| /* |
| * Copyright 2018 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| #include "nouveau_svm.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_chan.h" |
| #include "nouveau_dmem.h" |
| |
| #include <nvif/notify.h> |
| #include <nvif/object.h> |
| #include <nvif/vmm.h> |
| |
| #include <nvif/class.h> |
| #include <nvif/clb069.h> |
| #include <nvif/ifc00d.h> |
| |
| #include <linux/sched/mm.h> |
| #include <linux/sort.h> |
| #include <linux/hmm.h> |
| |
| struct nouveau_svm { |
| struct nouveau_drm *drm; |
| struct mutex mutex; |
| struct list_head inst; |
| |
| struct nouveau_svm_fault_buffer { |
| int id; |
| struct nvif_object object; |
| u32 entries; |
| u32 getaddr; |
| u32 putaddr; |
| u32 get; |
| u32 put; |
| struct nvif_notify notify; |
| |
| struct nouveau_svm_fault { |
| u64 inst; |
| u64 addr; |
| u64 time; |
| u32 engine; |
| u8 gpc; |
| u8 hub; |
| u8 access; |
| u8 client; |
| u8 fault; |
| struct nouveau_svmm *svmm; |
| } **fault; |
| int fault_nr; |
| } buffer[1]; |
| }; |
| |
| #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a) |
| #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a) |
| |
| struct nouveau_pfnmap_args { |
| struct nvif_ioctl_v0 i; |
| struct nvif_ioctl_mthd_v0 m; |
| struct nvif_vmm_pfnmap_v0 p; |
| }; |
| |
| struct nouveau_ivmm { |
| struct nouveau_svmm *svmm; |
| u64 inst; |
| struct list_head head; |
| }; |
| |
| static struct nouveau_ivmm * |
| nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst) |
| { |
| struct nouveau_ivmm *ivmm; |
| list_for_each_entry(ivmm, &svm->inst, head) { |
| if (ivmm->inst == inst) |
| return ivmm; |
| } |
| return NULL; |
| } |
| |
| #define SVMM_DBG(s,f,a...) \ |
| NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a) |
| #define SVMM_ERR(s,f,a...) \ |
| NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a) |
| |
| int |
| nouveau_svmm_bind(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct nouveau_cli *cli = nouveau_cli(file_priv); |
| struct drm_nouveau_svm_bind *args = data; |
| unsigned target, cmd, priority; |
| unsigned long addr, end; |
| struct mm_struct *mm; |
| |
| args->va_start &= PAGE_MASK; |
| args->va_end = ALIGN(args->va_end, PAGE_SIZE); |
| |
| /* Sanity check arguments */ |
| if (args->reserved0 || args->reserved1) |
| return -EINVAL; |
| if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK)) |
| return -EINVAL; |
| if (args->va_start >= args->va_end) |
| return -EINVAL; |
| |
| cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT; |
| cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK; |
| switch (cmd) { |
| case NOUVEAU_SVM_BIND_COMMAND__MIGRATE: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT; |
| priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK; |
| |
| /* FIXME support CPU target ie all target value < GPU_VRAM */ |
| target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT; |
| target &= NOUVEAU_SVM_BIND_TARGET_MASK; |
| switch (target) { |
| case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * FIXME: For now refuse non 0 stride, we need to change the migrate |
| * kernel function to handle stride to avoid to create a mess within |
| * each device driver. |
| */ |
| if (args->stride) |
| return -EINVAL; |
| |
| /* |
| * Ok we are ask to do something sane, for now we only support migrate |
| * commands but we will add things like memory policy (what to do on |
| * page fault) and maybe some other commands. |
| */ |
| |
| mm = get_task_mm(current); |
| mmap_read_lock(mm); |
| |
| if (!cli->svm.svmm) { |
| mmap_read_unlock(mm); |
| return -EINVAL; |
| } |
| |
| for (addr = args->va_start, end = args->va_end; addr < end;) { |
| struct vm_area_struct *vma; |
| unsigned long next; |
| |
| vma = find_vma_intersection(mm, addr, end); |
| if (!vma) |
| break; |
| |
| addr = max(addr, vma->vm_start); |
| next = min(vma->vm_end, end); |
