blob: 0f09344d3c206ed9182c5d385f1c410373b9d630 [file] [log] [blame]
/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Kevin Tian <kevin.tian@intel.com>
* Eddie Dong <eddie.dong@intel.com>
* Zhiyuan Lv <zhiyuan.lv@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Tina Zhang <tina.zhang@intel.com>
* Pei Zhang <pei.zhang@intel.com>
* Niu Bing <bing.niu@intel.com>
* Ping Gao <ping.a.gao@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "gvt.h"
#include "i915_pvinfo.h"
#include "intel_mchbar_regs.h"
#include "display/bxt_dpio_phy_regs.h"
#include "display/i9xx_plane_regs.h"
#include "display/intel_cursor_regs.h"
#include "display/intel_display_types.h"
#include "display/intel_dmc_regs.h"
#include "display/intel_dp_aux_regs.h"
#include "display/intel_dpio_phy.h"
#include "display/intel_fbc.h"
#include "display/intel_fdi_regs.h"
#include "display/intel_pps_regs.h"
#include "display/intel_psr_regs.h"
#include "display/intel_sprite_regs.h"
#include "display/skl_universal_plane_regs.h"
#include "display/skl_watermark_regs.h"
#include "display/vlv_dsi_pll_regs.h"
#include "gt/intel_gt_regs.h"
#include <linux/vmalloc.h>
/* XXX FIXME i915 has changed PP_XXX definition */
#define PCH_PP_STATUS _MMIO(0xc7200)
#define PCH_PP_CONTROL _MMIO(0xc7204)
#define PCH_PP_ON_DELAYS _MMIO(0xc7208)
#define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
#define PCH_PP_DIVISOR _MMIO(0xc7210)
unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
{
struct drm_i915_private *i915 = gvt->gt->i915;
if (IS_BROADWELL(i915))
return D_BDW;
else if (IS_SKYLAKE(i915))
return D_SKL;
else if (IS_KABYLAKE(i915))
return D_KBL;
else if (IS_BROXTON(i915))
return D_BXT;
else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
return D_CFL;
return 0;
}
static bool intel_gvt_match_device(struct intel_gvt *gvt,
unsigned long device)
{
return intel_gvt_get_device_type(gvt) & device;
}
static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
}
static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
}
struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
unsigned int offset)
{
struct intel_gvt_mmio_info *e;
hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
if (e->offset == offset)
return e;
}
return NULL;
}
static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
gvt_mmio_func read, gvt_mmio_func write)
{
struct intel_gvt_mmio_info *p;
u32 start, end, i;
if (!intel_gvt_match_device(gvt, device))
return 0;
if (WARN_ON(!IS_ALIGNED(offset, 4)))
return -EINVAL;
start = offset;
end = offset + size;
for (i = start; i < end; i += 4) {
p = intel_gvt_find_mmio_info(gvt, i);
if (!p) {
WARN(1, "assign a handler to a non-tracked mmio %x\n",
i);
return -ENODEV;
}
p->ro_mask = ro_mask;
gvt->mmio.mmio_attribute[i / 4] = flags;
if (read)
p->read = read;
if (write)
p->write = write;
}
return 0;
}
/**
* intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
* @gvt: a GVT device
* @offset: register offset
*
* Returns:
* The engine containing the offset within its mmio page.
*/
const struct intel_engine_cs *
intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
offset &= ~GENMASK(11, 0);
for_each_engine(engine, gvt->gt, id)
if (engine->mmio_base == offset)
return engine;
return NULL;
}
#define offset_to_fence_num(offset) \
((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
#define fence_num_to_offset(num) \
(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
{
switch (reason) {
case GVT_FAILSAFE_UNSUPPORTED_GUEST:
pr_err("Detected your guest driver doesn't support GVT-g.\n");
break;
case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
pr_err("Graphics resource is not enough for the guest\n");
break;
case GVT_FAILSAFE_GUEST_ERR:
pr_err("GVT Internal error for the guest\n");
break;
default:
break;
}
pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
vgpu->failsafe = true;
}
static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
unsigned int fence_num, void *p_data, unsigned int bytes)
{
unsigned int max_fence = vgpu_fence_sz(vgpu);
if (fence_num >= max_fence) {
gvt_vgpu_err("access oob fence reg %d/%d\n",
fence_num, max_fence);
/* When guest access oob fence regs without access
* pv_info first, we treat guest not supporting GVT,
* and we will let vgpu enter failsafe mode.
*/
if (!vgpu->pv_notified)
enter_failsafe_mode(vgpu,
GVT_FAILSAFE_UNSUPPORTED_GUEST);
memset(p_data, 0, bytes);
return -EINVAL;
}
return 0;
}
static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
else if (!ips)
gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
else {
/* All engines must be enabled together for vGPU,
* since we don't know which engine the ppgtt will
* bind to when shadowing.
*/
gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
ips);
return -EINVAL;
}
}
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
int ret;
ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
p_data, bytes);
if (ret)
return ret;
read_vreg(vgpu, off, p_data, bytes);
return 0;
}
static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
unsigned int fence_num = offset_to_fence_num(off);
int ret;
ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
if (ret)
return ret;
write_vreg(vgpu, off, p_data, bytes);
mmio_hw_access_pre(gvt->gt);
intel_vgpu_write_fence(vgpu, fence_num,
vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
mmio_hw_access_post(gvt->gt);
return 0;
}
#define CALC_MODE_MASK_REG(old, new) \
(((new) & GENMASK(31, 16)) \
| ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
| ((new) & ((new) >> 16))))
static int mul_force_wake_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 old, new;
u32 ack_reg_offset;
old = vgpu_vreg(vgpu, offset);
new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) {
switch (offset) {
case FORCEWAKE_RENDER_GEN9_REG:
ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
break;
case FORCEWAKE_GT_GEN9_REG:
ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
break;
case FORCEWAKE_MEDIA_GEN9_REG:
ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
break;
default:
/*should not hit here*/
gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
return -EINVAL;
}
} else {
ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
}
vgpu_vreg(vgpu, offset) = new;
vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
return 0;
}
static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
intel_engine_mask_t engine_mask = 0;
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & GEN6_GRDOM_FULL) {
gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
engine_mask = ALL_ENGINES;
} else {
if (data & GEN6_GRDOM_RENDER) {
gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
engine_mask |= BIT(RCS0);
}
if (data & GEN6_GRDOM_MEDIA) {
gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
engine_mask |= BIT(VCS0);
}
if (data & GEN6_GRDOM_BLT) {
gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
engine_mask |= BIT(BCS0);
}
if (data & GEN6_GRDOM_VECS) {
gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
engine_mask |= BIT(VECS0);
}
if (data & GEN8_GRDOM_MEDIA2) {
gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
engine_mask |= BIT(VCS1);
}
if (data & GEN9_GRDOM_GUC) {
gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
}
engine_mask &= vgpu->gvt->gt->info.engine_mask;
}
/* vgpu_lock already hold by emulate mmio r/w */
intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
/* sw will wait for the device to ack the reset request */
vgpu_vreg(vgpu, offset) = 0;
return 0;
}
static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
}
static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
}
static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
} else
vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
~(PP_ON | PP_SEQUENCE_POWER_DOWN
| PP_CYCLE_DELAY_ACTIVE);
return 0;
}
static int transconf_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
else
vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
return 0;
}
static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
else
vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
else
vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
return 0;
}
static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
switch (offset) {
case 0xe651c:
case 0xe661c:
case 0xe671c:
case 0xe681c:
vgpu_vreg(vgpu, offset) = 1 << 17;
break;
case 0xe6c04:
vgpu_vreg(vgpu, offset) = 0x3;
break;
case 0xe6e1c:
vgpu_vreg(vgpu, offset) = 0x2f << 16;
break;
default:
return -EINVAL;
}
read_vreg(vgpu, offset, p_data, bytes);
return 0;
}
/*
* Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
* TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
* setup_virtual_dp_monitor().
* emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
* DPLL. Later guest driver may setup a different DPLLx when setting mode.
* So the correct sequence to find DP stream clock is:
* Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
* Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
* Then Refresh rate then can be calculated based on follow equations:
* Pixel clock = h_total * v_total * refresh_rate
* stream clock = Pixel clock
* ls_clk = DP bitrate
* Link M/N = strm_clk / ls_clk
*/
static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
{
u32 dp_br = 0;
u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
switch (ddi_pll_sel) {
case PORT_CLK_SEL_LCPLL_2700:
dp_br = 270000 * 2;
break;
case PORT_CLK_SEL_LCPLL_1350:
dp_br = 135000 * 2;
break;
case PORT_CLK_SEL_LCPLL_810:
dp_br = 81000 * 2;
break;
case PORT_CLK_SEL_SPLL:
{
switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
case SPLL_FREQ_810MHz:
dp_br = 81000 * 2;
break;
case SPLL_FREQ_1350MHz:
dp_br = 135000 * 2;
break;
case SPLL_FREQ_2700MHz:
dp_br = 270000 * 2;
break;
default:
gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
break;
}
break;
}
case PORT_CLK_SEL_WRPLL1:
case PORT_CLK_SEL_WRPLL2:
{
u32 wrpll_ctl;
int refclk, n, p, r;
if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
else
wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
switch (wrpll_ctl & WRPLL_REF_MASK) {
case WRPLL_REF_PCH_SSC:
refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc;
break;
case WRPLL_REF_LCPLL:
refclk = 2700000;
break;
default:
gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
vgpu->id, port_name(port), wrpll_ctl);
goto out;
}
r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
dp_br = (refclk * n / 10) / (p * r) * 2;
break;
}
default:
gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
break;
}
out:
return dp_br;
}
static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
{
u32 dp_br = 0;
int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc;
enum dpio_phy phy = DPIO_PHY0;
enum dpio_channel ch = DPIO_CH0;
struct dpll clock = {};
u32 temp;
/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
switch (port) {
case PORT_A:
phy = DPIO_PHY1;
ch = DPIO_CH0;
break;
case PORT_B:
phy = DPIO_PHY0;
ch = DPIO_CH0;
break;
case PORT_C:
phy = DPIO_PHY0;
ch = DPIO_CH1;
break;
default:
gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
goto out;
}
temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
vgpu->id, port_name(port), temp);
goto out;
}
clock.m1 = 2;
clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
clock.m = clock.m1 * clock.m2;
clock.p = clock.p1 * clock.p2 * 5;
if (clock.n == 0 || clock.p == 0) {
gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
goto out;
}
clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
dp_br = clock.dot;
out:
return dp_br;
}
static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
{
u32 dp_br = 0;
enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
/* Find the enabled DPLL for the DDI/PORT */
if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
} else {
gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
vgpu->id, port_name(port));
return dp_br;
}
/* Find PLL output frequency from correct DPLL, and get bir rate */
switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
case DPLL_CTRL1_LINK_RATE_810:
dp_br = 81000 * 2;
break;
case DPLL_CTRL1_LINK_RATE_1080:
dp_br = 108000 * 2;
break;
case DPLL_CTRL1_LINK_RATE_1350:
dp_br = 135000 * 2;
break;
case DPLL_CTRL1_LINK_RATE_1620:
dp_br = 162000 * 2;
break;
case DPLL_CTRL1_LINK_RATE_2160:
dp_br = 216000 * 2;
break;
case DPLL_CTRL1_LINK_RATE_2700:
dp_br = 270000 * 2;
break;
default:
dp_br = 0;
gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
vgpu->id, port_name(port), dpll_id);
}
return dp_br;
}
static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
{
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
enum port port;
u32 dp_br, link_m, link_n, htotal, vtotal;
/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(dev_priv, TRANSCODER_A)) &
TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
if (port != PORT_B && port != PORT_D) {
gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
return;
}
/* Calculate DP bitrate from PLL */
if (IS_BROADWELL(dev_priv))
dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
else if (IS_BROXTON(dev_priv))
dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
else
dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
/* Get DP link symbol clock M/N */
link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(dev_priv, TRANSCODER_A));
link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(dev_priv, TRANSCODER_A));
/* Get H/V total from transcoder timing */
htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(dev_priv, TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(dev_priv, TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
if (dp_br && link_n && htotal && vtotal) {
u64 pixel_clk = 0;
u32 new_rate = 0;
u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
/* Calcuate pixel clock by (ls_clk * M / N) */
pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
pixel_clk *= MSEC_PER_SEC;
/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
if (*old_rate != new_rate)
*old_rate = new_rate;
gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
vgpu->id, pipe_name(PIPE_A), new_rate);
}
}
static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & TRANSCONF_ENABLE) {
vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
vgpu_update_refresh_rate(vgpu);
vgpu_update_vblank_emulation(vgpu, true);
} else {
vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
vgpu_update_vblank_emulation(vgpu, false);
}
return 0;
}
/* sorted in ascending order */
static i915_reg_t force_nonpriv_white_list[] = {
_MMIO(0xd80),
GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
PS_INVOCATION_COUNT, //_MMIO(0x2348)
PS_DEPTH_COUNT, //_MMIO(0x2350)
GEN8_CS_CHICKEN1,//_MMIO(0x2580)
_MMIO(0x2690),
_MMIO(0x2694),
_MMIO(0x2698),
_MMIO(0x2754),
_MMIO(0x28a0),
_MMIO(0x4de0),
_MMIO(0x4de4),
_MMIO(0x4dfc),
GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
