| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_KERNEL_H |
| #define _LINUX_KERNEL_H |
| |
| |
| #include <stdarg.h> |
| #include <linux/limits.h> |
| #include <linux/linkage.h> |
| #include <linux/stddef.h> |
| #include <linux/types.h> |
| #include <linux/compiler.h> |
| #include <linux/bitops.h> |
| #include <linux/log2.h> |
| #include <linux/typecheck.h> |
| #include <linux/printk.h> |
| #include <linux/build_bug.h> |
| #include <asm/byteorder.h> |
| #include <asm/div64.h> |
| #include <uapi/linux/kernel.h> |
| #include <asm/div64.h> |
| |
| #define STACK_MAGIC 0xdeadbeef |
| |
| /** |
| * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value |
| * @x: value to repeat |
| * |
| * NOTE: @x is not checked for > 0xff; larger values produce odd results. |
| */ |
| #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) |
| |
| /* @a is a power of 2 value */ |
| #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) |
| #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) |
| #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) |
| #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) |
| #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) |
| |
| /* generic data direction definitions */ |
| #define READ 0 |
| #define WRITE 1 |
| |
| /** |
| * ARRAY_SIZE - get the number of elements in array @arr |
| * @arr: array to be sized |
| */ |
| #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) |
| |
| #define u64_to_user_ptr(x) ( \ |
| { \ |
| typecheck(u64, (x)); \ |
| (void __user *)(uintptr_t)(x); \ |
| } \ |
| ) |
| |
| /* |
| * This looks more complex than it should be. But we need to |
| * get the type for the ~ right in round_down (it needs to be |
| * as wide as the result!), and we want to evaluate the macro |
| * arguments just once each. |
| */ |
| #define __round_mask(x, y) ((__typeof__(x))((y)-1)) |
| /** |
| * round_up - round up to next specified power of 2 |
| * @x: the value to round |
| * @y: multiple to round up to (must be a power of 2) |
| * |
| * Rounds @x up to next multiple of @y (which must be a power of 2). |
| * To perform arbitrary rounding up, use roundup() below. |
| */ |
| #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) |
| /** |
| * round_down - round down to next specified power of 2 |
| * @x: the value to round |
| * @y: multiple to round down to (must be a power of 2) |
| * |
| * Rounds @x down to next multiple of @y (which must be a power of 2). |
| * To perform arbitrary rounding down, use rounddown() below. |
| */ |
| #define round_down(x, y) ((x) & ~__round_mask(x, y)) |
| |
| /** |
| * FIELD_SIZEOF - get the size of a struct's field |
| * @t: the target struct |
| * @f: the target struct's field |
| * Return: the size of @f in the struct definition without having a |
| * declared instance of @t. |
| */ |
| #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) |
| |
| #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP |
| |
| #define DIV_ROUND_DOWN_ULL(ll, d) \ |
| ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) |
| |
| #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) |
| |
| #if BITS_PER_LONG == 32 |
| # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) |
| #else |
| # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) |
| #endif |
| |
| /** |
| * roundup - round up to the next specified multiple |
| * @x: the value to up |
| * @y: multiple to round up to |
| * |
| * Rounds @x up to next multiple of @y. If @y will always be a power |
| * of 2, consider using the faster round_up(). |
| */ |
| #define roundup(x, y) ( \ |
| { \ |
| typeof(y) __y = y; \ |
| (((x) + (__y - 1)) / __y) * __y; \ |
| } \ |
| ) |
| /** |
| * rounddown - round down to next specified multiple |
| * @x: the value to round |
| * @y: multiple to round down to |
| * |
| * Rounds @x down to next multiple of @y. If @y will always be a power |
| * of 2, consider using the faster round_down(). |
| */ |
| #define rounddown(x, y) ( \ |
| { \ |
| typeof(x) __x = (x); \ |
| __x - (__x % (y)); \ |
| } \ |
| ) |
| |
| /* |
| * Divide positive or negative dividend by positive or negative divisor |
| * and round to closest integer. Result is undefined for negative |
| * divisors if the dividend variable type is unsigned and for negative |
| * dividends if the divisor variable type is unsigned. |
| */ |
| #define DIV_ROUND_CLOSEST(x, divisor)( \ |
| { \ |
| typeof(x) __x = x; \ |