| /* This is a best effort so we ignore errors */ |
| nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr, |
| next); |
| addr = next; |
| } |
| |
| /* |
| * FIXME Return the number of page we have migrated, again we need to |
| * update the migrate API to return that information so that we can |
| * report it to user space. |
| */ |
| args->result = 0; |
| |
| mmap_read_unlock(mm); |
| mmput(mm); |
| |
| return 0; |
| } |
| |
| /* Unlink channel instance from SVMM. */ |
| void |
| nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst) |
| { |
| struct nouveau_ivmm *ivmm; |
| if (svmm) { |
| mutex_lock(&svmm->vmm->cli->drm->svm->mutex); |
| ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst); |
| if (ivmm) { |
| list_del(&ivmm->head); |
| kfree(ivmm); |
| } |
| mutex_unlock(&svmm->vmm->cli->drm->svm->mutex); |
| } |
| } |
| |
| /* Link channel instance to SVMM. */ |
| int |
| nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst) |
| { |
| struct nouveau_ivmm *ivmm; |
| if (svmm) { |
| if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL))) |
| return -ENOMEM; |
| ivmm->svmm = svmm; |
| ivmm->inst = inst; |
| |
| mutex_lock(&svmm->vmm->cli->drm->svm->mutex); |
| list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst); |
| mutex_unlock(&svmm->vmm->cli->drm->svm->mutex); |
| } |
| return 0; |
| } |
| |
| /* Invalidate SVMM address-range on GPU. */ |
| void |
| nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit) |
| { |
| if (limit > start) { |
| bool super = svmm->vmm->vmm.object.client->super; |
| svmm->vmm->vmm.object.client->super = true; |
| nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR, |
| &(struct nvif_vmm_pfnclr_v0) { |
| .addr = start, |
| .size = limit - start, |
| }, sizeof(struct nvif_vmm_pfnclr_v0)); |
| svmm->vmm->vmm.object.client->super = super; |
| } |
| } |
| |
| static int |
| nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn, |
| const struct mmu_notifier_range *update) |
| { |
| struct nouveau_svmm *svmm = |
| container_of(mn, struct nouveau_svmm, notifier); |
| unsigned long start = update->start; |
| unsigned long limit = update->end; |
| |
| if (!mmu_notifier_range_blockable(update)) |
| return -EAGAIN; |
| |
| SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit); |
| |
| mutex_lock(&svmm->mutex); |
| if (unlikely(!svmm->vmm)) |
| goto out; |
| |
| /* |
| * Ignore invalidation callbacks for device private pages since |
| * the invalidation is handled as part of the migration process. |
| */ |
| if (update->event == MMU_NOTIFY_MIGRATE && |
| update->migrate_pgmap_owner == svmm->vmm->cli->drm->dev) |
| goto out; |
| |
| if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) { |
| if (start < svmm->unmanaged.start) { |
| nouveau_svmm_invalidate(svmm, start, |
| svmm->unmanaged.limit); |
| } |
| start = svmm->unmanaged.limit; |
| } |
| |
| nouveau_svmm_invalidate(svmm, start, limit); |
| |
| out: |
| mutex_unlock(&svmm->mutex); |
| return 0; |
| } |
| |
| static void nouveau_svmm_free_notifier(struct mmu_notifier *mn) |
| { |
| kfree(container_of(mn, struct nouveau_svmm, notifier)); |
| } |
| |
| static const struct mmu_notifier_ops nouveau_mn_ops = { |
| .invalidate_range_start = nouveau_svmm_invalidate_range_start, |
| .free_notifier = nouveau_svmm_free_notifier, |
| }; |
| |
| void |
| nouveau_svmm_fini(struct nouveau_svmm **psvmm) |
| { |
| struct nouveau_svmm *svmm = *psvmm; |
| if (svmm) { |
| mutex_lock(&svmm->mutex); |
| svmm->vmm = NULL; |
| mutex_unlock(&svmm->mutex); |
| mmu_notifier_put(&svmm->notifier); |
| *psvmm = NULL; |
| } |
| } |
| |
| int |
| nouveau_svmm_init(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct nouveau_cli *cli = nouveau_cli(file_priv); |
| struct nouveau_svmm *svmm; |
| struct drm_nouveau_svm_init *args = data; |
| int ret; |
| |
| /* Allocate tracking for SVM-enabled VMM. */ |
| if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL))) |
