priv *percpu_priv; |
| struct net_device *net_dev; |
| struct dpaa_bp *dpaa_bp; |
| struct dpaa_priv *priv; |
| |
| net_dev = dpaa_fq->net_dev; |
| priv = netdev_priv(net_dev); |
| dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); |
| if (!dpaa_bp) |
| return qman_cb_dqrr_consume; |
| |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| |
| if (dpaa_eth_napi_schedule(percpu_priv, portal)) |
| return qman_cb_dqrr_stop; |
| |
| if (dpaa_eth_refill_bpools(priv)) |
| /* Unable to refill the buffer pool due to insufficient |
| * system memory. Just release the frame back into the pool, |
| * otherwise we'll soon end up with an empty buffer pool. |
| */ |
| dpaa_fd_release(net_dev, &dq->fd); |
| else |
| dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); |
| |
| return qman_cb_dqrr_consume; |
| } |
| |
| static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, |
| struct qman_fq *fq, |
| const struct qm_dqrr_entry *dq) |
| { |
| struct rtnl_link_stats64 *percpu_stats; |
| struct dpaa_percpu_priv *percpu_priv; |
| const struct qm_fd *fd = &dq->fd; |
| dma_addr_t addr = qm_fd_addr(fd); |
| enum qm_fd_format fd_format; |
| struct net_device *net_dev; |
| u32 fd_status = fd->status; |
| struct dpaa_bp *dpaa_bp; |
| struct dpaa_priv *priv; |
| unsigned int skb_len; |
| struct sk_buff *skb; |
| int *count_ptr; |
| |
| fd_status = be32_to_cpu(fd->status); |
| fd_format = qm_fd_get_format(fd); |
| net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| priv = netdev_priv(net_dev); |
| dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); |
| if (!dpaa_bp) |
| return qman_cb_dqrr_consume; |
| |
| /* Trace the Rx fd */ |
| trace_dpaa_rx_fd(net_dev, fq, &dq->fd); |
| |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| percpu_stats = &percpu_priv->stats; |
| |
| if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal))) |
| return qman_cb_dqrr_stop; |
| |
| /* Make sure we didn't run out of buffers */ |
| if (unlikely(dpaa_eth_refill_bpools(priv))) { |
| /* Unable to refill the buffer pool due to insufficient |
| * system memory. Just release the frame back into the pool, |
| * otherwise we'll soon end up with an empty buffer pool. |
| */ |
| dpaa_fd_release(net_dev, &dq->fd); |
| return qman_cb_dqrr_consume; |
| } |
| |
| if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { |
| if (net_ratelimit()) |
| netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", |
| fd_status & FM_FD_STAT_RX_ERRORS); |
| |
| percpu_stats->rx_errors++; |
| dpaa_fd_release(net_dev, fd); |
| return qman_cb_dqrr_consume; |
| } |
| |
| dpaa_bp = dpaa_bpid2pool(fd->bpid); |
| if (!dpaa_bp) |
| return qman_cb_dqrr_consume; |
| |
| dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE); |
| |
| /* prefetch the first 64 bytes of the frame or the SGT start */ |
| prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd)); |
| |
| fd_format = qm_fd_get_format(fd); |
| /* The only FD types that we may receive are contig and S/G */ |
| WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); |
| |
| /* Account for either the contig buffer or the SGT buffer (depending on |
| * which case we were in) having been removed from the pool. |
| */ |
| count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); |
| (*count_ptr)--; |
| |
| if (likely(fd_format == qm_fd_contig)) |
| skb = contig_fd_to_skb(priv, fd); |
| else |
| skb = sg_fd_to_skb(priv, fd); |
| if (!skb) |
| return qman_cb_dqrr_consume; |
| |
| skb->protocol = eth_type_trans(skb, net_dev); |
| |
| skb_len = skb->len; |
| |
| if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) |
| return qman_cb_dqrr_consume; |
| |
| percpu_stats->rx_packets++; |
| percpu_stats->rx_bytes += skb_len; |
| |
| return qman_cb_dqrr_consume; |
| } |
| |
| static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, |
| struct qman_fq *fq, |
| const struct qm_dqrr_entry *dq) |
| { |
| struct dpaa_percpu_priv *percpu_priv; |
| struct net_device *net_dev; |
| struct dpaa_priv *priv; |
| |