_MMIO(0x7014),
HDC_CHICKEN0,//_MMIO(0x7300)
GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
_MMIO(0x7700),
_MMIO(0x7704),
_MMIO(0x7708),
_MMIO(0x770c),
_MMIO(0x83a8),
_MMIO(0xb110),
_MMIO(0xb118),
_MMIO(0xe100),
_MMIO(0xe18c),
_MMIO(0xe48c),
_MMIO(0xe5f4),
_MMIO(0x64844),
};
/* a simple bsearch */
static inline bool in_whitelist(u32 reg)
{
int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
i915_reg_t *array = force_nonpriv_white_list;
while (left < right) {
int mid = (left + right)/2;
if (reg > array[mid].reg)
left = mid + 1;
else if (reg < array[mid].reg)
right = mid;
else
return true;
}
return false;
}
static int force_nonpriv_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
const struct intel_engine_cs *engine =
intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
vgpu->id, offset, bytes);
return -EINVAL;
}
if (!in_whitelist(reg_nonpriv) &&
reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
vgpu->id, reg_nonpriv, offset);
} else
intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
return 0;
}
static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
} else {
vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
}
return 0;
}
static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
return 0;
}
#define FDI_LINK_TRAIN_PATTERN1 0
#define FDI_LINK_TRAIN_PATTERN2 1
static int fdi_auto_training_started(struct intel_vgpu *vgpu)
{
u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
(rx_ctl & FDI_RX_ENABLE) &&
(rx_ctl & FDI_AUTO_TRAINING) &&
(tx_ctl & DP_TP_CTL_ENABLE) &&
(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
return 1;
else
return 0;
}
static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
enum pipe pipe, unsigned int train_pattern)
{
i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
unsigned int fdi_iir_check_bits;
fdi_rx_imr = FDI_RX_IMR(pipe);
fdi_tx_ctl = FDI_TX_CTL(pipe);
fdi_rx_ctl = FDI_RX_CTL(pipe);
if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
fdi_iir_check_bits = FDI_RX_BIT_LOCK;
} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
} else {
gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
return -EINVAL;
}
fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
/* If imr bit has been masked */
if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
return 0;
if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
== fdi_tx_check_bits)
&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
== fdi_rx_check_bits))
return 1;
else
return 0;
}
#define INVALID_INDEX (~0U)
static unsigned int calc_index(unsigned int offset, i915_reg_t _start,
i915_reg_t _next, i915_reg_t _end)
{
u32 start = i915_mmio_reg_offset(_start);
u32 next = i915_mmio_reg_offset(_next);
u32 end = i915_mmio_reg_offset(_end);
u32 stride = next - start;
if (offset < start || offset > end)
return INVALID_INDEX;
offset -= start;
return offset / stride;
}
#define FDI_RX_CTL_TO_PIPE(offset) \
calc_index(offset, FDI_RX_CTL(PIPE_A), FDI_RX_CTL(PIPE_B), FDI_RX_CTL(PIPE_C))
#define FDI_TX_CTL_TO_PIPE(offset) \
calc_index(offset, FDI_TX_CTL(PIPE_A), FDI_TX_CTL(PIPE_B), FDI_TX_CTL(PIPE_C))
#define FDI_RX_IMR_TO_PIPE(offset) \
calc_index(offset, FDI_RX_IMR(PIPE_A), FDI_RX_IMR(PIPE_B), FDI_RX_IMR(PIPE_C))
static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
i915_reg_t fdi_rx_iir;
unsigned int index;
int ret;
if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
index = FDI_RX_CTL_TO_PIPE(offset);
else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
index = FDI_TX_CTL_TO_PIPE(offset);
else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
index = FDI_RX_IMR_TO_PIPE(offset);
else {
gvt_vgpu_err("Unsupported registers %x\n", offset);
return -EINVAL;
}
write_vreg(vgpu, offset, p_data, bytes);
fdi_rx_iir = FDI_RX_IIR(index);
ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
if (ret < 0)
return ret;
if (ret)
vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
if (ret < 0)
return ret;
if (ret)
vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
if (offset == _FDI_RXA_CTL)
if (fdi_auto_training_started(vgpu))
vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
DP_TP_STATUS_AUTOTRAIN_DONE;
return 0;
}
#define DP_TP_CTL_TO_PORT(offset) \
calc_index(offset, DP_TP_CTL(PORT_A), DP_TP_CTL(PORT_B), DP_TP_CTL(PORT_E))
static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
i915_reg_t status_reg;
unsigned int index;
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
index = DP_TP_CTL_TO_PORT(offset);
data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
if (data == 0x2) {
status_reg = DP_TP_STATUS(index);
vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
}
return 0;
}
static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 reg_val;
u32 sticky_mask;
reg_val = *((u32 *)p_data);
sticky_mask = GENMASK(27, 26) | (1 << 24);
vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
(vgpu_vreg(vgpu, offset) & sticky_mask);
vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
return 0;
}
static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
return 0;
}
static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (data & FDI_MPHY_IOSFSB_RESET_CTL)
vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
else
vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
return 0;
}
#define DSPSURF_TO_PIPE(dev_priv, offset) \
calc_index(offset, DSPSURF(dev_priv, PIPE_A), DSPSURF(dev_priv, PIPE_B), DSPSURF(dev_priv, PIPE_C))
static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
u32 pipe = DSPSURF_TO_PIPE(dev_priv, offset);
int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
write_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg_t(vgpu, DSPSURFLIVE(dev_priv, pipe)) = vgpu_vreg(vgpu, offset);
vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, pipe))++;
if (vgpu_vreg_t(vgpu, DSPCNTR(dev_priv, pipe)) & PLANE_CTL_ASYNC_FLIP)
intel_vgpu_trigger_virtual_event(vgpu, event);
else
set_bit(event, vgpu->irq.flip_done_event[pipe]);
return 0;
}
#define SPRSURF_TO_PIPE(offset) \
calc_index(offset, SPRSURF(PIPE_A), SPRSURF(PIPE_B), SPRSURF(PIPE_C))