| typeof(divisor) __d = divisor; \ |
| (((typeof(x))-1) > 0 || \ |
| ((typeof(divisor))-1) > 0 || \ |
| (((__x) > 0) == ((__d) > 0))) ? \ |
| (((__x) + ((__d) / 2)) / (__d)) : \ |
| (((__x) - ((__d) / 2)) / (__d)); \ |
| } \ |
| ) |
| /* |
| * Same as above but for u64 dividends. divisor must be a 32-bit |
| * number. |
| */ |
| #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ |
| { \ |
| typeof(divisor) __d = divisor; \ |
| unsigned long long _tmp = (x) + (__d) / 2; \ |
| do_div(_tmp, __d); \ |
| _tmp; \ |
| } \ |
| ) |
| |
| /* |
| * Multiplies an integer by a fraction, while avoiding unnecessary |
| * overflow or loss of precision. |
| */ |
| #define mult_frac(x, numer, denom)( \ |
| { \ |
| typeof(x) quot = (x) / (denom); \ |
| typeof(x) rem = (x) % (denom); \ |
| (quot * (numer)) + ((rem * (numer)) / (denom)); \ |
| } \ |
| ) |
| |
| |
| #define _RET_IP_ (unsigned long)__builtin_return_address(0) |
| #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) |
| |
| #define sector_div(a, b) do_div(a, b) |
| |
| /** |
| * upper_32_bits - return bits 32-63 of a number |
| * @n: the number we're accessing |
| * |
| * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress |
| * the "right shift count >= width of type" warning when that quantity is |
| * 32-bits. |
| */ |
| #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) |
| |
| /** |
| * lower_32_bits - return bits 0-31 of a number |
| * @n: the number we're accessing |
| */ |
| #define lower_32_bits(n) ((u32)(n)) |
| |
| struct completion; |
| struct pt_regs; |
| struct user; |
| |
| #ifdef CONFIG_PREEMPT_VOLUNTARY |
| extern int _cond_resched(void); |
| # define might_resched() _cond_resched() |
| #else |
| # define might_resched() do { } while (0) |
| #endif |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| extern void ___might_sleep(const char *file, int line, int preempt_offset); |
| extern void __might_sleep(const char *file, int line, int preempt_offset); |
| extern void __cant_sleep(const char *file, int line, int preempt_offset); |
| |
| /** |
| * might_sleep - annotation for functions that can sleep |
| * |
| * this macro will print a stack trace if it is executed in an atomic |
| * context (spinlock, irq-handler, ...). |
| * |
| * This is a useful debugging help to be able to catch problems early and not |
| * be bitten later when the calling function happens to sleep when it is not |
| * supposed to. |
| */ |
| # define might_sleep() \ |
| do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) |
| /** |
| * cant_sleep - annotation for functions that cannot sleep |
| * |
| * this macro will print a stack trace if it is executed with preemption enabled |
| */ |
| # define cant_sleep() \ |
| do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) |
| # define sched_annotate_sleep() (current->task_state_change = 0) |
| #else |
| static inline void ___might_sleep(const char *file, int line, |
| int preempt_offset) { } |
| static inline void __might_sleep(const char *file, int line, |
| int preempt_offset) { } |
| # define might_sleep() do { might_resched(); } while (0) |
| # define cant_sleep() do { } while (0) |
| # define sched_annotate_sleep() do { } while (0) |
| #endif |
| |
| #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) |
| |
| /** |
| * abs - return absolute value of an argument |
| * @x: the value. If it is unsigned type, it is converted to signed type first. |
| * char is treated as if it was signed (regardless of whether it really is) |
| * but the macro's return type is preserved as char. |
| * |
| * Return: an absolute value of x. |
| */ |
| #define abs(x) __abs_choose_expr(x, long long, \ |
| __abs_choose_expr(x, long, \ |
| __abs_choose_expr(x, int, \ |
| __abs_choose_expr(x, short, \ |
| __abs_choose_expr(x, char, \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(x), char), \ |
| (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ |
| ((void)0))))))) |
| |
| #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(x), signed type) || \ |
| __builtin_types_compatible_p(typeof(x), unsigned type), \ |
| ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) |
| |
| /** |
| * reciprocal_scale - "scale" a value into range [0, ep_ro) |
| * @val: value |
| * @ep_ro: right open interval endpoint |
| * |
| * Perform a "reciprocal multiplication" in order to "scale" a value into |
| * range [0, @ep_ro), where the upper interval endpoint is right-open. |
