| // SPDX-License-Identifier: GPL-2.0-only |
| #include <linux/extable.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched/debug.h> |
| #include <linux/bitfield.h> |
| #include <xen/xen.h> |
| |
| #include <asm/fpu/api.h> |
| #include <asm/fred.h> |
| #include <asm/sev.h> |
| #include <asm/traps.h> |
| #include <asm/kdebug.h> |
| #include <asm/insn-eval.h> |
| #include <asm/sgx.h> |
| |
| static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr) |
| { |
| int reg_offset = pt_regs_offset(regs, nr); |
| static unsigned long __dummy; |
| |
| if (WARN_ON_ONCE(reg_offset < 0)) |
| return &__dummy; |
| |
| return (unsigned long *)((unsigned long)regs + reg_offset); |
| } |
| |
| static inline unsigned long |
| ex_fixup_addr(const struct exception_table_entry *x) |
| { |
| return (unsigned long)&x->fixup + x->fixup; |
| } |
| |
| static bool ex_handler_default(const struct exception_table_entry *e, |
| struct pt_regs *regs) |
| { |
| if (e->data & EX_FLAG_CLEAR_AX) |
| regs->ax = 0; |
| if (e->data & EX_FLAG_CLEAR_DX) |
| regs->dx = 0; |
| |
| regs->ip = ex_fixup_addr(e); |
| return true; |
| } |
| |
| /* |
| * This is the *very* rare case where we do a "load_unaligned_zeropad()" |
| * and it's a page crosser into a non-existent page. |
| * |
| * This happens when we optimistically load a pathname a word-at-a-time |
| * and the name is less than the full word and the next page is not |
| * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC. |
| * |
| * NOTE! The faulting address is always a 'mov mem,reg' type instruction |
| * of size 'long', and the exception fixup must always point to right |
| * after the instruction. |
| */ |
| static bool ex_handler_zeropad(const struct exception_table_entry *e, |
| struct pt_regs *regs, |
| unsigned long fault_addr) |
| { |
| struct insn insn; |
| const unsigned long mask = sizeof(long) - 1; |
| unsigned long offset, addr, next_ip, len; |
| unsigned long *reg; |
| |
| next_ip = ex_fixup_addr(e); |
| len = next_ip - regs->ip; |
| if (len > MAX_INSN_SIZE) |
| return false; |
| |
| if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN)) |
| return false; |
| if (insn.length != len) |
| return false; |
| |
| if (insn.opcode.bytes[0] != 0x8b) |
| return false; |
| if (insn.opnd_bytes != sizeof(long)) |
| return false; |
| |
| addr = (unsigned long) insn_get_addr_ref(&insn, regs); |
| if (addr == ~0ul) |
| return false; |
| |
| offset = addr & mask; |
| addr = addr & ~mask; |
| if (fault_addr != addr + sizeof(long)) |
| return false; |
| |
| reg = insn_get_modrm_reg_ptr(&insn, regs); |
| if (!reg) |
| return false; |
| |
| *reg = *(unsigned long *)addr >> (offset * 8); |
| return ex_handler_default(e, regs); |
| } |
| |
| static bool ex_handler_fault(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, int trapnr) |
| { |
| regs->ax = trapnr; |
| return ex_handler_default(fixup, regs); |
| } |
| |
| static bool ex_handler_sgx(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, int trapnr) |
| { |
| regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG; |
| return ex_handler_default(fixup, regs); |
| } |
| |
| /* |
| * Handler for when we fail to restore a task's FPU state. We should never get |
| * here because the FPU state of a task using the FPU (task->thread.fpu.state) |
| * should always be valid. However, past bugs have allowed userspace to set |
| * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). |
| * These caused XRSTOR to fail when switching to the task, leaking the FPU |
| * registers of the task previously executing on the CPU. Mitigate this class |
| * of vulnerability by restoring from the initial state (essentially, zeroing |
| * out all the FPU registers) if we can't restore from the task's FPU state. |
| */ |
| static bool ex_handler_fprestore(const struct exception_table_entry *fixup, |
| struct pt_regs *regs) |
| { |
| regs->ip = ex_fixup_addr(fixup); |
| |
| WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", |
| (void *)instruction_pointer(regs)); |
| |
| fpu_reset_from_exception_fixup(); |
| return true; |
| } |
| |
| /* |
| * On x86-64, we end up being imprecise with 'access_ok()', and allow |
| * non-canonical user addresses to make the range comparisons simpler, |
| * and to not have to worry about LAM being enabled. |
| * |
| * In fact, we allow up to one page of "slop" at the sign boundary, |
| * which means that we can do access_ok() by just checking the sign |
| * of the pointer for the common case of having a small access size. |
| */ |
| static bool gp_fault_address_ok(unsigned long fault_address) |
| { |
| #ifdef CONFIG_X86_64 |