static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 pipe = SPRSURF_TO_PIPE(offset);
int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
write_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
intel_vgpu_trigger_virtual_event(vgpu, event);
else
set_bit(event, vgpu->irq.flip_done_event[pipe]);
return 0;
}
static int reg50080_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data,
unsigned int bytes)
{
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
enum pipe pipe = REG_50080_TO_PIPE(offset);
enum plane_id plane = REG_50080_TO_PLANE(offset);
int event = SKL_FLIP_EVENT(pipe, plane);
write_vreg(vgpu, offset, p_data, bytes);
if (plane == PLANE_PRIMARY) {
vgpu_vreg_t(vgpu, DSPSURFLIVE(dev_priv, pipe)) = vgpu_vreg(vgpu, offset);
vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, pipe))++;
} else {
vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
}
if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
intel_vgpu_trigger_virtual_event(vgpu, event);
else
set_bit(event, vgpu->irq.flip_done_event[pipe]);
return 0;
}
static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
unsigned int reg)
{
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
enum intel_gvt_event_type event;
if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
event = AUX_CHANNEL_A;
else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_B)) ||
reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
event = AUX_CHANNEL_B;
else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_C)) ||
reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
event = AUX_CHANNEL_C;
else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_D)) ||
reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
event = AUX_CHANNEL_D;
else {
drm_WARN_ON(&dev_priv->drm, true);
return -EINVAL;
}
intel_vgpu_trigger_virtual_event(vgpu, event);
return 0;
}
static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
unsigned int reg, int len, bool data_valid)
{
/* mark transaction done */
value |= DP_AUX_CH_CTL_DONE;
value &= ~DP_AUX_CH_CTL_SEND_BUSY;
value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
if (data_valid)
value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
else
value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
/* message size */
value &= ~(0xf << 20);
value |= (len << 20);
vgpu_vreg(vgpu, reg) = value;
if (value & DP_AUX_CH_CTL_INTERRUPT)
return trigger_aux_channel_interrupt(vgpu, reg);
return 0;
}
static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
u8 t)
{
if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
/* training pattern 1 for CR */
/* set LANE0_CR_DONE, LANE1_CR_DONE */
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
/* set LANE2_CR_DONE, LANE3_CR_DONE */
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
DPCD_TRAINING_PATTERN_2) {
/* training pattern 2 for EQ */
/* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
/* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
/* set INTERLANE_ALIGN_DONE */
dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
DPCD_INTERLANE_ALIGN_DONE;
} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
DPCD_LINK_TRAINING_DISABLED) {
/* finish link training */
/* set sink status as synchronized */
dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
}
}
#define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
#define dpy_is_valid_port(port) \
(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
struct intel_vgpu_display *display = &vgpu->display;
int msg, addr, ctrl, op, len;
int port_index = OFFSET_TO_DP_AUX_PORT(offset);
struct intel_vgpu_dpcd_data *dpcd = NULL;
struct intel_vgpu_port *port = NULL;
u32 data;
if (!dpy_is_valid_port(port_index)) {
gvt_vgpu_err("Unsupported DP port access!\n");
return 0;
}
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9 &&
offset != i915_mmio_reg_offset(DP_AUX_CH_CTL(port_index))) {
/* SKL DPB/C/D aux ctl register changed */
return 0;
} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
offset != i915_mmio_reg_offset(port_index ?
PCH_DP_AUX_CH_CTL(port_index) :
DP_AUX_CH_CTL(port_index))) {
/* write to the data registers */
return 0;
}
if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
/* just want to clear the sticky bits */
vgpu_vreg(vgpu, offset) = 0;
return 0;
}
port = &display->ports[port_index];
dpcd = port->dpcd;
/* read out message from DATA1 register */
msg = vgpu_vreg(vgpu, offset + 4);
addr = (msg >> 8) & 0xffff;
ctrl = (msg >> 24) & 0xff;
len = msg & 0xff;
op = ctrl >> 4;
if (op == GVT_AUX_NATIVE_WRITE) {
int t;
u8 buf[16];
if ((addr + len + 1) >= DPCD_SIZE) {
/*
* Write request exceeds what we supported,
* DCPD spec: When a Source Device is writing a DPCD
* address not supported by the Sink Device, the Sink
* Device shall reply with AUX NACK and “M” equal to
* zero.
*/
/* NAK the write */
vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
return 0;
}
/*
* Write request format: Headr (command + address + size) occupies
* 4 bytes, followed by (len + 1) bytes of data. See details at
* intel_dp_aux_transfer().
*/
if ((len + 1 + 4) > AUX_BURST_SIZE) {
gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
return -EINVAL;
}
/* unpack data from vreg to buf */
for (t = 0; t < 4; t++) {
u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
buf[t * 4] = (r >> 24) & 0xff;
buf[t * 4 + 1] = (r >> 16) & 0xff;
buf[t * 4 + 2] = (r >> 8) & 0xff;
buf[t * 4 + 3] = r & 0xff;
}
/* write to virtual DPCD */
if (dpcd && dpcd->data_valid) {
for (t = 0; t <= len; t++) {
int p = addr + t;
dpcd->data[p] = buf[t];
/* check for link training */
if (p == DPCD_TRAINING_PATTERN_SET)
dp_aux_ch_ctl_link_training(dpcd,
buf[t]);
}
}
/* ACK the write */
vgpu_vreg(vgpu, offset + 4) = 0;
dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
dpcd && dpcd->data_valid);
return 0;
}
if (op == GVT_AUX_NATIVE_READ) {
int idx, i, ret = 0;
if ((addr + len + 1) >= DPCD_SIZE) {
/*
* read request exceeds what we supported
* DPCD spec: A Sink Device receiving a Native AUX CH
* read request for an unsupported DPCD address must
* reply with an AUX ACK and read data set equal to
* zero instead of replying with AUX NACK.