| * This is useful, e.g. for accessing a index of an array containing |
| * @ep_ro elements, for example. Think of it as sort of modulus, only that |
| * the result isn't that of modulo. ;) Note that if initial input is a |
| * small value, then result will return 0. |
| * |
| * Return: a result based on @val in interval [0, @ep_ro). |
| */ |
| static inline u32 reciprocal_scale(u32 val, u32 ep_ro) |
| { |
| return (u32)(((u64) val * ep_ro) >> 32); |
| } |
| |
| #if defined(CONFIG_MMU) && \ |
| (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) |
| #define might_fault() __might_fault(__FILE__, __LINE__) |
| void __might_fault(const char *file, int line); |
| #else |
| static inline void might_fault(void) { } |
| #endif |
| |
| extern struct atomic_notifier_head panic_notifier_list; |
| extern long (*panic_blink)(int state); |
| __printf(1, 2) |
| void panic(const char *fmt, ...) __noreturn __cold; |
| void nmi_panic(struct pt_regs *regs, const char *msg); |
| extern void oops_enter(void); |
| extern void oops_exit(void); |
| void print_oops_end_marker(void); |
| extern int oops_may_print(void); |
| void do_exit(long error_code) __noreturn; |
| void complete_and_exit(struct completion *, long) __noreturn; |
| |
| #ifdef CONFIG_ARCH_HAS_REFCOUNT |
| void refcount_error_report(struct pt_regs *regs, const char *err); |
| #else |
| static inline void refcount_error_report(struct pt_regs *regs, const char *err) |
| { } |
| #endif |
| |
| /* Internal, do not use. */ |
| int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); |
| int __must_check _kstrtol(const char *s, unsigned int base, long *res); |
| |
| int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); |
| int __must_check kstrtoll(const char *s, unsigned int base, long long *res); |
| |
| /** |
| * kstrtoul - convert a string to an unsigned long |
| * @s: The start of the string. The string must be null-terminated, and may also |
| * include a single newline before its terminating null. The first character |
| * may also be a plus sign, but not a minus sign. |
| * @base: The number base to use. The maximum supported base is 16. If base is |
| * given as 0, then the base of the string is automatically detected with the |
| * conventional semantics - If it begins with 0x the number will be parsed as a |
| * hexadecimal (case insensitive), if it otherwise begins with 0, it will be |
| * parsed as an octal number. Otherwise it will be parsed as a decimal. |
| * @res: Where to write the result of the conversion on success. |
| * |
| * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. |
| * Used as a replacement for the obsolete simple_strtoull. Return code must |
| * be checked. |
| */ |
| static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) |
| { |
| /* |
| * We want to shortcut function call, but |
| * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. |
| */ |
| if (sizeof(unsigned long) == sizeof(unsigned long long) && |
| __alignof__(unsigned long) == __alignof__(unsigned long long)) |
| return kstrtoull(s, base, (unsigned long long *)res); |
| else |
| return _kstrtoul(s, base, res); |
| } |
| |
| /** |
| * kstrtol - convert a string to a long |
| * @s: The start of the string. The string must be null-terminated, and may also |
| * include a single newline before its terminating null. The first character |
| * may also be a plus sign or a minus sign. |
| * @base: The number base to use. The maximum supported base is 16. If base is |
| * given as 0, then the base of the string is automatically detected with the |
| * conventional semantics - If it begins with 0x the number will be parsed as a |
| * hexadecimal (case insensitive), if it otherwise begins with 0, it will be |
| * parsed as an octal number. Otherwise it will be parsed as a decimal. |
| * @res: Where to write the result of the conversion on success. |
| * |
| * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. |
| * Used as a replacement for the obsolete simple_strtoull. Return code must |
| * be checked. |
| */ |
| static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) |
| { |
| /* |
| * We want to shortcut function call, but |
| * __builtin_types_compatible_p(long, long long) = 0. |
| */ |
| if (sizeof(long) == sizeof(long long) && |
| __alignof__(long) == __alignof__(long long)) |
| return kstrtoll(s, base, (long long *)res); |
| else |
| return _kstrtol(s, base, res); |
| } |