| net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| priv = netdev_priv(net_dev); |
| |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| |
| if (dpaa_eth_napi_schedule(percpu_priv, portal)) |
| return qman_cb_dqrr_stop; |
| |
| dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); |
| |
| return qman_cb_dqrr_consume; |
| } |
| |
| static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, |
| struct qman_fq *fq, |
| const struct qm_dqrr_entry *dq) |
| { |
| struct dpaa_percpu_priv *percpu_priv; |
| struct net_device *net_dev; |
| struct dpaa_priv *priv; |
| |
| net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| priv = netdev_priv(net_dev); |
| |
| /* Trace the fd */ |
| trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); |
| |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| |
| if (dpaa_eth_napi_schedule(percpu_priv, portal)) |
| return qman_cb_dqrr_stop; |
| |
| dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); |
| |
| return qman_cb_dqrr_consume; |
| } |
| |
| static void egress_ern(struct qman_portal *portal, |
| struct qman_fq *fq, |
| const union qm_mr_entry *msg) |
| { |
| const struct qm_fd *fd = &msg->ern.fd; |
| struct dpaa_percpu_priv *percpu_priv; |
| const struct dpaa_priv *priv; |
| struct net_device *net_dev; |
| struct sk_buff *skb; |
| |
| net_dev = ((struct dpaa_fq *)fq)->net_dev; |
| priv = netdev_priv(net_dev); |
| percpu_priv = this_cpu_ptr(priv->percpu_priv); |
| |
| percpu_priv->stats.tx_dropped++; |
| percpu_priv->stats.tx_fifo_errors++; |
| count_ern(percpu_priv, msg); |
| |
| skb = dpaa_cleanup_tx_fd(priv, fd); |
| dev_kfree_skb_any(skb); |
| } |
| |
| static const struct dpaa_fq_cbs dpaa_fq_cbs = { |
| .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, |
| .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, |
| .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, |
| .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, |
| .egress_ern = { .cb = { .ern = egress_ern } } |
| }; |
| |
| static void dpaa_eth_napi_enable(struct dpaa_priv *priv) |
| { |
| struct dpaa_percpu_priv *percpu_priv; |
| int i; |
| |
| for_each_possible_cpu(i) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| |
| percpu_priv->np.down = 0; |
| napi_enable(&percpu_priv->np.napi); |
| } |
| } |
| |
| static void dpaa_eth_napi_disable(struct dpaa_priv *priv) |
| { |
| struct dpaa_percpu_priv *percpu_priv; |
| int i; |
| |
| for_each_possible_cpu(i) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| |
| percpu_priv->np.down = 1; |
| napi_disable(&percpu_priv->np.napi); |
| } |
| } |
| |
| static int dpaa_open(struct net_device *net_dev) |
| { |
| struct mac_device *mac_dev; |
| struct dpaa_priv *priv; |
| int err, i; |
| |
| priv = netdev_priv(net_dev); |
| mac_dev = priv->mac_dev; |
| dpaa_eth_napi_enable(priv); |
| |
| net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev); |
| if (!net_dev->phydev) { |
| netif_err(priv, ifup, net_dev, "init_phy() failed\n"); |
| err = -ENODEV; |
| goto phy_init_failed; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { |
| err = fman_port_enable(mac_dev->port[i]); |
| if (err) |
| goto mac_start_failed; |
| } |
| |
| err = priv->mac_dev->start(mac_dev); |
| if (err < 0) { |
| netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err); |
| goto mac_start_failed; |
| } |
| |
| netif_tx_start_all_queues(net_dev); |
| |
| return 0; |
| |
| mac_start_failed: |
| for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) |
| fman_port_disable(mac_dev->port[i]); |
| |
| phy_init_failed: |
| dpaa_eth_napi_disable(priv); |
| |
| return err; |
| } |
| |
| static int dpaa_eth_stop(struct net_device *net_dev) |
| { |
| struct dpaa_priv *priv; |
| int err; |
| |
| err = dpaa_stop(net_dev); |
| |
| priv = netdev_priv(net_dev); |
| dpaa_eth_napi_disable(priv); |
| |
| return err; |
| } |
| |
| static const struct net_device_ops dpaa_ops = { |
| .ndo_open = dpaa_open, |
| .ndo_start_xmit = dpaa_start_xmit, |
| .ndo_stop = dpaa_eth_stop, |
| .ndo_tx_timeout = dpaa_tx_timeout, |
