blob: 4632268695cb9558b4f1349e60de3be57702a60c [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2018 Netronome Systems, Inc */
/* Copyright (C) 2021 Corigine, Inc */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <asm/unaligned.h>
#include <linux/ktime.h>
#include <net/xfrm.h>
#include "../nfp_net_ctrl.h"
#include "../nfp_net.h"
#include "crypto.h"
#define NFP_NET_IPSEC_MAX_SA_CNT (16 * 1024) /* Firmware support a maximum of 16K SA offload */
/* IPsec config message cmd codes */
enum nfp_ipsec_cfg_mssg_cmd_codes {
NFP_IPSEC_CFG_MSSG_ADD_SA, /* Add a new SA */
NFP_IPSEC_CFG_MSSG_INV_SA /* Invalidate an existing SA */
};
/* IPsec config message response codes */
enum nfp_ipsec_cfg_mssg_rsp_codes {
NFP_IPSEC_CFG_MSSG_OK,
NFP_IPSEC_CFG_MSSG_FAILED,
NFP_IPSEC_CFG_MSSG_SA_VALID,
NFP_IPSEC_CFG_MSSG_SA_HASH_ADD_FAILED,
NFP_IPSEC_CFG_MSSG_SA_HASH_DEL_FAILED,
NFP_IPSEC_CFG_MSSG_SA_INVALID_CMD
};
/* Protocol */
enum nfp_ipsec_sa_prot {
NFP_IPSEC_PROTOCOL_AH = 0,
NFP_IPSEC_PROTOCOL_ESP = 1
};
/* Mode */
enum nfp_ipsec_sa_mode {
NFP_IPSEC_PROTMODE_TRANSPORT = 0,
NFP_IPSEC_PROTMODE_TUNNEL = 1
};
/* Cipher types */
enum nfp_ipsec_sa_cipher {
NFP_IPSEC_CIPHER_NULL,
NFP_IPSEC_CIPHER_3DES,
NFP_IPSEC_CIPHER_AES128,
NFP_IPSEC_CIPHER_AES192,
NFP_IPSEC_CIPHER_AES256,
NFP_IPSEC_CIPHER_AES128_NULL,
NFP_IPSEC_CIPHER_AES192_NULL,
NFP_IPSEC_CIPHER_AES256_NULL,
NFP_IPSEC_CIPHER_CHACHA20
};
/* Cipher modes */
enum nfp_ipsec_sa_cipher_mode {
NFP_IPSEC_CIMODE_ECB,
NFP_IPSEC_CIMODE_CBC,
NFP_IPSEC_CIMODE_CFB,
NFP_IPSEC_CIMODE_OFB,
NFP_IPSEC_CIMODE_CTR
};
/* Hash types */
enum nfp_ipsec_sa_hash_type {
NFP_IPSEC_HASH_NONE,
NFP_IPSEC_HASH_MD5_96,
NFP_IPSEC_HASH_SHA1_96,
NFP_IPSEC_HASH_SHA256_96,
NFP_IPSEC_HASH_SHA384_96,
NFP_IPSEC_HASH_SHA512_96,
NFP_IPSEC_HASH_MD5_128,
NFP_IPSEC_HASH_SHA1_80,
NFP_IPSEC_HASH_SHA256_128,
NFP_IPSEC_HASH_SHA384_192,
NFP_IPSEC_HASH_SHA512_256,
NFP_IPSEC_HASH_GF128_128,
NFP_IPSEC_HASH_POLY1305_128
};
/* IPSEC_CFG_MSSG_ADD_SA */
struct nfp_ipsec_cfg_add_sa {
u32 ciph_key[8]; /* Cipher Key */
union {
u32 auth_key[16]; /* Authentication Key */
struct nfp_ipsec_aesgcm { /* AES-GCM-ESP fields */
u32 salt; /* Initialized with SA */
u32 resv[15];
} aesgcm_fields;
};
struct sa_ctrl_word {
uint32_t hash :4; /* From nfp_ipsec_sa_hash_type */
uint32_t cimode :4; /* From nfp_ipsec_sa_cipher_mode */
uint32_t cipher :4; /* From nfp_ipsec_sa_cipher */
uint32_t mode :2; /* From nfp_ipsec_sa_mode */
uint32_t proto :2; /* From nfp_ipsec_sa_prot */
uint32_t dir :1; /* SA direction */
uint32_t resv0 :12;
uint32_t encap_dsbl:1; /* Encap/Decap disable */
uint32_t resv1 :2; /* Must be set to 0 */
} ctrl_word;
u32 spi; /* SPI Value */
uint32_t pmtu_limit :16; /* PMTU Limit */
uint32_t resv0 :5;
uint32_t ipv6 :1; /* Outbound IPv6 addr format */
uint32_t resv1 :10;
u32 resv2[2];
u32 src_ip[4]; /* Src IP addr */
u32 dst_ip[4]; /* Dst IP addr */
u32 resv3[6];
};
/* IPSEC_CFG_MSSG */
struct nfp_ipsec_cfg_mssg {
union {
struct{
uint32_t cmd:16; /* One of nfp_ipsec_cfg_mssg_cmd_codes */
uint32_t rsp:16; /* One of nfp_ipsec_cfg_mssg_rsp_codes */