| |
| int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); |
| int __must_check kstrtoint(const char *s, unsigned int base, int *res); |
| |
| static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) |
| { |
| return kstrtoull(s, base, res); |
| } |
| |
| static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) |
| { |
| return kstrtoll(s, base, res); |
| } |
| |
| static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) |
| { |
| return kstrtouint(s, base, res); |
| } |
| |
| static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) |
| { |
| return kstrtoint(s, base, res); |
| } |
| |
| int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); |
| int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); |
| int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); |
| int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); |
| int __must_check kstrtobool(const char *s, bool *res); |
| |
| int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); |
| int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); |
| int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); |
| int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); |
| int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); |
| int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); |
| int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); |
| int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); |
| int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); |
| int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); |
| int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); |
| |
| static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) |
| { |
| return kstrtoull_from_user(s, count, base, res); |
| } |
| |
| static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) |
| { |
| return kstrtoll_from_user(s, count, base, res); |
| } |
| |
| static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) |
| { |
| return kstrtouint_from_user(s, count, base, res); |
| } |
| |
| static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) |
| { |
| return kstrtoint_from_user(s, count, base, res); |
| } |
| |
| /* Obsolete, do not use. Use kstrto<foo> instead */ |
| |
| extern unsigned long simple_strtoul(const char *,char **,unsigned int); |
| extern long simple_strtol(const char *,char **,unsigned int); |
| extern unsigned long long simple_strtoull(const char *,char **,unsigned int); |
| extern long long simple_strtoll(const char *,char **,unsigned int); |
| |
| extern int num_to_str(char *buf, int size, |
| unsigned long long num, unsigned int width); |
| |
| /* lib/printf utilities */ |
| |
| extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); |
| extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); |
| extern __printf(3, 4) |
| int snprintf(char *buf, size_t size, const char *fmt, ...); |
| extern __printf(3, 0) |
| int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); |
| extern __printf(3, 4) |
| int scnprintf(char *buf, size_t size, const char *fmt, ...); |
| extern __printf(3, 0) |
| int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); |
| extern __printf(2, 3) __malloc |
| char *kasprintf(gfp_t gfp, const char *fmt, ...); |
| extern __printf(2, 0) __malloc |
| char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); |
| extern __printf(2, 0) |
| const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); |
| |
| extern __scanf(2, 3) |
| int sscanf(const char *, const char *, ...); |
| extern __scanf(2, 0) |
| int vsscanf(const char *, const char *, va_list); |
| |
| extern int get_option(char **str, int *pint); |
| extern char *get_options(const char *str, int nints, int *ints); |
| extern unsigned long long memparse(const char *ptr, char **retptr); |
| extern bool parse_option_str(const char *str, const char *option); |
| extern char *next_arg(char *args, char **param, char **val); |
| |
| extern int core_kernel_text(unsigned long addr); |
| extern int init_kernel_text(unsigned long addr); |
| extern int core_kernel_data(unsigned long addr); |
| extern int __kernel_text_address(unsigned long addr); |
| extern int kernel_text_address(unsigned long addr); |
| extern int func_ptr_is_kernel_text(void *ptr); |
| |
| u64 int_pow(u64 base, unsigned int exp); |
| unsigned long int_sqrt(unsigned long); |
| |
| #if BITS_PER_LONG < 64 |
| u32 int_sqrt64(u64 x); |
| #else |
| static inline u32 int_sqrt64(u64 x) |