| .ndo_get_stats64 = dpaa_get_stats64, |
| .ndo_set_mac_address = dpaa_set_mac_address, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_rx_mode = dpaa_set_rx_mode, |
| }; |
| |
| static int dpaa_napi_add(struct net_device *net_dev) |
| { |
| struct dpaa_priv *priv = netdev_priv(net_dev); |
| struct dpaa_percpu_priv *percpu_priv; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); |
| |
| netif_napi_add(net_dev, &percpu_priv->np.napi, |
| dpaa_eth_poll, NAPI_POLL_WEIGHT); |
| } |
| |
| return 0; |
| } |
| |
| static void dpaa_napi_del(struct net_device *net_dev) |
| { |
| struct dpaa_priv *priv = netdev_priv(net_dev); |
| struct dpaa_percpu_priv *percpu_priv; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); |
| |
| netif_napi_del(&percpu_priv->np.napi); |
| } |
| } |
| |
| static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, |
| struct bm_buffer *bmb) |
| { |
| dma_addr_t addr = bm_buf_addr(bmb); |
| |
| dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE); |
| |
| skb_free_frag(phys_to_virt(addr)); |
| } |
| |
| /* Alloc the dpaa_bp struct and configure default values */ |
| static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) |
| { |
| struct dpaa_bp *dpaa_bp; |
| |
| dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); |
| if (!dpaa_bp) |
| return ERR_PTR(-ENOMEM); |
| |
| dpaa_bp->bpid = FSL_DPAA_BPID_INV; |
| dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); |
| dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; |
| |
| dpaa_bp->seed_cb = dpaa_bp_seed; |
| dpaa_bp->free_buf_cb = dpaa_bp_free_pf; |
| |
| return dpaa_bp; |
| } |
| |
| /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. |
| * We won't be sending congestion notifications to FMan; for now, we just use |
| * this CGR to generate enqueue rejections to FMan in order to drop the frames |
| * before they reach our ingress queues and eat up memory. |
| */ |
| static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) |
| { |
| struct qm_mcc_initcgr initcgr; |
| u32 cs_th; |
| int err; |
| |
| err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); |
| if (err < 0) { |
| if (netif_msg_drv(priv)) |
| pr_err("Error %d allocating CGR ID\n", err); |
| goto out_error; |
| } |
| |
| /* Enable CS TD, but disable Congestion State Change Notifications. */ |
| memset(&initcgr, 0, sizeof(initcgr)); |
| initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); |
| initcgr.cgr.cscn_en = QM_CGR_EN; |
| cs_th = DPAA_INGRESS_CS_THRESHOLD; |
| qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); |
| |
| initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); |
| initcgr.cgr.cstd_en = QM_CGR_EN; |
| |
| /* This CGR will be associated with the SWP affined to the current CPU. |
| * However, we'll place all our ingress FQs in it. |
| */ |
| err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, |
| &initcgr); |
| if (err < 0) { |
| if (netif_msg_drv(priv)) |
| pr_err("Error %d creating ingress CGR with ID %d\n", |
| err, priv->ingress_cgr.cgrid); |
| qman_release_cgrid(priv->ingress_cgr.cgrid); |
| goto out_error; |
| } |
| if (netif_msg_drv(priv)) |
| pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", |
| priv->ingress_cgr.cgrid, priv->mac_dev->addr); |
| |
| priv->use_ingress_cgr = true; |
| |
| out_error: |
| return err; |
| } |
| |
| static const struct of_device_id dpaa_match[]; |
| |
| static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl) |
| { |
| u16 headroom; |
| |
| /* The frame headroom must accommodate: |
| * - the driver private data area |
| * - parse results, hash results, timestamp if selected |
| * If either hash results or time stamp are selected, both will |
| * be copied to/from the frame headroom, as TS is located between PR and |
| * HR in the IC and IC copy size has a granularity of 16bytes |
| * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) |
| * |
| * Also make sure the headroom is a multiple of data_align bytes |
| */ |
| headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE + |
| DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE); |
| |
| return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom, |
| DPAA_FD_DATA_ALIGNMENT) : |
| headroom; |
| } |
| |
| static int dpaa_eth_probe(struct platform_device *pdev) |
| { |
| struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL}; |
| struct dpaa_percpu_priv *percpu_priv; |
| struct net_device *net_dev = NULL; |
| struct dpaa_fq *dpaa_fq, *tmp; |
| struct dpaa_priv *priv = NULL; |
| struct fm_port_fqs port_fqs; |
| struct mac_device *mac_dev; |
| int err = 0, i, channel; |
| struct device *dev; |
| |
| dev = &pdev->dev; |
| |
| /* Allocate this early, so we can store relevant information in |
| * the private area |
| */ |
| net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); |
| if (!net_dev) { |
| dev_err(dev, "alloc_etherdev_mq() failed\n"); |
| goto alloc_etherdev_mq_failed; |
| } |
| |
| /* Do this here, so we can be verbose early */ |
| SET_NETDEV_DEV(net_dev, dev); |
| dev_set_drvdata(dev, net_dev); |
| |
| priv = netdev_priv(net_dev); |
| priv->net_dev = net_dev; |
| |
| priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); |
| |
| mac_dev = dpaa_mac_dev_get(pdev); |
| if (IS_ERR(mac_dev)) { |
| dev_err(dev, "dpaa_mac_dev_get() failed\n"); |
| err = PTR_ERR(mac_dev); |
| goto mac_probe_failed; |
| } |
| |
| /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, |
| * we choose conservatively and let the user explicitly set a higher |
| * MTU via ifconfig. Otherwise, the user may end up with different MTUs |
| * in the same LAN. |
| * If on the other hand fsl_fm_max_frm has been chosen below 1500, |
| * start with the maximum allowed. |
| */ |
| net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); |
| |
| netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", |
| net_dev->mtu); |
| |
| priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ |
| priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ |
| |
| /* device used for DMA mapping */ |
| arch_setup_dma_ops(dev, 0, 0, NULL, false); |
| err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40)); |
| if (err) { |
| dev_err(dev, "dma_coerce_mask_and_coherent() failed\n"); |
| goto dev_mask_failed; |
| } |
| |
| /* bp init */ |
| for (i = 0; i < DPAA_BPS_NUM; i++) { |
| int err; |
| |
| dpaa_bps[i] = dpaa_bp_alloc(dev); |
| if (IS_ERR(dpaa_bps[i])) |
| return PTR_ERR(dpaa_bps[i]); |
| /* the raw size of the buffers used for reception */ |
| dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM); |
| /* avoid runtime computations by keeping the usable size here */ |
| dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size); |
| dpaa_bps[i]->dev = dev; |
| |
| err = dpaa_bp_alloc_pool(dpaa_bps[i]); |
| if (err < 0) { |
| dpaa_bps_free(priv); |
| priv->dpaa_bps[i] = NULL; |
| goto bp_create_failed; |
| } |
| priv->dpaa_bps[i] = dpaa_bps[i]; |
| } |
| |
| INIT_LIST_HEAD(&priv->dpaa_fq_list); |
| |
| memset(&port_fqs, 0, sizeof(port_fqs)); |
| |
| err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); |
| if (err < 0) { |
| dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); |
| goto fq_probe_failed; |
| } |
| |
| priv->mac_dev = mac_dev; |
| |
| channel = dpaa_get_channel(); |
| if (channel < 0) { |
| dev_err(dev, "dpaa_get_channel() failed\n"); |
| err = channel; |
| goto get_channel_failed; |
| } |
| |
| priv->channel = (u16)channel; |
| |
| /* Start a thread that will walk the CPUs with affine portals |
| * and add this pool channel to each's dequeue mask. |
| */ |
| dpaa_eth_add_channel(priv->channel); |
| |
| dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); |
| |
| /* Create a congestion group for this netdev, with |
| * dynamically-allocated CGR ID. |
| * Must be executed after probing the MAC, but before |
| * assigning the egress FQs to the CGRs. |
| */ |
| err = dpaa_eth_cgr_init(priv); |
| if (err < 0) { |
| dev_err(dev, "Error initializing CGR\n"); |
| goto tx_cgr_init_failed; |
| } |
| |
| err = dpaa_ingress_cgr_init(priv); |