uint32_t sa_idx:16; /* SA table index */
uint32_t spare0:16;
struct nfp_ipsec_cfg_add_sa cfg_add_sa;
};
u32 raw[64];
};
};
static int nfp_ipsec_cfg_cmd_issue(struct nfp_net *nn, int type, int saidx,
struct nfp_ipsec_cfg_mssg *msg)
{
int i, msg_size, ret;
msg->cmd = type;
msg->sa_idx = saidx;
msg->rsp = 0;
msg_size = ARRAY_SIZE(msg->raw);
for (i = 0; i < msg_size; i++)
nn_writel(nn, NFP_NET_CFG_MBOX_VAL + 4 * i, msg->raw[i]);
ret = nfp_net_mbox_reconfig(nn, NFP_NET_CFG_MBOX_CMD_IPSEC);
if (ret < 0)
return ret;
/* For now we always read the whole message response back */
for (i = 0; i < msg_size; i++)
msg->raw[i] = nn_readl(nn, NFP_NET_CFG_MBOX_VAL + 4 * i);
switch (msg->rsp) {
case NFP_IPSEC_CFG_MSSG_OK:
return 0;
case NFP_IPSEC_CFG_MSSG_SA_INVALID_CMD:
return -EINVAL;
case NFP_IPSEC_CFG_MSSG_SA_VALID:
return -EEXIST;
case NFP_IPSEC_CFG_MSSG_FAILED:
case NFP_IPSEC_CFG_MSSG_SA_HASH_ADD_FAILED:
case NFP_IPSEC_CFG_MSSG_SA_HASH_DEL_FAILED:
return -EIO;
default:
return -EINVAL;
}
}
static int set_aes_keylen(struct nfp_ipsec_cfg_add_sa *cfg, int alg, int keylen)
{
bool aes_gmac = (alg == SADB_X_EALG_NULL_AES_GMAC);
switch (keylen) {
case 128:
cfg->ctrl_word.cipher = aes_gmac ? NFP_IPSEC_CIPHER_AES128_NULL :
NFP_IPSEC_CIPHER_AES128;
break;
case 192:
cfg->ctrl_word.cipher = aes_gmac ? NFP_IPSEC_CIPHER_AES192_NULL :
NFP_IPSEC_CIPHER_AES192;
break;
case 256:
cfg->ctrl_word.cipher = aes_gmac ? NFP_IPSEC_CIPHER_AES256_NULL :
NFP_IPSEC_CIPHER_AES256;
break;
default:
return -EINVAL;
}
return 0;
}
static void set_md5hmac(struct nfp_ipsec_cfg_add_sa *cfg, int *trunc_len)
{
switch (*trunc_len) {
case 96:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_MD5_96;
break;
case 128:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_MD5_128;
break;
default:
*trunc_len = 0;
}
}
static void set_sha1hmac(struct nfp_ipsec_cfg_add_sa *cfg, int *trunc_len)
{
switch (*trunc_len) {
case 96:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA1_96;
break;
case 80:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA1_80;
break;
default:
*trunc_len = 0;
}
}
static void set_sha2_256hmac(struct nfp_ipsec_cfg_add_sa *cfg, int *trunc_len)
{
switch (*trunc_len) {
case 96:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA256_96;
break;
case 128:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA256_128;
break;
default:
*trunc_len = 0;
}
}
static void set_sha2_384hmac(struct nfp_ipsec_cfg_add_sa *cfg, int *trunc_len)
{
switch (*trunc_len) {
case 96:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA384_96;
break;
case 192:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA384_192;
break;
default:
*trunc_len = 0;
}
}
static void set_sha2_512hmac(struct nfp_ipsec_cfg_add_sa *cfg, int *trunc_len)
{
switch (*trunc_len) {
case 96:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA512_96;
break;
case 256:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_SHA512_256;
break;
default:
*trunc_len = 0;
}
}
static int nfp_net_xfrm_add_state(struct xfrm_state *x)
{
struct net_device *netdev = x->xso.dev;
struct nfp_ipsec_cfg_mssg msg = {};