| { |
| return (u32)int_sqrt(x); |
| } |
| #endif |
| |
| extern void bust_spinlocks(int yes); |
| extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ |
| extern int panic_timeout; |
| extern unsigned long panic_print; |
| extern int panic_on_oops; |
| extern int panic_on_unrecovered_nmi; |
| extern int panic_on_io_nmi; |
| extern int panic_on_warn; |
| extern int sysctl_panic_on_rcu_stall; |
| extern int sysctl_panic_on_stackoverflow; |
| |
| extern bool crash_kexec_post_notifiers; |
| |
| /* |
| * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It |
| * holds a CPU number which is executing panic() currently. A value of |
| * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). |
| */ |
| extern atomic_t panic_cpu; |
| #define PANIC_CPU_INVALID -1 |
| |
| /* |
| * Only to be used by arch init code. If the user over-wrote the default |
| * CONFIG_PANIC_TIMEOUT, honor it. |
| */ |
| static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) |
| { |
| if (panic_timeout == arch_default_timeout) |
| panic_timeout = timeout; |
| } |
| extern const char *print_tainted(void); |
| enum lockdep_ok { |
| LOCKDEP_STILL_OK, |
| LOCKDEP_NOW_UNRELIABLE |
| }; |
| extern void add_taint(unsigned flag, enum lockdep_ok); |
| extern int test_taint(unsigned flag); |
| extern unsigned long get_taint(void); |
| extern int root_mountflags; |
| |
| extern bool early_boot_irqs_disabled; |
| |
| /* |
| * Values used for system_state. Ordering of the states must not be changed |
| * as code checks for <, <=, >, >= STATE. |
| */ |
| extern enum system_states { |
| SYSTEM_BOOTING, |
| SYSTEM_SCHEDULING, |
| SYSTEM_RUNNING, |
| SYSTEM_HALT, |
| SYSTEM_POWER_OFF, |
| SYSTEM_RESTART, |
| SYSTEM_SUSPEND, |
| } system_state; |
| |
| /* This cannot be an enum because some may be used in assembly source. */ |
| #define TAINT_PROPRIETARY_MODULE 0 |
| #define TAINT_FORCED_MODULE 1 |
| #define TAINT_CPU_OUT_OF_SPEC 2 |
| #define TAINT_FORCED_RMMOD 3 |
| #define TAINT_MACHINE_CHECK 4 |
| #define TAINT_BAD_PAGE 5 |
| #define TAINT_USER 6 |
| #define TAINT_DIE 7 |
| #define TAINT_OVERRIDDEN_ACPI_TABLE 8 |
| #define TAINT_WARN 9 |
| #define TAINT_CRAP 10 |
| #define TAINT_FIRMWARE_WORKAROUND 11 |
| #define TAINT_OOT_MODULE 12 |
| #define TAINT_UNSIGNED_MODULE 13 |
| #define TAINT_SOFTLOCKUP 14 |
| #define TAINT_LIVEPATCH 15 |
| #define TAINT_AUX 16 |
| #define TAINT_RANDSTRUCT 17 |
| #define TAINT_FLAGS_COUNT 18 |
| |
| struct taint_flag { |
| char c_true; /* character printed when tainted */ |
| char c_false; /* character printed when not tainted */ |
| bool module; /* also show as a per-module taint flag */ |
| }; |
| |
| extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; |
| |
| extern const char hex_asc[]; |
| #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] |
| #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] |
| |
| static inline char *hex_byte_pack(char *buf, u8 byte) |
| { |
| *buf++ = hex_asc_hi(byte); |
| *buf++ = hex_asc_lo(byte); |
| return buf; |
| } |
| |
| extern const char hex_asc_upper[]; |
| #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] |
| #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] |
| |
| static inline char *hex_byte_pack_upper(char *buf, u8 byte) |
| { |
| *buf++ = hex_asc_upper_hi(byte); |
| *buf++ = hex_asc_upper_lo(byte); |
| return buf; |
| } |
| |
| extern int hex_to_bin(char ch); |
| extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); |
| extern char *bin2hex(char *dst, const void *src, size_t count); |
| |
| bool mac_pton(const char *s, u8 *mac); |
| |
| /* |
| * General tracing related utility functions - trace_printk(), |
| * tracing_on/tracing_off and tracing_start()/tracing_stop |
| * |
| * Use tracing_on/tracing_off when you want to quickly turn on or off |
| * tracing. It simply enables or disables the recording of the trace events. |
| * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on |
| * file, which gives a means for the kernel and userspace to interact. |
| * Place a tracing_off() in the kernel where you want tracing to end. |
| * From user space, examine the trace, and then echo 1 > tracing_on |
| * to continue tracing. |
| * |
| * tracing_stop/tracing_start has slightly more overhead. It is used |
| * by things like suspend to ram where disabling the recording of the |
| * trace is not enough, but tracing must actually stop because things |