| return -ENOMEM; |
| svmm->vmm = &cli->svm; |
| svmm->unmanaged.start = args->unmanaged_addr; |
| svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size; |
| mutex_init(&svmm->mutex); |
| |
| /* Check that SVM isn't already enabled for the client. */ |
| mutex_lock(&cli->mutex); |
| if (cli->svm.cli) { |
| ret = -EBUSY; |
| goto out_free; |
| } |
| |
| /* Allocate a new GPU VMM that can support SVM (managed by the |
| * client, with replayable faults enabled). |
| * |
| * All future channel/memory allocations will make use of this |
| * VMM instead of the standard one. |
| */ |
| ret = nvif_vmm_ctor(&cli->mmu, "svmVmm", |
| cli->vmm.vmm.object.oclass, true, |
| args->unmanaged_addr, args->unmanaged_size, |
| &(struct gp100_vmm_v0) { |
| .fault_replay = true, |
| }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm); |
| if (ret) |
| goto out_free; |
| |
| mmap_write_lock(current->mm); |
| svmm->notifier.ops = &nouveau_mn_ops; |
| ret = __mmu_notifier_register(&svmm->notifier, current->mm); |
| if (ret) |
| goto out_mm_unlock; |
| /* Note, ownership of svmm transfers to mmu_notifier */ |
| |
| cli->svm.svmm = svmm; |
| cli->svm.cli = cli; |
| mmap_write_unlock(current->mm); |
| mutex_unlock(&cli->mutex); |
| return 0; |
| |
| out_mm_unlock: |
| mmap_write_unlock(current->mm); |
| out_free: |
| mutex_unlock(&cli->mutex); |
| kfree(svmm); |
| return ret; |
| } |
| |
| /* Issue fault replay for GPU to retry accesses that faulted previously. */ |
| static void |
| nouveau_svm_fault_replay(struct nouveau_svm *svm) |
| { |
| SVM_DBG(svm, "replay"); |
| WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object, |
| GP100_VMM_VN_FAULT_REPLAY, |
| &(struct gp100_vmm_fault_replay_vn) {}, |
| sizeof(struct gp100_vmm_fault_replay_vn))); |
| } |
| |
| /* Cancel a replayable fault that could not be handled. |
| * |
| * Cancelling the fault will trigger recovery to reset the engine |
| * and kill the offending channel (ie. GPU SIGSEGV). |
| */ |
| static void |
| nouveau_svm_fault_cancel(struct nouveau_svm *svm, |
| u64 inst, u8 hub, u8 gpc, u8 client) |
| { |
| SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client); |
| WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object, |
| GP100_VMM_VN_FAULT_CANCEL, |
| &(struct gp100_vmm_fault_cancel_v0) { |
| .hub = hub, |
| .gpc = gpc, |
| .client = client, |
| .inst = inst, |
| }, sizeof(struct gp100_vmm_fault_cancel_v0))); |
| } |
| |
| static void |
| nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm, |
| struct nouveau_svm_fault *fault) |
| { |
| nouveau_svm_fault_cancel(svm, fault->inst, |
| fault->hub, |
| fault->gpc, |
| fault->client); |
| } |
| |
| static int |
| nouveau_svm_fault_cmp(const void *a, const void *b) |
| { |
| const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a; |
| const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b; |
| int ret; |
| if ((ret = (s64)fa->inst - fb->inst)) |
| return ret; |
| if ((ret = (s64)fa->addr - fb->addr)) |
| return ret; |
| /*XXX: atomic? */ |
| return (fa->access == 0 || fa->access == 3) - |
| (fb->access == 0 || fb->access == 3); |
| } |
| |
| static void |
| nouveau_svm_fault_cache(struct nouveau_svm *svm, |
| struct nouveau_svm_fault_buffer *buffer, u32 offset) |
| { |
| struct nvif_object *memory = &buffer->object; |
| const u32 instlo = nvif_rd32(memory, offset + 0x00); |
| const u32 insthi = nvif_rd32(memory, offset + 0x04); |
| const u32 addrlo = nvif_rd32(memory, offset + 0x08); |
| const u32 addrhi = nvif_rd32(memory, offset + 0x0c); |
| const u32 timelo = nvif_rd32(memory, offset + 0x10); |
| const u32 timehi = nvif_rd32(memory, offset + 0x14); |
| const u32 engine = nvif_rd32(memory, offset + 0x18); |
| const u32 info = nvif_rd32(memory, offset + 0x1c); |
| const u64 inst = (u64)insthi << 32 | instlo; |
| const u8 gpc = (info & 0x1f000000) >> 24; |