int i, key_len, trunc_len, err = 0;
struct nfp_ipsec_cfg_add_sa *cfg;
struct nfp_net *nn;
unsigned int saidx;
nn = netdev_priv(netdev);
cfg = &msg.cfg_add_sa;
/* General */
switch (x->props.mode) {
case XFRM_MODE_TUNNEL:
cfg->ctrl_word.mode = NFP_IPSEC_PROTMODE_TUNNEL;
break;
case XFRM_MODE_TRANSPORT:
cfg->ctrl_word.mode = NFP_IPSEC_PROTMODE_TRANSPORT;
break;
default:
nn_err(nn, "Unsupported mode for xfrm offload\n");
return -EINVAL;
}
switch (x->id.proto) {
case IPPROTO_ESP:
cfg->ctrl_word.proto = NFP_IPSEC_PROTOCOL_ESP;
break;
case IPPROTO_AH:
cfg->ctrl_word.proto = NFP_IPSEC_PROTOCOL_AH;
break;
default:
nn_err(nn, "Unsupported protocol for xfrm offload\n");
return -EINVAL;
}
if (x->props.flags & XFRM_STATE_ESN) {
nn_err(nn, "Unsupported XFRM_REPLAY_MODE_ESN for xfrm offload\n");
return -EINVAL;
}
if (x->xso.type != XFRM_DEV_OFFLOAD_CRYPTO) {
nn_err(nn, "Unsupported xfrm offload tyoe\n");
return -EINVAL;
}
cfg->spi = ntohl(x->id.spi);
/* Hash/Authentication */
if (x->aalg)
trunc_len = x->aalg->alg_trunc_len;
else
trunc_len = 0;
switch (x->props.aalgo) {
case SADB_AALG_NONE:
if (x->aead) {
trunc_len = -1;
} else {
nn_err(nn, "Unsupported authentication algorithm\n");
return -EINVAL;
}
break;
case SADB_X_AALG_NULL:
cfg->ctrl_word.hash = NFP_IPSEC_HASH_NONE;
trunc_len = -1;
break;
case SADB_AALG_MD5HMAC:
set_md5hmac(cfg, &trunc_len);
break;
case SADB_AALG_SHA1HMAC:
set_sha1hmac(cfg, &trunc_len);
break;
case SADB_X_AALG_SHA2_256HMAC:
set_sha2_256hmac(cfg, &trunc_len);
break;
case SADB_X_AALG_SHA2_384HMAC:
set_sha2_384hmac(cfg, &trunc_len);
break;
case SADB_X_AALG_SHA2_512HMAC:
set_sha2_512hmac(cfg, &trunc_len);
break;
default:
nn_err(nn, "Unsupported authentication algorithm\n");
return -EINVAL;
}
if (!trunc_len) {
nn_err(nn, "Unsupported authentication algorithm trunc length\n");
return -EINVAL;
}
if (x->aalg) {
key_len = DIV_ROUND_UP(x->aalg->alg_key_len, BITS_PER_BYTE);
if (key_len > sizeof(cfg->auth_key)) {
nn_err(nn, "Insufficient space for offloaded auth key\n");
return -EINVAL;
}
for (i = 0; i < key_len / sizeof(cfg->auth_key[0]) ; i++)
cfg->auth_key[i] = get_unaligned_be32(x->aalg->alg_key +
sizeof(cfg->auth_key[0]) * i);
}
/* Encryption */
switch (x->props.ealgo) {
case SADB_EALG_NONE:
case SADB_EALG_NULL:
cfg->ctrl_word.cimode = NFP_IPSEC_CIMODE_CBC;
cfg->ctrl_word.cipher = NFP_IPSEC_CIPHER_NULL;
break;
case SADB_EALG_3DESCBC:
cfg->ctrl_word.cimode = NFP_IPSEC_CIMODE_CBC;
cfg->ctrl_word.cipher = NFP_IPSEC_CIPHER_3DES;
break;
case SADB_X_EALG_AES_GCM_ICV16:
case SADB_X_EALG_NULL_AES_GMAC:
if (!x->aead) {
nn_err(nn, "Invalid AES key data\n");
return -EINVAL;
}
if (x->aead->alg_icv_len != 128) {
nn_err(nn, "ICV must be 128bit with SADB_X_EALG_AES_GCM_ICV16\n");
return -EINVAL;
}
cfg->ctrl_word.cimode = NFP_IPSEC_CIMODE_CTR;
cfg->ctrl_word.hash = NFP_IPSEC_HASH_GF128_128;
/* Aead->alg_key_len includes 32-bit salt */
if (set_aes_keylen(cfg, x->props.ealgo, x->aead->alg_key_len - 32)) {
nn_err(nn, "Unsupported AES key length %d\n", x->aead->alg_key_len);
return -EINVAL;
}
break;
case SADB_X_EALG_AESCBC:
cfg->ctrl_word.cimode = NFP_IPSEC_CIMODE_CBC;