| * like calling smp_processor_id() may crash the system. |
| * |
| * Most likely, you want to use tracing_on/tracing_off. |
| */ |
| |
| enum ftrace_dump_mode { |
| DUMP_NONE, |
| DUMP_ALL, |
| DUMP_ORIG, |
| }; |
| |
| #ifdef CONFIG_TRACING |
| void tracing_on(void); |
| void tracing_off(void); |
| int tracing_is_on(void); |
| void tracing_snapshot(void); |
| void tracing_snapshot_alloc(void); |
| |
| extern void tracing_start(void); |
| extern void tracing_stop(void); |
| |
| static inline __printf(1, 2) |
| void ____trace_printk_check_format(const char *fmt, ...) |
| { |
| } |
| #define __trace_printk_check_format(fmt, args...) \ |
| do { \ |
| if (0) \ |
| ____trace_printk_check_format(fmt, ##args); \ |
| } while (0) |
| |
| /** |
| * trace_printk - printf formatting in the ftrace buffer |
| * @fmt: the printf format for printing |
| * |
| * Note: __trace_printk is an internal function for trace_printk() and |
| * the @ip is passed in via the trace_printk() macro. |
| * |
| * This function allows a kernel developer to debug fast path sections |
| * that printk is not appropriate for. By scattering in various |
| * printk like tracing in the code, a developer can quickly see |
| * where problems are occurring. |
| * |
| * This is intended as a debugging tool for the developer only. |
| * Please refrain from leaving trace_printks scattered around in |
| * your code. (Extra memory is used for special buffers that are |
| * allocated when trace_printk() is used.) |
| * |
| * A little optimization trick is done here. If there's only one |
| * argument, there's no need to scan the string for printf formats. |
| * The trace_puts() will suffice. But how can we take advantage of |
| * using trace_puts() when trace_printk() has only one argument? |
| * By stringifying the args and checking the size we can tell |
| * whether or not there are args. __stringify((__VA_ARGS__)) will |
| * turn into "()\0" with a size of 3 when there are no args, anything |
| * else will be bigger. All we need to do is define a string to this, |
| * and then take its size and compare to 3. If it's bigger, use |
| * do_trace_printk() otherwise, optimize it to trace_puts(). Then just |
| * let gcc optimize the rest. |
| */ |
| |
| #define trace_printk(fmt, ...) \ |
| do { \ |
| char _______STR[] = __stringify((__VA_ARGS__)); \ |
| if (sizeof(_______STR) > 3) \ |
| do_trace_printk(fmt, ##__VA_ARGS__); \ |
| else \ |
| trace_puts(fmt); \ |
| } while (0) |
| |
| #define do_trace_printk(fmt, args...) \ |
| do { \ |
| static const char *trace_printk_fmt __used \ |
| __attribute__((section("__trace_printk_fmt"))) = \ |
| __builtin_constant_p(fmt) ? fmt : NULL; \ |
| \ |
| __trace_printk_check_format(fmt, ##args); \ |
| \ |
| if (__builtin_constant_p(fmt)) \ |
| __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ |
| else \ |
| __trace_printk(_THIS_IP_, fmt, ##args); \ |
| } while (0) |
| |
| extern __printf(2, 3) |
| int __trace_bprintk(unsigned long ip, const char *fmt, ...); |
| |
| extern __printf(2, 3) |
| int __trace_printk(unsigned long ip, const char *fmt, ...); |
| |
| /** |
| * trace_puts - write a string into the ftrace buffer |
| * @str: the string to record |
| * |
| * Note: __trace_bputs is an internal function for trace_puts and |
| * the @ip is passed in via the trace_puts macro. |
| * |
| * This is similar to trace_printk() but is made for those really fast |
| * paths that a developer wants the least amount of "Heisenbug" effects, |
| * where the processing of the print format is still too much. |
| * |
| * This function allows a kernel developer to debug fast path sections |
| * that printk is not appropriate for. By scattering in various |
| * printk like tracing in the code, a developer can quickly see |
| * where problems are occurring. |
| * |
| * This is intended as a debugging tool for the developer only. |
| * Please refrain from leaving trace_puts scattered around in |
| * your code. (Extra memory is used for special buffers that are |
| * allocated when trace_puts() is used.) |
| * |
| * Returns: 0 if nothing was written, positive # if string was. |
| * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) |
| */ |
| |
| #define trace_puts(str) ({ \ |
| static const char *trace_printk_fmt __used \ |
| __attribute__((section("__trace_printk_fmt"))) = \ |
| __builtin_constant_p(str) ? str : NULL; \ |
| \ |
| if (__builtin_constant_p(str)) \ |