| /* Is it in the "user space" part of the non-canonical space? */ |
| if (valid_user_address(fault_address)) |
| return true; |
| |
| /* .. or just above it? */ |
| fault_address -= PAGE_SIZE; |
| if (valid_user_address(fault_address)) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static bool ex_handler_uaccess(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, int trapnr, |
| unsigned long fault_address) |
| { |
| WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address), |
| "General protection fault in user access. Non-canonical address?"); |
| return ex_handler_default(fixup, regs); |
| } |
| |
| static bool ex_handler_msr(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, bool wrmsr, bool safe, int reg) |
| { |
| if (__ONCE_LITE_IF(!safe && wrmsr)) { |
| pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", |
| (unsigned int)regs->cx, (unsigned int)regs->dx, |
| (unsigned int)regs->ax, regs->ip, (void *)regs->ip); |
| show_stack_regs(regs); |
| } |
| |
| if (__ONCE_LITE_IF(!safe && !wrmsr)) { |
| pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", |
| (unsigned int)regs->cx, regs->ip, (void *)regs->ip); |
| show_stack_regs(regs); |
| } |
| |
| if (!wrmsr) { |
| /* Pretend that the read succeeded and returned 0. */ |
| regs->ax = 0; |
| regs->dx = 0; |
| } |
| |
| if (safe) |
| *pt_regs_nr(regs, reg) = -EIO; |
| |
| return ex_handler_default(fixup, regs); |
| } |
| |
| static bool ex_handler_clear_fs(const struct exception_table_entry *fixup, |
| struct pt_regs *regs) |
| { |
| if (static_cpu_has(X86_BUG_NULL_SEG)) |
| asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); |
| asm volatile ("mov %0, %%fs" : : "rm" (0)); |
| return ex_handler_default(fixup, regs); |
| } |
| |
| static bool ex_handler_imm_reg(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, int reg, int imm) |
| { |
| *pt_regs_nr(regs, reg) = (long)imm; |
| return ex_handler_default(fixup, regs); |
| } |
| |
| static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, int trapnr, |
| unsigned long fault_address, |
| int reg, int imm) |
| { |
| regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg); |
| return ex_handler_uaccess(fixup, regs, trapnr, fault_address); |
| } |
| |
| #ifdef CONFIG_X86_FRED |
| static bool ex_handler_eretu(const struct exception_table_entry *fixup, |
| struct pt_regs *regs, unsigned long error_code) |
| { |
| struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax)); |
| unsigned short ss = uregs->ss; |
| unsigned short cs = uregs->cs; |
| |
| /* |
| * Move the NMI bit from the invalid stack frame, which caused ERETU |
| * to fault, to the fault handler's stack frame, thus to unblock NMI |
| * with the fault handler's ERETS instruction ASAP if NMI is blocked. |
| */ |
| regs->fred_ss.nmi = uregs->fred_ss.nmi; |
| |
| /* |
| * Sync event information to uregs, i.e., the ERETU return frame, but |
| * is it safe to write to the ERETU return frame which is just above |
| * current event stack frame? |
| * |
| * The RSP used by FRED to push a stack frame is not the value in %rsp, |
| * it is calculated from %rsp with the following 2 steps: |
| * 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0) // Reserve N*64 bytes |
| * 2) RSP = RSP & ~0x3f // Align to a 64-byte cache line |
| * when an event delivery doesn't trigger a stack level change. |
| * |
| * Here is an example with N*64 (N=1) bytes reserved: |
| * |
| * 64-byte cache line ==> ______________ |
| * |___Reserved___| |
| * |__Event_data__| |
| * |_____SS_______| |
| * |_____RSP______| |
| * |_____FLAGS____| |
| * |_____CS_______| |
| * |_____IP_______| |
| * 64-byte cache line ==> |__Error_code__| <== ERETU return frame |
| * |______________| |
| * |______________| |
| * |______________| |
| * |______________| |
| * |______________| |
| * |______________| |
| * |______________| |
| * 64-byte cache line ==> |______________| <== RSP after step 1) and 2) |
| * |___Reserved___| |
| * |__Event_data__| |
| * |_____SS_______| |
| * |_____RSP______| |
| * |_____FLAGS____| |
| * |_____CS_______| |
| * |_____IP_______| |
| * 64-byte cache line ==> |__Error_code__| <== ERETS return frame |
| * |
| * Thus a new FRED stack frame will always be pushed below a previous |
| * FRED stack frame ((N*64) bytes may be reserved between), and it is |
| * safe to write to a previous FRED stack frame as they never overlap. |
| */ |
| fred_info(uregs)->edata = fred_event_data(regs); |
| uregs->ssx = regs->ssx; |
| uregs->fred_ss.ss = ss; |
| /* The NMI bit was moved away above */ |
| uregs->fred_ss.nmi = 0; |
| uregs->csx = regs->csx; |
| uregs->fred_cs.sl = 0; |
