| #undef DEBUG |
| |
| /* |
| * ARM performance counter support. |
| * |
| * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles |
| * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> |
| * |
| * This code is based on the sparc64 perf event code, which is in turn based |
| * on the x86 code. Callchain code is based on the ARM OProfile backtrace |
| * code. |
| */ |
| #define pr_fmt(fmt) "hw perfevents: " fmt |
| |
| #include <linux/bitmap.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/pmu.h> |
| #include <asm/stacktrace.h> |
| |
| /* |
| * ARMv6 supports a maximum of 3 events, starting from index 0. If we add |
| * another platform that supports more, we need to increase this to be the |
| * largest of all platforms. |
| * |
| * ARMv7 supports up to 32 events: |
| * cycle counter CCNT + 31 events counters CNT0..30. |
| * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters. |
| */ |
| #define ARMPMU_MAX_HWEVENTS 32 |
| |
| static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events); |
| static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask); |
| static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events); |
| |
| #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu)) |
| |
| /* Set at runtime when we know what CPU type we are. */ |
| static struct arm_pmu *cpu_pmu; |
| |
| enum arm_perf_pmu_ids |
| armpmu_get_pmu_id(void) |
| { |
| int id = -ENODEV; |
| |
| if (cpu_pmu != NULL) |
| id = cpu_pmu->id; |
| |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(armpmu_get_pmu_id); |
| |
| int perf_num_counters(void) |
| { |
| int max_events = 0; |
| |
| if (cpu_pmu != NULL) |
| max_events = cpu_pmu->num_events; |
| |
| return max_events; |
| } |
| EXPORT_SYMBOL_GPL(perf_num_counters); |
| |
| #define HW_OP_UNSUPPORTED 0xFFFF |
| |
| #define C(_x) \ |
| PERF_COUNT_HW_CACHE_##_x |
| |
| #define CACHE_OP_UNSUPPORTED 0xFFFF |
| |
| static int |
| armpmu_map_cache_event(const unsigned (*cache_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result, ret; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; |
| |
| if (ret == CACHE_OP_UNSUPPORTED) |
| return -ENOENT; |
| |
| return ret; |
| } |
| |
| static int |
| armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) |
| { |
| int mapping = (*event_map)[config]; |
| return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; |
| } |
| |
| static int |
| armpmu_map_raw_event(u32 raw_event_mask, u64 config) |
| { |
| return (int)(config & raw_event_mask); |
| } |
| |
| static int map_cpu_event(struct perf_event *event, |
| const unsigned (*event_map)[PERF_COUNT_HW_MAX], |
| const unsigned (*cache_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| u32 raw_event_mask) |
| { |
| u64 config = event->attr.config; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_HARDWARE: |
| return armpmu_map_event(event_map, config); |
| case PERF_TYPE_HW_CACHE: |
| return armpmu_map_cache_event(cache_map, config); |
| case PERF_TYPE_RAW: |
| return armpmu_map_raw_event(raw_event_mask, config); |
| } |
| |
| return -ENOENT; |
| } |
| |
| int |
| armpmu_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (left > (s64)armpmu->max_period) |
| left = armpmu->max_period; |
| |
| local64_set(&hwc->prev_count, (u64)-left); |
| |
| armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| u64 |
| armpmu_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| u64 delta, prev_raw_count, new_raw_count; |
| |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = armpmu->read_counter(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| delta = (new_raw_count - prev_raw_count) & armpmu->max_period; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| static void |
| armpmu_read(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* Don't read disabled counters! */ |
| if (hwc->idx < 0) |
| return; |
| |
| armpmu_event_update(event, hwc, hwc->idx); |
| } |
| |
| static void |
| armpmu_stop(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * ARM pmu always has to update the counter, so ignore |