| __trace_bputs(_THIS_IP_, trace_printk_fmt); \ |
| else \ |
| __trace_puts(_THIS_IP_, str, strlen(str)); \ |
| }) |
| extern int __trace_bputs(unsigned long ip, const char *str); |
| extern int __trace_puts(unsigned long ip, const char *str, int size); |
| |
| extern void trace_dump_stack(int skip); |
| |
| /* |
| * The double __builtin_constant_p is because gcc will give us an error |
| * if we try to allocate the static variable to fmt if it is not a |
| * constant. Even with the outer if statement. |
| */ |
| #define ftrace_vprintk(fmt, vargs) \ |
| do { \ |
| if (__builtin_constant_p(fmt)) { \ |
| static const char *trace_printk_fmt __used \ |
| __attribute__((section("__trace_printk_fmt"))) = \ |
| __builtin_constant_p(fmt) ? fmt : NULL; \ |
| \ |
| __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ |
| } else \ |
| __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ |
| } while (0) |
| |
| extern __printf(2, 0) int |
| __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); |
| |
| extern __printf(2, 0) int |
| __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); |
| |
| extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); |
| #else |
| static inline void tracing_start(void) { } |
| static inline void tracing_stop(void) { } |
| static inline void trace_dump_stack(int skip) { } |
| |
| static inline void tracing_on(void) { } |
| static inline void tracing_off(void) { } |
| static inline int tracing_is_on(void) { return 0; } |
| static inline void tracing_snapshot(void) { } |
| static inline void tracing_snapshot_alloc(void) { } |
| |
| static inline __printf(1, 2) |
| int trace_printk(const char *fmt, ...) |
| { |
| return 0; |
| } |
| static __printf(1, 0) inline int |
| ftrace_vprintk(const char *fmt, va_list ap) |
| { |
| return 0; |
| } |
| static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } |
| #endif /* CONFIG_TRACING */ |
| |
| /* |
| * min()/max()/clamp() macros must accomplish three things: |
| * |
| * - avoid multiple evaluations of the arguments (so side-effects like |
| * "x++" happen only once) when non-constant. |
| * - perform strict type-checking (to generate warnings instead of |
| * nasty runtime surprises). See the "unnecessary" pointer comparison |
| * in __typecheck(). |
| * - retain result as a constant expressions when called with only |
| * constant expressions (to avoid tripping VLA warnings in stack |
| * allocation usage). |
| */ |
| #define __typecheck(x, y) \ |
| (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) |
| |
| /* |
| * This returns a constant expression while determining if an argument is |
| * a constant expression, most importantly without evaluating the argument. |
| * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> |
| */ |
| #define __is_constexpr(x) \ |
| (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) |
| |
| #define __no_side_effects(x, y) \ |
| (__is_constexpr(x) && __is_constexpr(y)) |
| |
| #define __safe_cmp(x, y) \ |
| (__typecheck(x, y) && __no_side_effects(x, y)) |
| |
| #define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) |
| |
| #define __cmp_once(x, y, unique_x, unique_y, op) ({ \ |
| typeof(x) unique_x = (x); \ |
| typeof(y) unique_y = (y); \ |
| __cmp(unique_x, unique_y, op); }) |
| |
| #define __careful_cmp(x, y, op) \ |
| __builtin_choose_expr(__safe_cmp(x, y), \ |
| __cmp(x, y, op), \ |
| __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) |
| |
| /** |
| * min - return minimum of two values of the same or compatible types |
| * @x: first value |
| * @y: second value |
| */ |
| #define min(x, y) __careful_cmp(x, y, <) |
| |
| /** |
| * max - return maximum of two values of the same or compatible types |
| * @x: first value |
| * @y: second value |
| */ |
| #define max(x, y) __careful_cmp(x, y, >) |
| |
| /** |
| * min3 - return minimum of three values |
| * @x: first value |
| * @y: second value |
| * @z: third value |
| */ |
| #define min3(x, y, z) min((typeof(x))min(x, y), z) |
| |
| /** |
| * max3 - return maximum of three values |
| * @x: first value |
| * @y: second value |
| * @z: third value |
| */ |
| #define max3(x, y, z) max((typeof(x))max(x, y), z) |
| |
| /** |
| * min_not_zero - return the minimum that is _not_ zero, unless both are zero |
| * @x: value1 |
| * @y: value2 |
| */ |
| #define min_not_zero(x, y) ({ \ |
| typeof(x) __x = (x); \ |
| typeof(y) __y = (y); \ |
| __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) |