*/
/* ACK the READ*/
vgpu_vreg(vgpu, offset + 4) = 0;
vgpu_vreg(vgpu, offset + 8) = 0;
vgpu_vreg(vgpu, offset + 12) = 0;
vgpu_vreg(vgpu, offset + 16) = 0;
vgpu_vreg(vgpu, offset + 20) = 0;
dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
true);
return 0;
}
for (idx = 1; idx <= 5; idx++) {
/* clear the data registers */
vgpu_vreg(vgpu, offset + 4 * idx) = 0;
}
/*
* Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
*/
if ((len + 2) > AUX_BURST_SIZE) {
gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
return -EINVAL;
}
/* read from virtual DPCD to vreg */
/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
if (dpcd && dpcd->data_valid) {
for (i = 1; i <= (len + 1); i++) {
int t;
t = dpcd->data[addr + i - 1];
t <<= (24 - 8 * (i % 4));
ret |= t;
if ((i % 4 == 3) || (i == (len + 1))) {
vgpu_vreg(vgpu, offset +
(i / 4 + 1) * 4) = ret;
ret = 0;
}
}
}
dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
dpcd && dpcd->data_valid);
return 0;
}
/* i2c transaction starts */
intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
if (data & DP_AUX_CH_CTL_INTERRUPT)
trigger_aux_channel_interrupt(vgpu, offset);
return 0;
}
static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
bool vga_disable;
write_vreg(vgpu, offset, p_data, bytes);
vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
vga_disable ? "Disable" : "Enable");
return 0;
}
static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
unsigned int sbi_offset)
{
struct intel_vgpu_display *display = &vgpu->display;
int num = display->sbi.number;
int i;
for (i = 0; i < num; ++i)
if (display->sbi.registers[i].offset == sbi_offset)
break;
if (i == num)
return 0;
return display->sbi.registers[i].value;
}
static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
unsigned int offset, u32 value)
{
struct intel_vgpu_display *display = &vgpu->display;
int num = display->sbi.number;
int i;
for (i = 0; i < num; ++i) {
if (display->sbi.registers[i].offset == offset)
break;
}
if (i == num) {
if (num == SBI_REG_MAX) {
gvt_vgpu_err("SBI caching meets maximum limits\n");
return;
}
display->sbi.number++;
}
display->sbi.registers[i].offset = offset;
display->sbi.registers[i].value = value;
}
static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
sbi_offset);
}
read_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
data |= SBI_READY;
data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
data |= SBI_RESPONSE_SUCCESS;
vgpu_vreg(vgpu, offset) = data;
if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
write_virtual_sbi_register(vgpu, sbi_offset,
vgpu_vreg_t(vgpu, SBI_DATA));
}
return 0;
}
#define _vgtif_reg(x) \
(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
bool invalid_read = false;
read_vreg(vgpu, offset, p_data, bytes);
switch (offset) {
case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
if (offset + bytes > _vgtif_reg(vgt_id) + 4)
invalid_read = true;
break;
case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
_vgtif_reg(avail_rs.fence_num):
if (offset + bytes >
_vgtif_reg(avail_rs.fence_num) + 4)
invalid_read = true;
break;
case 0x78010: /* vgt_caps */
case 0x7881c:
break;
default:
invalid_read = true;
break;
}
if (invalid_read)
gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
offset, bytes, *(u32 *)p_data);
vgpu->pv_notified = true;
return 0;
}
static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
{
enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
struct intel_vgpu_mm *mm;
u64 *pdps;
pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
switch (notification) {
case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
fallthrough;
case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
return PTR_ERR_OR_ZERO(mm);
case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
case VGT_G2V_EXECLIST_CONTEXT_CREATE:
case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
case 1: /* Remove this in guest driver. */
break;
default:
gvt_vgpu_err("Invalid PV notification %d\n", notification);
}
return 0;
}
static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
{
struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
char *env[3] = {NULL, NULL, NULL};
char vmid_str[20];
char display_ready_str[20];
snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
env[0] = display_ready_str;
snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
env[1] = vmid_str;
return kobject_uevent_env(kobj, KOBJ_ADD, env);
}
static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data = *(u32 *)p_data;
bool invalid_write = false;
switch (offset) {
case _vgtif_reg(display_ready):
send_display_ready_uevent(vgpu, data ? 1 : 0);
break;
case _vgtif_reg(g2v_notify):
handle_g2v_notification(vgpu, data);
break;
/* add xhot and yhot to handled list to avoid error log */
case _vgtif_reg(cursor_x_hot):
case _vgtif_reg(cursor_y_hot):
case _vgtif_reg(pdp[0].lo):
case _vgtif_reg(pdp[0].hi):
case _vgtif_reg(pdp[1].lo):
case _vgtif_reg(pdp[1].hi):
case _vgtif_reg(pdp[2].lo):
case _vgtif_reg(pdp[2].hi):
case _vgtif_reg(pdp[3].lo):
case _vgtif_reg(pdp[3].hi):
case _vgtif_reg(execlist_context_descriptor_lo):
case _vgtif_reg(execlist_context_descriptor_hi):
break;
case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
invalid_write = true;
enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
break;
default:
invalid_write = true;
gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
offset, bytes, data);
break;
}
if (!invalid_write)
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int pf_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
u32 val = *(u32 *)p_data;
if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
drm_WARN_ONCE(&i915->drm, true,
"VM(%d): guest is trying to scaling a plane\n",
vgpu->id);
return 0;
}
return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
}
static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) &
HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
vgpu_vreg(vgpu, offset) |=
HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
else
vgpu_vreg(vgpu, offset) &=
~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
return 0;
}
static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
else
vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
return 0;
}
static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
return 0;
}
static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
u32 mode;
write_vreg(vgpu, offset, p_data, bytes);
mode = vgpu_vreg(vgpu, offset);
if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
drm_WARN_ONCE(&i915->drm, 1,
"VM(%d): iGVT-g doesn't support GuC\n",
vgpu->id);
return 0;
}
return 0;
}
static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
u32 trtte = *(u32 *)p_data;
if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
drm_WARN(&i915->drm, 1,
"VM(%d): Use physical address for TRTT!\n",
vgpu->id);
return -EINVAL;
}
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 v = 0;
if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
v |= (1 << 0);
if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
v |= (1 << 8);
if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
v |= (1 << 16);
if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
v |= (1 << 24);
vgpu_vreg(vgpu, offset) = v;
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
}
static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 value = *(u32 *)p_data;
u32 cmd = value & 0xff;
u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
switch (cmd) {
case GEN9_PCODE_READ_MEM_LATENCY:
if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
IS_KABYLAKE(vgpu->gvt->gt->i915) ||
IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
IS_COMETLAKE(vgpu->gvt->gt->i915)) {
/**
* "Read memory latency" command on gen9.
* Below memory latency values are read
* from skylake platform.
*/
if (!*data0)
*data0 = 0x1e1a1100;
else
*data0 = 0x61514b3d;
} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
/**
* "Read memory latency" command on gen9.
* Below memory latency values are read
* from Broxton MRB.
*/
if (!*data0)
*data0 = 0x16080707;
else
*data0 = 0x16161616;
}
break;
case SKL_PCODE_CDCLK_CONTROL:
if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
IS_KABYLAKE(vgpu->gvt->gt->i915) ||
IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
IS_COMETLAKE(vgpu->gvt->gt->i915))
*data0 = SKL_CDCLK_READY_FOR_CHANGE;
break;
case GEN6_PCODE_READ_RC6VIDS:
*data0 |= 0x1;
break;
}
gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
vgpu->id, value, *data0);
/**
* PCODE_READY clear means ready for pcode read/write,
* PCODE_ERROR_MASK clear means no error happened. In GVT-g we
* always emulate as pcode read/write success and ready for access
* anytime, since we don't touch real physical registers here.
*/
value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
}
static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 value = *(u32 *)p_data;
const struct intel_engine_cs *engine =
intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
if (value != 0 &&
!intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
offset, value);
return -EINVAL;
}
/*
* Need to emulate all the HWSP register write to ensure host can
* update the VM CSB status correctly. Here listed registers can
* support BDW, SKL or other platforms with same HWSP registers.