| * PERF_EF_UPDATE, see comments in armpmu_start(). |
| */ |
| if (!(hwc->state & PERF_HES_STOPPED)) { |
| armpmu->disable(hwc, hwc->idx); |
| barrier(); /* why? */ |
| armpmu_event_update(event, hwc, hwc->idx); |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void |
| armpmu_start(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * ARM pmu always has to reprogram the period, so ignore |
| * PERF_EF_RELOAD, see the comment below. |
| */ |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| /* |
| * Set the period again. Some counters can't be stopped, so when we |
| * were stopped we simply disabled the IRQ source and the counter |
| * may have been left counting. If we don't do this step then we may |
| * get an interrupt too soon or *way* too late if the overflow has |
| * happened since disabling. |
| */ |
| armpmu_event_set_period(event, hwc, hwc->idx); |
| armpmu->enable(hwc, hwc->idx); |
| } |
| |
| static void |
| armpmu_del(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *hw_events = armpmu->get_hw_events(); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| WARN_ON(idx < 0); |
| |
| armpmu_stop(event, PERF_EF_UPDATE); |
| hw_events->events[idx] = NULL; |
| clear_bit(idx, hw_events->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int |
| armpmu_add(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *hw_events = armpmu->get_hw_events(); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| int err = 0; |
| |
| perf_pmu_disable(event->pmu); |
| |
| /* If we don't have a space for the counter then finish early. */ |
| idx = armpmu->get_event_idx(hw_events, hwc); |
| if (idx < 0) { |
| err = idx; |
| goto out; |
| } |
| |
| /* |
| * If there is an event in the counter we are going to use then make |
| * sure it is disabled. |
| */ |
| event->hw.idx = idx; |
| armpmu->disable(hwc, idx); |
| hw_events->events[idx] = event; |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| if (flags & PERF_EF_START) |
| armpmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate our changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static int |
| validate_event(struct pmu_hw_events *hw_events, |
| struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event fake_event = event->hw; |
| struct pmu *leader_pmu = event->group_leader->pmu; |
| |
| if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF) |
| return 1; |
| |
| return armpmu->get_event_idx(hw_events, &fake_event) >= 0; |
| } |
| |
| static int |
| validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct pmu_hw_events fake_pmu; |
| DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS); |
| |
| /* |
| * Initialise the fake PMU. We only need to populate the |
| * used_mask for the purposes of validation. |
| */ |
| memset(fake_used_mask, 0, sizeof(fake_used_mask)); |
| fake_pmu.used_mask = fake_used_mask; |
| |
| if (!validate_event(&fake_pmu, leader)) |
| return -EINVAL; |
| |
| list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| if (!validate_event(&fake_pmu, sibling)) |
| return -EINVAL; |
| } |
| |
| if (!validate_event(&fake_pmu, event)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static irqreturn_t armpmu_platform_irq(int irq, void *dev) |
| { |
| struct arm_pmu *armpmu = (struct arm_pmu *) dev; |
| struct platform_device *plat_device = armpmu->plat_device; |
| struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev); |
| |
| return plat->handle_irq(irq, dev, armpmu->handle_irq); |
| } |
| |
| static void |
| armpmu_release_hardware(struct arm_pmu *armpmu) |
| { |
| int i, irq, irqs; |
| struct platform_device *pmu_device = armpmu->plat_device; |
| struct arm_pmu_platdata *plat = |
| dev_get_platdata(&pmu_device->dev); |
| |
| irqs = min(pmu_device->num_resources, num_possible_cpus()); |
| |
| for (i = 0; i < irqs; ++i) { |
| if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs)) |
| continue; |
| irq = platform_get_irq(pmu_device, i); |
| if (irq >= 0) { |
| if (plat && plat->disable_irq) |
| plat->disable_irq(irq); |
| free_irq(irq, armpmu); |
| } |