| |
| /** |
| * clamp - return a value clamped to a given range with strict typechecking |
| * @val: current value |
| * @lo: lowest allowable value |
| * @hi: highest allowable value |
| * |
| * This macro does strict typechecking of @lo/@hi to make sure they are of the |
| * same type as @val. See the unnecessary pointer comparisons. |
| */ |
| #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) |
| |
| /* |
| * ..and if you can't take the strict |
| * types, you can specify one yourself. |
| * |
| * Or not use min/max/clamp at all, of course. |
| */ |
| |
| /** |
| * min_t - return minimum of two values, using the specified type |
| * @type: data type to use |
| * @x: first value |
| * @y: second value |
| */ |
| #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) |
| |
| /** |
| * max_t - return maximum of two values, using the specified type |
| * @type: data type to use |
| * @x: first value |
| * @y: second value |
| */ |
| #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) |
| |
| /** |
| * clamp_t - return a value clamped to a given range using a given type |
| * @type: the type of variable to use |
| * @val: current value |
| * @lo: minimum allowable value |
| * @hi: maximum allowable value |
| * |
| * This macro does no typechecking and uses temporary variables of type |
| * @type to make all the comparisons. |
| */ |
| #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) |
| |
| /** |
| * clamp_val - return a value clamped to a given range using val's type |
| * @val: current value |
| * @lo: minimum allowable value |
| * @hi: maximum allowable value |
| * |
| * This macro does no typechecking and uses temporary variables of whatever |
| * type the input argument @val is. This is useful when @val is an unsigned |
| * type and @lo and @hi are literals that will otherwise be assigned a signed |
| * integer type. |
| */ |
| #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) |
| |
| |
| /** |
| * swap - swap values of @a and @b |
| * @a: first value |
| * @b: second value |
| */ |
| #define swap(a, b) \ |
| do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) |
| |
| /* This counts to 12. Any more, it will return 13th argument. */ |
| #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n |
| #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) |
| |
| #define __CONCAT(a, b) a ## b |
| #define CONCATENATE(a, b) __CONCAT(a, b) |
| |
| /** |
| * container_of - cast a member of a structure out to the containing structure |
| * @ptr: the pointer to the member. |
| * @type: the type of the container struct this is embedded in. |
| * @member: the name of the member within the struct. |
| * |
| */ |
| #define container_of(ptr, type, member) ({ \ |
| void *__mptr = (void *)(ptr); \ |
| BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ |
| !__same_type(*(ptr), void), \ |
| "pointer type mismatch in container_of()"); \ |
| ((type *)(__mptr - offsetof(type, member))); }) |
| |
| /** |
| * container_of_safe - cast a member of a structure out to the containing structure |
| * @ptr: the pointer to the member. |
| * @type: the type of the container struct this is embedded in. |
| * @member: the name of the member within the struct. |
| * |
| * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. |
| */ |
| #define container_of_safe(ptr, type, member) ({ \ |
| void *__mptr = (void *)(ptr); \ |
| BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ |
| !__same_type(*(ptr), void), \ |
| "pointer type mismatch in container_of()"); \ |
| IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ |
| ((type *)(__mptr - offsetof(type, member))); }) |
| |
| /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ |
| #ifdef CONFIG_FTRACE_MCOUNT_RECORD |
| # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD |
| #endif |
| |
| /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ |
| #define VERIFY_OCTAL_PERMISSIONS(perms) \ |
| (BUILD_BUG_ON_ZERO((perms) < 0) + \ |
| BUILD_BUG_ON_ZERO((perms) > 0777) + \ |
| /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ |
| BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ |
| BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ |
| /* USER_WRITABLE >= GROUP_WRITABLE */ \ |
| BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ |
| /* OTHER_WRITABLE? Generally considered a bad idea. */ \ |
| BUILD_BUG_ON_ZERO((perms) & 2) + \ |
| (perms)) |
| #endif |