| if (err < 0) { |
| dev_err(dev, "Error initializing ingress CGR\n"); |
| goto rx_cgr_init_failed; |
| } |
| |
| /* Add the FQs to the interface, and make them active */ |
| list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { |
| err = dpaa_fq_init(dpaa_fq, false); |
| if (err < 0) |
| goto fq_alloc_failed; |
| } |
| |
| priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]); |
| priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]); |
| |
| /* All real interfaces need their ports initialized */ |
| dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs, |
| &priv->buf_layout[0], dev); |
| |
| priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); |
| if (!priv->percpu_priv) { |
| dev_err(dev, "devm_alloc_percpu() failed\n"); |
| err = -ENOMEM; |
| goto alloc_percpu_failed; |
| } |
| for_each_possible_cpu(i) { |
| percpu_priv = per_cpu_ptr(priv->percpu_priv, i); |
| memset(percpu_priv, 0, sizeof(*percpu_priv)); |
| } |
| |
| /* Initialize NAPI */ |
| err = dpaa_napi_add(net_dev); |
| if (err < 0) |
| goto napi_add_failed; |
| |
| err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); |
| if (err < 0) |
| goto netdev_init_failed; |
| |
| dpaa_eth_sysfs_init(&net_dev->dev); |
| |
| netif_info(priv, probe, net_dev, "Probed interface %s\n", |
| net_dev->name); |
| |
| return 0; |
| |
| netdev_init_failed: |
| napi_add_failed: |
| dpaa_napi_del(net_dev); |
| alloc_percpu_failed: |
| dpaa_fq_free(dev, &priv->dpaa_fq_list); |
| fq_alloc_failed: |
| qman_delete_cgr_safe(&priv->ingress_cgr); |
| qman_release_cgrid(priv->ingress_cgr.cgrid); |
| rx_cgr_init_failed: |
| qman_delete_cgr_safe(&priv->cgr_data.cgr); |
| qman_release_cgrid(priv->cgr_data.cgr.cgrid); |
| tx_cgr_init_failed: |
| get_channel_failed: |
| dpaa_bps_free(priv); |
| bp_create_failed: |
| fq_probe_failed: |
| dev_mask_failed: |
| mac_probe_failed: |
| dev_set_drvdata(dev, NULL); |
| free_netdev(net_dev); |
| alloc_etherdev_mq_failed: |
| for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) { |
| if (atomic_read(&dpaa_bps[i]->refs) == 0) |
| devm_kfree(dev, dpaa_bps[i]); |
| } |
| return err; |
| } |
| |
| static int dpaa_remove(struct platform_device *pdev) |
| { |
| struct net_device *net_dev; |
| struct dpaa_priv *priv; |
| struct device *dev; |
| int err; |
| |
| dev = &pdev->dev; |
| net_dev = dev_get_drvdata(dev); |
| |
| priv = netdev_priv(net_dev); |
| |
| dpaa_eth_sysfs_remove(dev); |
| |
| dev_set_drvdata(dev, NULL); |
| unregister_netdev(net_dev); |
| |
| err = dpaa_fq_free(dev, &priv->dpaa_fq_list); |
| |
| qman_delete_cgr_safe(&priv->ingress_cgr); |
| qman_release_cgrid(priv->ingress_cgr.cgrid); |
| qman_delete_cgr_safe(&priv->cgr_data.cgr); |
| qman_release_cgrid(priv->cgr_data.cgr.cgrid); |
| |
| dpaa_napi_del(net_dev); |
| |
| dpaa_bps_free(priv); |
| |
| free_netdev(net_dev); |
| |
| return err; |
| } |
| |
| static struct platform_device_id dpaa_devtype[] = { |
| { |
| .name = "dpaa-ethernet", |
| .driver_data = 0, |
| }, { |
| } |
| }; |
| MODULE_DEVICE_TABLE(platform, dpaa_devtype); |
| |
| static struct platform_driver dpaa_driver = { |
| .driver = { |
| .name = KBUILD_MODNAME, |
| }, |
| .id_table = dpaa_devtype, |
| .probe = dpaa_eth_probe, |
| .remove = dpaa_remove |
| }; |
| |
| static int __init dpaa_load(void) |
| { |
| int err; |
| |
| pr_debug("FSL DPAA Ethernet driver\n"); |
| |
| /* initialize dpaa_eth mirror values */ |
| dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); |
| dpaa_max_frm = fman_get_max_frm(); |
| |
| err = platform_driver_register(&dpaa_driver); |
| if (err < 0) |
| pr_err("Error, platform_driver_register() = %d\n", err); |
| |
| return err; |
| } |
| module_init(dpaa_load); |
| |
| static void __exit dpaa_unload(void) |
| { |
| platform_driver_unregister(&dpaa_driver); |
| |
| /* Only one channel is used and needs to be released after all |
| * interfaces are removed |
| */ |
| dpaa_release_channel(); |
| } |
| module_exit(dpaa_unload); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); |