| } |
| |
| release_pmu(armpmu->type); |
| } |
| |
| static int |
| armpmu_reserve_hardware(struct arm_pmu *armpmu) |
| { |
| struct arm_pmu_platdata *plat; |
| irq_handler_t handle_irq; |
| int i, err, irq, irqs; |
| struct platform_device *pmu_device = armpmu->plat_device; |
| |
| if (!pmu_device) |
| return -ENODEV; |
| |
| err = reserve_pmu(armpmu->type); |
| if (err) { |
| pr_warning("unable to reserve pmu\n"); |
| return err; |
| } |
| |
| plat = dev_get_platdata(&pmu_device->dev); |
| if (plat && plat->handle_irq) |
| handle_irq = armpmu_platform_irq; |
| else |
| handle_irq = armpmu->handle_irq; |
| |
| irqs = min(pmu_device->num_resources, num_possible_cpus()); |
| if (irqs < 1) { |
| pr_err("no irqs for PMUs defined\n"); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < irqs; ++i) { |
| err = 0; |
| irq = platform_get_irq(pmu_device, i); |
| if (irq < 0) |
| continue; |
| |
| /* |
| * If we have a single PMU interrupt that we can't shift, |
| * assume that we're running on a uniprocessor machine and |
| * continue. Otherwise, continue without this interrupt. |
| */ |
| if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) { |
| pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n", |
| irq, i); |
| continue; |
| } |
| |
| err = request_irq(irq, handle_irq, |
| IRQF_DISABLED | IRQF_NOBALANCING, |
| "arm-pmu", armpmu); |
| if (err) { |
| pr_err("unable to request IRQ%d for ARM PMU counters\n", |
| irq); |
| armpmu_release_hardware(armpmu); |
| return err; |
| } else if (plat && plat->enable_irq) |
| plat->enable_irq(irq); |
| |
| cpumask_set_cpu(i, &armpmu->active_irqs); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| hw_perf_event_destroy(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| atomic_t *active_events = &armpmu->active_events; |
| struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; |
| |
| if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { |
| armpmu_release_hardware(armpmu); |
| mutex_unlock(pmu_reserve_mutex); |
| } |
| } |
| |
| static int |
| event_requires_mode_exclusion(struct perf_event_attr *attr) |
| { |
| return attr->exclude_idle || attr->exclude_user || |
| attr->exclude_kernel || attr->exclude_hv; |
| } |
| |
| static int |
| __hw_perf_event_init(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| int mapping, err; |
| |
| mapping = armpmu->map_event(event); |
| |
| if (mapping < 0) { |
| pr_debug("event %x:%llx not supported\n", event->attr.type, |
| event->attr.config); |
| return mapping; |
| } |
| |
| /* |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. For SMP systems, each core has it's own PMU so we can't do any |
| * clever allocation or constraints checking at this point. |
| */ |
| hwc->idx = -1; |
| hwc->config_base = 0; |
| hwc->config = 0; |
| hwc->event_base = 0; |
| |
| /* |
| * Check whether we need to exclude the counter from certain modes. |
| */ |
| if ((!armpmu->set_event_filter || |
| armpmu->set_event_filter(hwc, &event->attr)) && |
| event_requires_mode_exclusion(&event->attr)) { |
| pr_debug("ARM performance counters do not support " |
| "mode exclusion\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * Store the event encoding into the config_base field. |
| */ |
| hwc->config_base |= (unsigned long)mapping; |
| |
| if (!hwc->sample_period) { |
| /* |
| * For non-sampling runs, limit the sample_period to half |
| * of the counter width. That way, the new counter value |
| * is far less likely to overtake the previous one unless |
| * you have some serious IRQ latency issues. |
| */ |
| hwc->sample_period = armpmu->max_period >> 1; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| err = 0; |
| if (event->group_leader != event) { |
| err = validate_group(event); |
| if (err) |
| return -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static int armpmu_event_init(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| int err = 0; |
| atomic_t *active_events = &armpmu->active_events; |
| |
| /* does not support taken branch sampling */ |
| if (has_branch_stack(event)) |