| const u8 hub = (info & 0x00100000) >> 20; |
| const u8 client = (info & 0x00007f00) >> 8; |
| struct nouveau_svm_fault *fault; |
| |
| //XXX: i think we're supposed to spin waiting */ |
| if (WARN_ON(!(info & 0x80000000))) |
| return; |
| |
| nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000); |
| |
| if (!buffer->fault[buffer->fault_nr]) { |
| fault = kmalloc(sizeof(*fault), GFP_KERNEL); |
| if (WARN_ON(!fault)) { |
| nouveau_svm_fault_cancel(svm, inst, hub, gpc, client); |
| return; |
| } |
| buffer->fault[buffer->fault_nr] = fault; |
| } |
| |
| fault = buffer->fault[buffer->fault_nr++]; |
| fault->inst = inst; |
| fault->addr = (u64)addrhi << 32 | addrlo; |
| fault->time = (u64)timehi << 32 | timelo; |
| fault->engine = engine; |
| fault->gpc = gpc; |
| fault->hub = hub; |
| fault->access = (info & 0x000f0000) >> 16; |
| fault->client = client; |
| fault->fault = (info & 0x0000001f); |
| |
| SVM_DBG(svm, "fault %016llx %016llx %02x", |
| fault->inst, fault->addr, fault->access); |
| } |
| |
| struct svm_notifier { |
| struct mmu_interval_notifier notifier; |
| struct nouveau_svmm *svmm; |
| }; |
| |
| static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni, |
| const struct mmu_notifier_range *range, |
| unsigned long cur_seq) |
| { |
| struct svm_notifier *sn = |
| container_of(mni, struct svm_notifier, notifier); |
| |
| /* |
| * serializes the update to mni->invalidate_seq done by caller and |
| * prevents invalidation of the PTE from progressing while HW is being |
| * programmed. This is very hacky and only works because the normal |
| * notifier that does invalidation is always called after the range |
| * notifier. |
| */ |
| if (mmu_notifier_range_blockable(range)) |
| mutex_lock(&sn->svmm->mutex); |
| else if (!mutex_trylock(&sn->svmm->mutex)) |
| return false; |
| mmu_interval_set_seq(mni, cur_seq); |
| mutex_unlock(&sn->svmm->mutex); |
| return true; |
| } |
| |
| static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = { |
| .invalidate = nouveau_svm_range_invalidate, |
| }; |
| |
| static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm, |
| struct hmm_range *range, |
| struct nouveau_pfnmap_args *args) |
| { |
| struct page *page; |
| |
| /* |
| * The address prepared here is passed through nvif_object_ioctl() |
| * to an eventual DMA map in something like gp100_vmm_pgt_pfn() |
| * |
| * This is all just encoding the internal hmm representation into a |
| * different nouveau internal representation. |
| */ |
| if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) { |
| args->p.phys[0] = 0; |
| return; |
| } |
| |
| page = hmm_pfn_to_page(range->hmm_pfns[0]); |
| /* |
| * Only map compound pages to the GPU if the CPU is also mapping the |
| * page as a compound page. Otherwise, the PTE protections might not be |
| * consistent (e.g., CPU only maps part of a compound page). |
| * Note that the underlying page might still be larger than the |
| * CPU mapping (e.g., a PUD sized compound page partially mapped with |
| * a PMD sized page table entry). |
| */ |
| if (hmm_pfn_to_map_order(range->hmm_pfns[0])) { |
| unsigned long addr = args->p.addr; |
| |
| args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) + |
| PAGE_SHIFT; |
| args->p.size = 1UL << args->p.page; |
| args->p.addr &= ~(args->p.size - 1); |
| page -= (addr - args->p.addr) >> PAGE_SHIFT; |
| } |
| if (is_device_private_page(page)) |
| args->p.phys[0] = nouveau_dmem_page_addr(page) | |
| NVIF_VMM_PFNMAP_V0_V | |
| NVIF_VMM_PFNMAP_V0_VRAM; |
| else |
| args->p.phys[0] = page_to_phys(page) | |
| NVIF_VMM_PFNMAP_V0_V | |
| NVIF_VMM_PFNMAP_V0_HOST; |
| if (range->hmm_pfns[0] & HMM_PFN_WRITE) |
| args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W; |
| } |
| |
| static int nouveau_range_fault(struct nouveau_svmm *svmm, |
| struct nouveau_drm *drm, |
| struct nouveau_pfnmap_args *args, u32 size, |