*/
if (unlikely(!engine)) {
gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
offset);
return -EINVAL;
}
vgpu->hws_pga[engine->id] = value;
gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
vgpu->id, value, offset);
return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
}
static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
if (IS_BROXTON(vgpu->gvt->gt->i915))
v &= (1 << 31) | (1 << 29);
else
v &= (1 << 31) | (1 << 29) | (1 << 9) |
(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
v |= (v >> 1);
return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
}
static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
/* other bits are MBZ. */
v &= (1 << 31) | (1 << 30);
v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
if (v & BXT_DE_PLL_PLL_ENABLE)
v |= BXT_DE_PLL_LOCK;
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
if (v & PORT_PLL_ENABLE)
v |= PORT_PLL_LOCK;
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
switch (offset) {
case _PHY_CTL_FAMILY_EDP:
vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
break;
case _PHY_CTL_FAMILY_DDI:
vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
break;
}
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = vgpu_vreg(vgpu, offset);
v &= ~UNIQUE_TRANGE_EN_METHOD;
vgpu_vreg(vgpu, offset) = v;
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
}
static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
vgpu_vreg(vgpu, offset - 0x600) = v;
vgpu_vreg(vgpu, offset - 0x800) = v;
} else {
vgpu_vreg(vgpu, offset - 0x400) = v;
vgpu_vreg(vgpu, offset - 0x600) = v;
}
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 v = *(u32 *)p_data;
if (v & BIT(0)) {
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
~PHY_RESERVED;
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
PHY_POWER_GOOD;
}
if (v & BIT(1)) {
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
~PHY_RESERVED;
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
PHY_POWER_GOOD;
}
vgpu_vreg(vgpu, offset) = v;
return 0;
}
static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
vgpu_vreg(vgpu, offset) = 0;
return 0;
}
/*
* FixMe:
* If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
* 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
* Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
* these MI_BATCH_BUFFER.
* Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
* PML4 PTE: PAT(0) PCD(1) PWT(1).
* The performance is still expected to be low, will need further improvement.
*/
static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u64 pat =
GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, CHV_PPAT_SNOOP) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
return 0;
}
static int guc_status_read(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data,
unsigned int bytes)
{
/* keep MIA_IN_RESET before clearing */
read_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
return 0;
}
static int mmio_read_from_hw(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
const struct intel_engine_cs *engine =
intel_gvt_render_mmio_to_engine(gvt, offset);
/**
* Read HW reg in following case
* a. the offset isn't a ring mmio
* b. the offset's ring is running on hw.
* c. the offset is ring time stamp mmio
*/
if (!engine ||
vgpu == gvt->scheduler.engine_owner[engine->id] ||
offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
mmio_hw_access_pre(gvt->gt);
vgpu_vreg(vgpu, offset) =
intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
mmio_hw_access_post(gvt->gt);
}
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
}
static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
struct intel_vgpu_execlist *execlist;
u32 data = *(u32 *)p_data;
int ret = 0;
if (drm_WARN_ON(&i915->drm, !engine))
return -EINVAL;
/*
* Due to d3_entered is used to indicate skipping PPGTT invalidation on
* vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
* vGPU reset if in resuming.
* In S0ix exit, the device power state also transite from D3 to D0 as
* S3 resume, but no vGPU reset (triggered by QEMU devic model). After
* S0ix exit, all engines continue to work. However the d3_entered
* remains set which will break next vGPU reset logic (miss the expected
* PPGTT invalidation).
* Engines can only work in D0. Thus the 1st elsp write gives GVT a
* chance to clear d3_entered.
*/
if (vgpu->d3_entered)
vgpu->d3_entered = false;
execlist = &vgpu->submission.execlist[engine->id];
execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
if (execlist->elsp_dwords.index == 3) {
ret = intel_vgpu_submit_execlist(vgpu, engine);
if(ret)
gvt_vgpu_err("fail submit workload on ring %s\n",
engine->name);
}
++execlist->elsp_dwords.index;
execlist->elsp_dwords.index &= 0x3;
return ret;
}
static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 data = *(u32 *)p_data;
const struct intel_engine_cs *engine =
intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
bool enable_execlist;
int ret;
(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
IS_COMETLAKE(vgpu->gvt->gt->i915))
(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
write_vreg(vgpu, offset, p_data, bytes);
if (IS_MASKED_BITS_ENABLED(data, 1)) {
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
return 0;
}
if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
IS_MASKED_BITS_ENABLED(data, 2)) {
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
return 0;
}
/* when PPGTT mode enabled, we will check if guest has called
* pvinfo, if not, we will treat this guest as non-gvtg-aware
* guest, and stop emulating its cfg space, mmio, gtt, etc.
*/
if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
!vgpu->pv_notified) {
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
return 0;
}
if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
gvt_dbg_core("EXECLIST %s on ring %s\n",
(enable_execlist ? "enabling" : "disabling"),
engine->name);
if (!enable_execlist)
return 0;
ret = intel_vgpu_select_submission_ops(vgpu,
engine->mask,
INTEL_VGPU_EXECLIST_SUBMISSION);
if (ret)
return ret;
intel_vgpu_start_schedule(vgpu);
}
return 0;
}
static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
unsigned int id = 0;
write_vreg(vgpu, offset, p_data, bytes);
vgpu_vreg(vgpu, offset) = 0;
switch (offset) {
case 0x4260:
id = RCS0;
break;
case 0x4264:
id = VCS0;
break;
case 0x4268:
id = VCS1;
break;
case 0x426c:
id = BCS0;
break;
case 0x4270:
id = VECS0;
break;
default:
return -EINVAL;
}
set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
return 0;
}
static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 data;
write_vreg(vgpu, offset, p_data, bytes);
data = vgpu_vreg(vgpu, offset);
if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
data |= RESET_CTL_READY_TO_RESET;
else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
data &= ~RESET_CTL_READY_TO_RESET;
vgpu_vreg(vgpu, offset) = data;
return 0;
}
static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data,
unsigned int bytes)
{
u32 data = *(u32 *)p_data;
(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
write_vreg(vgpu, offset, p_data, bytes);
if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
IS_MASKED_BITS_ENABLED(data, 0x8))
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
return 0;
}
#define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
s, f, am, rm, d, r, w); \
if (ret) \
return ret; \
} while (0)
#define MMIO_DH(reg, d, r, w) \
MMIO_F(reg, 4, 0, 0, 0, d, r, w)
#define MMIO_DFH(reg, d, f, r, w) \
MMIO_F(reg, 4, f, 0, 0, d, r, w)
#define MMIO_GM(reg, d, r, w) \
MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
#define MMIO_GM_RDR(reg, d, r, w) \
MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
#define MMIO_RO(reg, d, f, rm, r, w) \
MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