| return -EOPNOTSUPP; |
| |
| if (armpmu->map_event(event) == -ENOENT) |
| return -ENOENT; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| if (!atomic_inc_not_zero(active_events)) { |
| mutex_lock(&armpmu->reserve_mutex); |
| if (atomic_read(active_events) == 0) |
| err = armpmu_reserve_hardware(armpmu); |
| |
| if (!err) |
| atomic_inc(active_events); |
| mutex_unlock(&armpmu->reserve_mutex); |
| } |
| |
| if (err) |
| return err; |
| |
| err = __hw_perf_event_init(event); |
| if (err) |
| hw_perf_event_destroy(event); |
| |
| return err; |
| } |
| |
| static void armpmu_enable(struct pmu *pmu) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| struct pmu_hw_events *hw_events = armpmu->get_hw_events(); |
| int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); |
| |
| if (enabled) |
| armpmu->start(); |
| } |
| |
| static void armpmu_disable(struct pmu *pmu) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| armpmu->stop(); |
| } |
| |
| static void __init armpmu_init(struct arm_pmu *armpmu) |
| { |
| atomic_set(&armpmu->active_events, 0); |
| mutex_init(&armpmu->reserve_mutex); |
| |
| armpmu->pmu = (struct pmu) { |
| .pmu_enable = armpmu_enable, |
| .pmu_disable = armpmu_disable, |
| .event_init = armpmu_event_init, |
| .add = armpmu_add, |
| .del = armpmu_del, |
| .start = armpmu_start, |
| .stop = armpmu_stop, |
| .read = armpmu_read, |
| }; |
| } |
| |
| int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type) |
| { |
| armpmu_init(armpmu); |
| return perf_pmu_register(&armpmu->pmu, name, type); |
| } |
| |
| /* Include the PMU-specific implementations. */ |
| #include "perf_event_xscale.c" |
| #include "perf_event_v6.c" |
| #include "perf_event_v7.c" |
| |
| /* |
| * Ensure the PMU has sane values out of reset. |
| * This requires SMP to be available, so exists as a separate initcall. |
| */ |
| static int __init |
| cpu_pmu_reset(void) |
| { |
| if (cpu_pmu && cpu_pmu->reset) |
| return on_each_cpu(cpu_pmu->reset, NULL, 1); |
| return 0; |
| } |
| arch_initcall(cpu_pmu_reset); |
| |
| /* |
| * PMU platform driver and devicetree bindings. |
| */ |
| static struct of_device_id armpmu_of_device_ids[] = { |
| {.compatible = "arm,cortex-a9-pmu"}, |
| {.compatible = "arm,cortex-a8-pmu"}, |
| {.compatible = "arm,arm1136-pmu"}, |
| {.compatible = "arm,arm1176-pmu"}, |
| {}, |
| }; |
| |
| static struct platform_device_id armpmu_plat_device_ids[] = { |
| {.name = "arm-pmu"}, |
| {}, |
| }; |
| |
| static int __devinit armpmu_device_probe(struct platform_device *pdev) |
| { |
| if (!cpu_pmu) |
| return -ENODEV; |
| |
| cpu_pmu->plat_device = pdev; |
| return 0; |
| } |
| |
| static struct platform_driver armpmu_driver = { |
| .driver = { |
| .name = "arm-pmu", |
| .of_match_table = armpmu_of_device_ids, |
| }, |
| .probe = armpmu_device_probe, |
| .id_table = armpmu_plat_device_ids, |
| }; |
| |
| static int __init register_pmu_driver(void) |
| { |
| return platform_driver_register(&armpmu_driver); |
| } |
| device_initcall(register_pmu_driver); |
| |
| static struct pmu_hw_events *armpmu_get_cpu_events(void) |
| { |
| return &__get_cpu_var(cpu_hw_events); |
| } |
| |
| static void __init cpu_pmu_init(struct arm_pmu *armpmu) |
| { |
| int cpu; |
| for_each_possible_cpu(cpu) { |
| struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu); |
| events->events = per_cpu(hw_events, cpu); |
| events->used_mask = per_cpu(used_mask, cpu); |
| raw_spin_lock_init(&events->pmu_lock); |
| } |
| armpmu->get_hw_events = armpmu_get_cpu_events; |
| armpmu->type = ARM_PMU_DEVICE_CPU; |
| } |
| |
| /* |
| * PMU hardware loses all context when a CPU goes offline. |
| * When a CPU is hotplugged back in, since some hardware registers are |
| * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading |
| * junk values out of them. |
| */ |
| static int __cpuinit pmu_cpu_notify(struct notifier_block *b, |
| unsigned long action, void *hcpu) |
| { |
| if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING) |
| return NOTIFY_DONE; |
| |
| if (cpu_pmu && cpu_pmu->reset) |