| unsigned long hmm_flags, |
| struct svm_notifier *notifier) |
| { |
| unsigned long timeout = |
| jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); |
| /* Have HMM fault pages within the fault window to the GPU. */ |
| unsigned long hmm_pfns[1]; |
| struct hmm_range range = { |
| .notifier = ¬ifier->notifier, |
| .start = notifier->notifier.interval_tree.start, |
| .end = notifier->notifier.interval_tree.last + 1, |
| .default_flags = hmm_flags, |
| .hmm_pfns = hmm_pfns, |
| .dev_private_owner = drm->dev, |
| }; |
| struct mm_struct *mm = notifier->notifier.mm; |
| int ret; |
| |
| while (true) { |
| if (time_after(jiffies, timeout)) |
| return -EBUSY; |
| |
| range.notifier_seq = mmu_interval_read_begin(range.notifier); |
| mmap_read_lock(mm); |
| ret = hmm_range_fault(&range); |
| mmap_read_unlock(mm); |
| if (ret) { |
| if (ret == -EBUSY) |
| continue; |
| return ret; |
| } |
| |
| mutex_lock(&svmm->mutex); |
| if (mmu_interval_read_retry(range.notifier, |
| range.notifier_seq)) { |
| mutex_unlock(&svmm->mutex); |
| continue; |
| } |
| break; |
| } |
| |
| nouveau_hmm_convert_pfn(drm, &range, args); |
| |
| svmm->vmm->vmm.object.client->super = true; |
| ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL); |
| svmm->vmm->vmm.object.client->super = false; |
| mutex_unlock(&svmm->mutex); |
| |
| return ret; |
| } |
| |
| static int |
| nouveau_svm_fault(struct nvif_notify *notify) |
| { |
| struct nouveau_svm_fault_buffer *buffer = |
| container_of(notify, typeof(*buffer), notify); |
| struct nouveau_svm *svm = |
| container_of(buffer, typeof(*svm), buffer[buffer->id]); |
| struct nvif_object *device = &svm->drm->client.device.object; |
| struct nouveau_svmm *svmm; |
| struct { |
| struct nouveau_pfnmap_args i; |
| u64 phys[1]; |
| } args; |
| unsigned long hmm_flags; |
| u64 inst, start, limit; |
| int fi, fn; |
| int replay = 0, ret; |
| |
| /* Parse available fault buffer entries into a cache, and update |
| * the GET pointer so HW can reuse the entries. |
| */ |
| SVM_DBG(svm, "fault handler"); |
| if (buffer->get == buffer->put) { |
| buffer->put = nvif_rd32(device, buffer->putaddr); |
| buffer->get = nvif_rd32(device, buffer->getaddr); |
| if (buffer->get == buffer->put) |
| return NVIF_NOTIFY_KEEP; |
| } |
| buffer->fault_nr = 0; |
| |
| SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put); |
| while (buffer->get != buffer->put) { |
| nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20); |
| if (++buffer->get == buffer->entries) |
| buffer->get = 0; |
| } |
| nvif_wr32(device, buffer->getaddr, buffer->get); |
| SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr); |
| |
| /* Sort parsed faults by instance pointer to prevent unnecessary |
| * instance to SVMM translations, followed by address and access |
| * type to reduce the amount of work when handling the faults. |
| */ |
| sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault), |
| nouveau_svm_fault_cmp, NULL); |
| |
| /* Lookup SVMM structure for each unique instance pointer. */ |
| mutex_lock(&svm->mutex); |
| for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) { |
| if (!svmm || buffer->fault[fi]->inst != inst) { |
| struct nouveau_ivmm *ivmm = |
| nouveau_ivmm_find(svm, buffer->fault[fi]->inst); |
| svmm = ivmm ? ivmm->svmm : NULL; |
| inst = buffer->fault[fi]->inst; |
| SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm); |
| } |
| buffer->fault[fi]->svmm = svmm; |
| } |
| mutex_unlock(&svm->mutex); |
| |
| /* Process list of faults. */ |
| args.i.i.version = 0; |
| args.i.i.type = NVIF_IOCTL_V0_MTHD; |
| args.i.m.version = 0; |
| args.i.m.method = NVIF_VMM_V0_PFNMAP; |
| args.i.p.version = 0; |
| |
| for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) { |
| struct svm_notifier notifier; |
| struct mm_struct *mm; |
| |
| /* Cancel any faults from non-SVM channels. */ |