#define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
if (HAS_ENGINE(gvt->gt, VCS1)) \
MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
} while (0)
#define MMIO_RING_DFH(prefix, d, f, r, w) \
MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
#define MMIO_RING_GM(prefix, d, r, w) \
MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
#define MMIO_RING_GM_RDR(prefix, d, r, w) \
MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
#define MMIO_RING_RO(prefix, d, f, rm, r, w) \
MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
static int init_generic_mmio_info(struct intel_gvt *gvt)
{
struct drm_i915_private *dev_priv = gvt->gt->i915;
int ret;
MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
gamw_echo_dev_rw_ia_write);
MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
#define RING_REG(base) _MMIO((base) + 0x28)
MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x134)
MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x6c)
MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
#undef RING_REG
MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
/* RING MODE */
#define RING_REG(base) _MMIO((base) + 0x29c)
MMIO_RING_DFH(RING_REG, D_ALL,
F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
ring_mode_mmio_write);
#undef RING_REG
MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
mmio_read_from_hw, NULL);
MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
mmio_read_from_hw, NULL);
MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
/* display */
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_A), D_ALL, NULL,
pipeconf_mmio_write);
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_B), D_ALL, NULL,
pipeconf_mmio_write);
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_C), D_ALL, NULL,
pipeconf_mmio_write);
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_EDP), D_ALL, NULL,
pipeconf_mmio_write);
MMIO_DH(DSPSURF(dev_priv, PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
reg50080_mmio_write);
MMIO_DH(DSPSURF(dev_priv, PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
reg50080_mmio_write);
MMIO_DH(DSPSURF(dev_priv, PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
reg50080_mmio_write);
MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
reg50080_mmio_write);
MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
reg50080_mmio_write);
MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
reg50080_mmio_write);
MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
gmbus_mmio_write);
MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
PORTA_HOTPLUG_STATUS_MASK
| PORTB_HOTPLUG_STATUS_MASK
| PORTC_HOTPLUG_STATUS_MASK
| PORTD_HOTPLUG_STATUS_MASK,
NULL, NULL);
MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
MMIO_F(DP_AUX_CH_CTL(AUX_CH_A), 6 * 4, 0, 0, 0, D_ALL, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
return 0;
}
static int init_bdw_mmio_info(struct intel_gvt *gvt)
{
int ret;
MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
intel_vgpu_reg_master_irq_handler);
MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
mmio_read_from_hw, NULL);
#define RING_REG(base) _MMIO((base) + 0xd0)
MMIO_RING_F(RING_REG, 4, F_RO, 0,
~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
ring_reset_ctl_write);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x230)
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x234)
MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
NULL, NULL);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x244)
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x370)
MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
#undef RING_REG
#define RING_REG(base) _MMIO((base) + 0x3a0)
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
#undef RING_REG
MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
#define RING_REG(base) _MMIO((base) + 0x270)
MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
#undef RING_REG
MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
D_BDW_PLUS, NULL, force_nonpriv_write);
MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
return 0;
}
static int init_skl_mmio_info(struct intel_gvt *gvt)
{
int ret;
MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
dp_aux_ch_ctl_mmio_write);
MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
NULL, NULL);
MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
NULL, NULL);
MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
/* TRTT */
MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
NULL, gen9_trtte_write);
MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
NULL, gen9_trtt_chicken_write);
MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
#define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, csfe_chicken1_mmio_write);
#undef CSFE_CHICKEN1_REG
MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
NULL, NULL);
MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
return 0;
}
static int init_bxt_mmio_info(struct intel_gvt *gvt)
{
int ret;
MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
NULL, bxt_phy_ctl_family_write);
MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
NULL, bxt_phy_ctl_family_write);
MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
NULL, bxt_port_pll_enable_write);
MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
NULL, bxt_port_pll_enable_write);
MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
bxt_port_pll_enable_write);
MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
NULL, bxt_pcs_dw12_grp_write);
MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT,
bxt_port_tx_dw3_read, NULL);
MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
NULL, bxt_pcs_dw12_grp_write);
MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT,
bxt_port_tx_dw3_read, NULL);
MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
NULL, bxt_pcs_dw12_grp_write);
MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT,
bxt_port_tx_dw3_read, NULL);
MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
0, 0, D_BXT, NULL, NULL);
MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
0, 0, D_BXT, NULL, NULL);
MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
0, 0, D_BXT, NULL, NULL);
MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
0, 0, D_BXT, NULL, NULL);
MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
return 0;
}
static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
unsigned int offset)
{
struct gvt_mmio_block *block = gvt->mmio.mmio_block;
int num = gvt->mmio.num_mmio_block;
int i;
for (i = 0; i < num; i++, block++) {
if (offset >= i915_mmio_reg_offset(block->offset) &&
offset < i915_mmio_reg_offset(block->offset) + block->size)
return block;
}
return NULL;
}
/**
* intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
* @gvt: GVT device
*
* This function is called at the driver unloading stage, to clean up the MMIO
* information table of GVT device
*
*/
void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
{
struct hlist_node *tmp;
struct intel_gvt_mmio_info *e;
int i;
hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
kfree(e);
kfree(gvt->mmio.mmio_block);
gvt->mmio.mmio_block = NULL;
gvt->mmio.num_mmio_block = 0;
vfree(gvt->mmio.mmio_attribute);
gvt->mmio.mmio_attribute = NULL;
}
static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
u32 size)
{
struct intel_gvt *gvt = iter->data;
struct intel_gvt_mmio_info *info, *p;
u32 start, end, i;
if (WARN_ON(!IS_ALIGNED(offset, 4)))
return -EINVAL;
start = offset;
end = offset + size;
for (i = start; i < end; i += 4) {
p = intel_gvt_find_mmio_info(gvt, i);
if (p) {
WARN(1, "dup mmio definition offset %x\n", i);
/* We return -EEXIST here to make GVT-g load fail.
* So duplicated MMIO can be found as soon as
* possible.