| uregs->fred_cs.wfe = 0; |
| uregs->cs = cs; |
| uregs->orig_ax = error_code; |
| |
| return ex_handler_default(fixup, regs); |
| } |
| #endif |
| |
| int ex_get_fixup_type(unsigned long ip) |
| { |
| const struct exception_table_entry *e = search_exception_tables(ip); |
| |
| return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE; |
| } |
| |
| int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, |
| unsigned long fault_addr) |
| { |
| const struct exception_table_entry *e; |
| int type, reg, imm; |
| |
| #ifdef CONFIG_PNPBIOS |
| if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { |
| extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; |
| extern u32 pnp_bios_is_utter_crap; |
| pnp_bios_is_utter_crap = 1; |
| printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); |
| __asm__ volatile( |
| "movl %0, %%esp\n\t" |
| "jmp *%1\n\t" |
| : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); |
| panic("do_trap: can't hit this"); |
| } |
| #endif |
| |
| e = search_exception_tables(regs->ip); |
| if (!e) |
| return 0; |
| |
| type = FIELD_GET(EX_DATA_TYPE_MASK, e->data); |
| reg = FIELD_GET(EX_DATA_REG_MASK, e->data); |
| imm = FIELD_GET(EX_DATA_IMM_MASK, e->data); |
| |
| switch (type) { |
| case EX_TYPE_DEFAULT: |
| case EX_TYPE_DEFAULT_MCE_SAFE: |
| return ex_handler_default(e, regs); |
| case EX_TYPE_FAULT: |
| case EX_TYPE_FAULT_MCE_SAFE: |
| return ex_handler_fault(e, regs, trapnr); |
| case EX_TYPE_UACCESS: |
| return ex_handler_uaccess(e, regs, trapnr, fault_addr); |
| case EX_TYPE_CLEAR_FS: |
| return ex_handler_clear_fs(e, regs); |
| case EX_TYPE_FPU_RESTORE: |
| return ex_handler_fprestore(e, regs); |
| case EX_TYPE_BPF: |
| return ex_handler_bpf(e, regs); |
| case EX_TYPE_WRMSR: |
| return ex_handler_msr(e, regs, true, false, reg); |
| case EX_TYPE_RDMSR: |
| return ex_handler_msr(e, regs, false, false, reg); |
| case EX_TYPE_WRMSR_SAFE: |
| return ex_handler_msr(e, regs, true, true, reg); |
| case EX_TYPE_RDMSR_SAFE: |
| return ex_handler_msr(e, regs, false, true, reg); |
| case EX_TYPE_WRMSR_IN_MCE: |
| ex_handler_msr_mce(regs, true); |
| break; |
| case EX_TYPE_RDMSR_IN_MCE: |
| ex_handler_msr_mce(regs, false); |
| break; |
| case EX_TYPE_POP_REG: |
| regs->sp += sizeof(long); |
| fallthrough; |
| case EX_TYPE_IMM_REG: |
| return ex_handler_imm_reg(e, regs, reg, imm); |
| case EX_TYPE_FAULT_SGX: |
| return ex_handler_sgx(e, regs, trapnr); |
| case EX_TYPE_UCOPY_LEN: |
| return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm); |
| case EX_TYPE_ZEROPAD: |
| return ex_handler_zeropad(e, regs, fault_addr); |
| #ifdef CONFIG_X86_FRED |
| case EX_TYPE_ERETU: |
| return ex_handler_eretu(e, regs, error_code); |
| #endif |
| } |
| BUG(); |
| } |
| |
| extern unsigned int early_recursion_flag; |
| |
| /* Restricted version used during very early boot */ |
| void __init early_fixup_exception(struct pt_regs *regs, int trapnr) |
| { |
| /* Ignore early NMIs. */ |
| if (trapnr == X86_TRAP_NMI) |
| return; |
| |
| if (early_recursion_flag > 2) |
| goto halt_loop; |
| |
| /* |
| * Old CPUs leave the high bits of CS on the stack |
| * undefined. I'm not sure which CPUs do this, but at least |
| * the 486 DX works this way. |
| * Xen pv domains are not using the default __KERNEL_CS. |
| */ |
| if (!xen_pv_domain() && regs->cs != __KERNEL_CS) |
| goto fail; |
| |
| /* |
| * The full exception fixup machinery is available as soon as |
| * the early IDT is loaded. This means that it is the |
| * responsibility of extable users to either function correctly |
| * when handlers are invoked early or to simply avoid causing |
| * exceptions before they're ready to handle them. |
| * |
| * This is better than filtering which handlers can be used, |
| * because refusing to call a handler here is guaranteed to |
| * result in a hard-to-debug panic. |
| * |
| * Keep in mind that not all vectors actually get here. Early |
| * page faults, for example, are special. |
| */ |
| if (fixup_exception(regs, trapnr, regs->orig_ax, 0)) |
| return; |
| |
| if (trapnr == X86_TRAP_UD) { |
| if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { |
| /* Skip the ud2. */ |
| regs->ip += LEN_UD2; |
| return; |
| } |
| |
| /* |
| * If this was a BUG and report_bug returns or if this |
| * was just a normal #UD, we want to continue onward and |
| * crash. |
| */ |
| } |
| |
| fail: |
| early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", |
| (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, |
| regs->orig_ax, read_cr2()); |
| |
| show_regs(regs); |
| |
| halt_loop: |
| while (true) |
| halt(); |
| } |