| cpu_pmu->reset(NULL); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata pmu_cpu_notifier = { |
| .notifier_call = pmu_cpu_notify, |
| }; |
| |
| /* |
| * CPU PMU identification and registration. |
| */ |
| static int __init |
| init_hw_perf_events(void) |
| { |
| unsigned long cpuid = read_cpuid_id(); |
| unsigned long implementor = (cpuid & 0xFF000000) >> 24; |
| unsigned long part_number = (cpuid & 0xFFF0); |
| |
| /* ARM Ltd CPUs. */ |
| if (0x41 == implementor) { |
| switch (part_number) { |
| case 0xB360: /* ARM1136 */ |
| case 0xB560: /* ARM1156 */ |
| case 0xB760: /* ARM1176 */ |
| cpu_pmu = armv6pmu_init(); |
| break; |
| case 0xB020: /* ARM11mpcore */ |
| cpu_pmu = armv6mpcore_pmu_init(); |
| break; |
| case 0xC080: /* Cortex-A8 */ |
| cpu_pmu = armv7_a8_pmu_init(); |
| break; |
| case 0xC090: /* Cortex-A9 */ |
| cpu_pmu = armv7_a9_pmu_init(); |
| break; |
| case 0xC050: /* Cortex-A5 */ |
| cpu_pmu = armv7_a5_pmu_init(); |
| break; |
| case 0xC0F0: /* Cortex-A15 */ |
| cpu_pmu = armv7_a15_pmu_init(); |
| break; |
| case 0xC070: /* Cortex-A7 */ |
| cpu_pmu = armv7_a7_pmu_init(); |
| break; |
| } |
| /* Intel CPUs [xscale]. */ |
| } else if (0x69 == implementor) { |
| part_number = (cpuid >> 13) & 0x7; |
| switch (part_number) { |
| case 1: |
| cpu_pmu = xscale1pmu_init(); |
| break; |
| case 2: |
| cpu_pmu = xscale2pmu_init(); |
| break; |
| } |
| } |
| |
| if (cpu_pmu) { |
| pr_info("enabled with %s PMU driver, %d counters available\n", |
| cpu_pmu->name, cpu_pmu->num_events); |
| cpu_pmu_init(cpu_pmu); |
| register_cpu_notifier(&pmu_cpu_notifier); |
| armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW); |
| } else { |
| pr_info("no hardware support available\n"); |
| } |
| |
| return 0; |
| } |
| early_initcall(init_hw_perf_events); |
| |
| /* |
| * Callchain handling code. |
| */ |
| |
| /* |
| * The registers we're interested in are at the end of the variable |
| * length saved register structure. The fp points at the end of this |
| * structure so the address of this struct is: |
| * (struct frame_tail *)(xxx->fp)-1 |
| * |
| * This code has been adapted from the ARM OProfile support. |
| */ |
| struct frame_tail { |
| struct frame_tail __user *fp; |
| unsigned long sp; |
| unsigned long lr; |
| } __attribute__((packed)); |
| |
| /* |
| * Get the return address for a single stackframe and return a pointer to the |
| * next frame tail. |
| */ |
| static struct frame_tail __user * |
| user_backtrace(struct frame_tail __user *tail, |
| struct perf_callchain_entry *entry) |
| { |
| struct frame_tail buftail; |
| |
| /* Also check accessibility of one struct frame_tail beyond */ |
| if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) |
| return NULL; |
| if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) |
| return NULL; |
| |
| perf_callchain_store(entry, buftail.lr); |
| |
| /* |
| * Frame pointers should strictly progress back up the stack |
| * (towards higher addresses). |
| */ |
| if (tail + 1 >= buftail.fp) |
| return NULL; |
| |
| return buftail.fp - 1; |
| } |
| |
| void |
| perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) |
| { |
| struct frame_tail __user *tail; |
| |
| |
| tail = (struct frame_tail __user *)regs->ARM_fp - 1; |
| |
| while ((entry->nr < PERF_MAX_STACK_DEPTH) && |
| tail && !((unsigned long)tail & 0x3)) |
| tail = user_backtrace(tail, entry); |
| } |
| |
| /* |
| * Gets called by walk_stackframe() for every stackframe. This will be called |
| * whist unwinding the stackframe and is like a subroutine return so we use |
| * the PC. |
| */ |
| static int |
| callchain_trace(struct stackframe *fr, |
| void *data) |
| { |
| struct perf_callchain_entry *entry = data; |
| perf_callchain_store(entry, fr->pc); |
| return 0; |
| } |
| |
| void |
| perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) |
| { |
| struct stackframe fr; |
| |
| fr.fp = regs->ARM_fp; |
| fr.sp = regs->ARM_sp; |
| fr.lr = regs->ARM_lr; |
| fr.pc = regs->ARM_pc; |
| walk_stackframe(&fr, callchain_trace, entry); |
| } |