*/
return -EEXIST;
}
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->offset = i;
info->read = intel_vgpu_default_mmio_read;
info->write = intel_vgpu_default_mmio_write;
INIT_HLIST_NODE(&info->node);
hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
gvt->mmio.num_tracked_mmio++;
}
return 0;
}
static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
u32 offset, u32 size)
{
struct intel_gvt *gvt = iter->data;
struct gvt_mmio_block *block = gvt->mmio.mmio_block;
void *ret;
ret = krealloc(block,
(gvt->mmio.num_mmio_block + 1) * sizeof(*block),
GFP_KERNEL);
if (!ret)
return -ENOMEM;
gvt->mmio.mmio_block = block = ret;
block += gvt->mmio.num_mmio_block;
memset(block, 0, sizeof(*block));
block->offset = _MMIO(offset);
block->size = size;
gvt->mmio.num_mmio_block++;
return 0;
}
static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
u32 size)
{
if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
return handle_mmio(iter, offset, size);
else
return handle_mmio_block(iter, offset, size);
}
static int init_mmio_info(struct intel_gvt *gvt)
{
struct intel_gvt_mmio_table_iter iter = {
.i915 = gvt->gt->i915,
.data = gvt,
.handle_mmio_cb = handle_mmio_cb,
};
return intel_gvt_iterate_mmio_table(&iter);
}
static int init_mmio_block_handlers(struct intel_gvt *gvt)
{
struct gvt_mmio_block *block;
block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
if (!block) {
WARN(1, "fail to assign handlers to mmio block %x\n",
i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
return -ENODEV;
}
block->read = pvinfo_mmio_read;
block->write = pvinfo_mmio_write;
return 0;
}
/**
* intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
* @gvt: GVT device
*
* This function is called at the initialization stage, to setup the MMIO
* information table for GVT device
*
* Returns:
* zero on success, negative if failed.
*/
int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
{
struct intel_gvt_device_info *info = &gvt->device_info;
struct drm_i915_private *i915 = gvt->gt->i915;
int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
int ret;
gvt->mmio.mmio_attribute = vzalloc(size);
if (!gvt->mmio.mmio_attribute)
return -ENOMEM;
ret = init_mmio_info(gvt);
if (ret)
goto err;
ret = init_mmio_block_handlers(gvt);
if (ret)
goto err;
ret = init_generic_mmio_info(gvt);
if (ret)
goto err;
if (IS_BROADWELL(i915)) {
ret = init_bdw_mmio_info(gvt);
if (ret)
goto err;
} else if (IS_SKYLAKE(i915) ||
IS_KABYLAKE(i915) ||
IS_COFFEELAKE(i915) ||
IS_COMETLAKE(i915)) {
ret = init_bdw_mmio_info(gvt);
if (ret)
goto err;
ret = init_skl_mmio_info(gvt);
if (ret)
goto err;
} else if (IS_BROXTON(i915)) {
ret = init_bdw_mmio_info(gvt);
if (ret)
goto err;
ret = init_skl_mmio_info(gvt);
if (ret)
goto err;
ret = init_bxt_mmio_info(gvt);
if (ret)
goto err;
}
return 0;
err:
intel_gvt_clean_mmio_info(gvt);
return ret;
}
/**
* intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
* @gvt: a GVT device
* @handler: the handler
* @data: private data given to handler
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
void *data)
{
struct gvt_mmio_block *block = gvt->mmio.mmio_block;
struct intel_gvt_mmio_info *e;
int i, j, ret;
hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
ret = handler(gvt, e->offset, data);
if (ret)
return ret;
}
for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
/* pvinfo data doesn't come from hw mmio */
if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
continue;
for (j = 0; j < block->size; j += 4) {
ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
if (ret)
return ret;
}
}
return 0;
}
/**
* intel_vgpu_default_mmio_read - default MMIO read handler
* @vgpu: a vGPU
* @offset: access offset
* @p_data: data return buffer
* @bytes: access data length
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
read_vreg(vgpu, offset, p_data, bytes);
return 0;
}
/**
* intel_vgpu_default_mmio_write() - default MMIO write handler
* @vgpu: a vGPU
* @offset: access offset
* @p_data: write data buffer
* @bytes: access data length
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
write_vreg(vgpu, offset, p_data, bytes);
return 0;
}
/**
* intel_vgpu_mask_mmio_write - write mask register
* @vgpu: a vGPU
* @offset: access offset
* @p_data: write data buffer
* @bytes: access data length
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 mask, old_vreg;
old_vreg = vgpu_vreg(vgpu, offset);
write_vreg(vgpu, offset, p_data, bytes);
mask = vgpu_vreg(vgpu, offset) >> 16;
vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
(vgpu_vreg(vgpu, offset) & mask);
return 0;
}
/**
* intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
* force-nopriv register
*
* @gvt: a GVT device
* @offset: register offset
*
* Returns:
* True if the register is in force-nonpriv whitelist;
* False if outside;
*/
bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
unsigned int offset)
{
return in_whitelist(offset);
}
/**
* intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
* @vgpu: a vGPU
* @offset: register offset
* @pdata: data buffer
* @bytes: data length
* @is_read: read or write
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
void *pdata, unsigned int bytes, bool is_read)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_mmio_info *mmio_info;
struct gvt_mmio_block *mmio_block;
gvt_mmio_func func;
int ret;
if (drm_WARN_ON(&i915->drm, bytes > 8))
return -EINVAL;
/*
* Handle special MMIO blocks.
*/
mmio_block = find_mmio_block(gvt, offset);
if (mmio_block) {
func = is_read ? mmio_block->read : mmio_block->write;
if (func)
return func(vgpu, offset, pdata, bytes);
goto default_rw;
}
/*
* Normal tracked MMIOs.
*/
mmio_info = intel_gvt_find_mmio_info(gvt, offset);
if (!mmio_info) {
gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
goto default_rw;
}
if (is_read)
return mmio_info->read(vgpu, offset, pdata, bytes);
else {
u64 ro_mask = mmio_info->ro_mask;
u32 old_vreg = 0;
u64 data = 0;
if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
old_vreg = vgpu_vreg(vgpu, offset);
}
if (likely(!ro_mask))
ret = mmio_info->write(vgpu, offset, pdata, bytes);
else if (!~ro_mask) {
gvt_vgpu_err("try to write RO reg %x\n", offset);
return 0;
} else {
/* keep the RO bits in the virtual register */
memcpy(&data, pdata, bytes);
data &= ~ro_mask;
data |= vgpu_vreg(vgpu, offset) & ro_mask;
ret = mmio_info->write(vgpu, offset, &data, bytes);
}
/* higher 16bits of mode ctl regs are mask bits for change */
if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
u32 mask = vgpu_vreg(vgpu, offset) >> 16;
vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
| (vgpu_vreg(vgpu, offset) & mask);
}
}
return ret;
default_rw:
return is_read ?
intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
}
void intel_gvt_restore_fence(struct intel_gvt *gvt)
{
struct intel_vgpu *vgpu;
int i, id;
idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
mmio_hw_access_pre(gvt->gt);
for (i = 0; i < vgpu_fence_sz(vgpu); i++)
intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
mmio_hw_access_post(gvt->gt);
}
}
static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
{
struct intel_vgpu *vgpu = data;
struct drm_i915_private *dev_priv = gvt->gt->i915;
if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
return 0;
}
void intel_gvt_restore_mmio(struct intel_gvt *gvt)
{
struct intel_vgpu *vgpu;
int id;
idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
mmio_hw_access_pre(gvt->gt);
intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
mmio_hw_access_post(gvt->gt);
}
}