| if (!(svmm = buffer->fault[fi]->svmm)) { |
| nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]); |
| continue; |
| } |
| SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr); |
| |
| /* We try and group handling of faults within a small |
| * window into a single update. |
| */ |
| start = buffer->fault[fi]->addr; |
| limit = start + PAGE_SIZE; |
| if (start < svmm->unmanaged.limit) |
| limit = min_t(u64, limit, svmm->unmanaged.start); |
| |
| /* |
| * Prepare the GPU-side update of all pages within the |
| * fault window, determining required pages and access |
| * permissions based on pending faults. |
| */ |
| args.i.p.addr = start; |
| args.i.p.page = PAGE_SHIFT; |
| args.i.p.size = PAGE_SIZE; |
| /* |
| * Determine required permissions based on GPU fault |
| * access flags. |
| * XXX: atomic? |
| */ |
| switch (buffer->fault[fi]->access) { |
| case 0: /* READ. */ |
| hmm_flags = HMM_PFN_REQ_FAULT; |
| break; |
| case 3: /* PREFETCH. */ |
| hmm_flags = 0; |
| break; |
| default: |
| hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE; |
| break; |
| } |
| |
| mm = svmm->notifier.mm; |
| if (!mmget_not_zero(mm)) { |
| nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]); |
| continue; |
| } |
| |
| notifier.svmm = svmm; |
| ret = mmu_interval_notifier_insert(¬ifier.notifier, mm, |
| args.i.p.addr, args.i.p.size, |
| &nouveau_svm_mni_ops); |
| if (!ret) { |
| ret = nouveau_range_fault(svmm, svm->drm, &args.i, |
| sizeof(args), hmm_flags, ¬ifier); |
| mmu_interval_notifier_remove(¬ifier.notifier); |
| } |
| mmput(mm); |
| |
| limit = args.i.p.addr + args.i.p.size; |
| for (fn = fi; ++fn < buffer->fault_nr; ) { |
| /* It's okay to skip over duplicate addresses from the |
| * same SVMM as faults are ordered by access type such |
| * that only the first one needs to be handled. |
| * |
| * ie. WRITE faults appear first, thus any handling of |
| * pending READ faults will already be satisfied. |
| * But if a large page is mapped, make sure subsequent |
| * fault addresses have sufficient access permission. |
| */ |
| if (buffer->fault[fn]->svmm != svmm || |
| buffer->fault[fn]->addr >= limit || |
| (buffer->fault[fi]->access == 0 /* READ. */ && |
| !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) || |
| (buffer->fault[fi]->access != 0 /* READ. */ && |
| buffer->fault[fi]->access != 3 /* PREFETCH. */ && |
| !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W))) |
| break; |
| } |
| |
| /* If handling failed completely, cancel all faults. */ |
| if (ret) { |
| while (fi < fn) { |
| struct nouveau_svm_fault *fault = |
| buffer->fault[fi++]; |
| |
| nouveau_svm_fault_cancel_fault(svm, fault); |
| } |
| } else |
| replay++; |
| } |
| |
| /* Issue fault replay to the GPU. */ |
| if (replay) |
| nouveau_svm_fault_replay(svm); |
| return NVIF_NOTIFY_KEEP; |
| } |
| |
| static struct nouveau_pfnmap_args * |
| nouveau_pfns_to_args(void *pfns) |
| { |
| return container_of(pfns, struct nouveau_pfnmap_args, p.phys); |
| } |
| |
| u64 * |
| nouveau_pfns_alloc(unsigned long npages) |
| { |
| struct nouveau_pfnmap_args *args; |
| |
| args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL); |
| if (!args) |
| return NULL; |
| |
| args->i.type = NVIF_IOCTL_V0_MTHD; |
| args->m.method = NVIF_VMM_V0_PFNMAP; |
| args->p.page = PAGE_SHIFT; |
| |
| return args->p.phys; |
| } |
| |
| void |
| nouveau_pfns_free(u64 *pfns) |
| { |
| struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns); |
| |
| kfree(args); |
| } |
| |
| void |
| nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm, |
| unsigned long addr, u64 *pfns, unsigned long npages) |
| { |
| struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns); |
| int ret; |
| |
| args->p.addr = addr; |
| args->p.size = npages << PAGE_SHIFT; |
| |
| mutex_lock(&svmm->mutex); |
| |
| svmm->vmm->vmm.object.client->super = true; |
| ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, sizeof(*args) + |
| npages * sizeof(args->p.phys[0]), NULL); |
| svmm->vmm->vmm.object.client->super = false; |
| |
| mutex_unlock(&svmm->mutex); |
| } |
| |
| static void |
| nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id) |
| { |
| struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; |
| nvif_notify_put(&buffer->notify); |
| } |
| |
| static int |
| nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id) |
| { |
| struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; |
| struct nvif_object *device = &svm->drm->client.device.object; |
| buffer->get = nvif_rd32(device, buffer->getaddr); |
| buffer->put = nvif_rd32(device, buffer->putaddr); |
| SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put); |
| return nvif_notify_get(&buffer->notify); |
| } |
| |
| static void |
| nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id) |
| { |
| struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; |
| int i; |
| |
| if (buffer->fault) { |
| for (i = 0; buffer->fault[i] && i < buffer->entries; i++) |
| kfree(buffer->fault[i]); |
| kvfree(buffer->fault); |
| } |
| |
| nouveau_svm_fault_buffer_fini(svm, id); |
| |
| nvif_notify_dtor(&buffer->notify); |
| nvif_object_dtor(&buffer->object); |
| } |
| |
| static int |
| nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id) |
| { |
| struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id]; |
| struct nouveau_drm *drm = svm->drm; |
| struct nvif_object *device = &drm->client.device.object; |
| struct nvif_clb069_v0 args = {}; |
| int ret; |
| |
| buffer->id = id; |
| |
| ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args, |
| sizeof(args), &buffer->object); |
| if (ret < 0) { |
| SVM_ERR(svm, "Fault buffer allocation failed: %d", ret); |
| return ret; |
| } |
| |
| nvif_object_map(&buffer->object, NULL, 0); |
| buffer->entries = args.entries; |
| buffer->getaddr = args.get; |
| buffer->putaddr = args.put; |
| |
| ret = nvif_notify_ctor(&buffer->object, "svmFault", nouveau_svm_fault, |
| true, NVB069_V0_NTFY_FAULT, NULL, 0, 0, |
| &buffer->notify); |
| if (ret) |
| return ret; |
| |
| buffer->fault = kvzalloc(sizeof(*buffer->fault) * buffer->entries, GFP_KERNEL); |
| if (!buffer->fault) |
| return -ENOMEM; |
| |
| return nouveau_svm_fault_buffer_init(svm, id); |
| } |
| |
| void |
| nouveau_svm_resume(struct nouveau_drm *drm) |
| { |
| struct nouveau_svm *svm = drm->svm; |
| if (svm) |
| nouveau_svm_fault_buffer_init(svm, 0); |
| } |
| |
| void |
| nouveau_svm_suspend(struct nouveau_drm *drm) |
| { |
| struct nouveau_svm *svm = drm->svm; |
| if (svm) |
| nouveau_svm_fault_buffer_fini(svm, 0); |
| } |
| |
| void |
| nouveau_svm_fini(struct nouveau_drm *drm) |
| { |
| struct nouveau_svm *svm = drm->svm; |
| if (svm) { |
| nouveau_svm_fault_buffer_dtor(svm, 0); |
| kfree(drm->svm); |
| drm->svm = NULL; |
| } |
| } |
| |
| void |
| nouveau_svm_init(struct nouveau_drm *drm) |
| { |
| static const struct nvif_mclass buffers[] = { |
| { VOLTA_FAULT_BUFFER_A, 0 }, |
| { MAXWELL_FAULT_BUFFER_A, 0 }, |
| {} |
| }; |
| struct nouveau_svm *svm; |
| int ret; |
| |
| /* Disable on Volta and newer until channel recovery is fixed, |
| * otherwise clients will have a trivial way to trash the GPU |
| * for everyone. |
| */ |
| if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL) |
| return; |
| |
| if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL))) |
| return; |
| |
| drm->svm->drm = drm; |
| mutex_init(&drm->svm->mutex); |
| INIT_LIST_HEAD(&drm->svm->inst); |
| |
| ret = nvif_mclass(&drm->client.device.object, buffers); |
| if (ret < 0) { |
| SVM_DBG(svm, "No supported fault buffer class"); |
| nouveau_svm_fini(drm); |
| return; |
| } |
| |
| ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0); |
| if (ret) { |
| nouveau_svm_fini(drm); |
| return; |
| } |
| |
| SVM_DBG(svm, "Initialised"); |
| } |