if (!x->ealg) {
nn_err(nn, "Invalid AES key data\n");
return -EINVAL;
}
if (set_aes_keylen(cfg, x->props.ealgo, x->ealg->alg_key_len) < 0) {
nn_err(nn, "Unsupported AES key length %d\n", x->ealg->alg_key_len);
return -EINVAL;
}
break;
default:
nn_err(nn, "Unsupported encryption algorithm for offload\n");
return -EINVAL;
}
if (x->aead) {
int salt_len = 4;
key_len = DIV_ROUND_UP(x->aead->alg_key_len, BITS_PER_BYTE);
key_len -= salt_len;
if (key_len > sizeof(cfg->ciph_key)) {
nn_err(nn, "aead: Insufficient space for offloaded key\n");
return -EINVAL;
}
for (i = 0; i < key_len / sizeof(cfg->ciph_key[0]) ; i++)
cfg->ciph_key[i] = get_unaligned_be32(x->aead->alg_key +
sizeof(cfg->ciph_key[0]) * i);
/* Load up the salt */
cfg->aesgcm_fields.salt = get_unaligned_be32(x->aead->alg_key + key_len);
}
if (x->ealg) {
key_len = DIV_ROUND_UP(x->ealg->alg_key_len, BITS_PER_BYTE);
if (key_len > sizeof(cfg->ciph_key)) {
nn_err(nn, "ealg: Insufficient space for offloaded key\n");
return -EINVAL;
}
for (i = 0; i < key_len / sizeof(cfg->ciph_key[0]) ; i++)
cfg->ciph_key[i] = get_unaligned_be32(x->ealg->alg_key +
sizeof(cfg->ciph_key[0]) * i);
}
/* IP related info */
switch (x->props.family) {
case AF_INET:
cfg->ipv6 = 0;
cfg->src_ip[0] = ntohl(x->props.saddr.a4);
cfg->dst_ip[0] = ntohl(x->id.daddr.a4);
break;
case AF_INET6:
cfg->ipv6 = 1;
for (i = 0; i < 4; i++) {
cfg->src_ip[i] = ntohl(x->props.saddr.a6[i]);
cfg->dst_ip[i] = ntohl(x->id.daddr.a6[i]);
}
break;
default:
nn_err(nn, "Unsupported address family\n");
return -EINVAL;
}
/* Maximum nic IPsec code could handle. Other limits may apply. */
cfg->pmtu_limit = 0xffff;
cfg->ctrl_word.encap_dsbl = 1;
/* SA direction */
cfg->ctrl_word.dir = x->xso.dir;
/* Find unused SA data*/
err = xa_alloc(&nn->xa_ipsec, &saidx, x,
XA_LIMIT(0, NFP_NET_IPSEC_MAX_SA_CNT - 1), GFP_KERNEL);
if (err < 0) {
nn_err(nn, "Unable to get sa_data number for IPsec\n");
return err;
}
/* Allocate saidx and commit the SA */
err = nfp_ipsec_cfg_cmd_issue(nn, NFP_IPSEC_CFG_MSSG_ADD_SA, saidx, &msg);
if (err) {
xa_erase(&nn->xa_ipsec, saidx);
nn_err(nn, "Failed to issue IPsec command err ret=%d\n", err);
return err;
}
/* 0 is invalid offload_handle for kernel */
x->xso.offload_handle = saidx + 1;
return 0;
}
static void nfp_net_xfrm_del_state(struct xfrm_state *x)
{
struct net_device *netdev = x->xso.dev;
struct nfp_ipsec_cfg_mssg msg;
struct nfp_net *nn;
int err;
nn = netdev_priv(netdev);
err = nfp_ipsec_cfg_cmd_issue(nn, NFP_IPSEC_CFG_MSSG_INV_SA,
x->xso.offload_handle - 1, &msg);
if (err)
nn_warn(nn, "Failed to invalidate SA in hardware\n");
xa_erase(&nn->xa_ipsec, x->xso.offload_handle - 1);
}
static bool nfp_net_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
{
if (x->props.family == AF_INET)
/* Offload with IPv4 options is not supported yet */
return ip_hdr(skb)->ihl == 5;
/* Offload with IPv6 extension headers is not support yet */
return !(ipv6_ext_hdr(ipv6_hdr(skb)->nexthdr));
}
static const struct xfrmdev_ops nfp_net_ipsec_xfrmdev_ops = {
.xdo_dev_state_add = nfp_net_xfrm_add_state,
.xdo_dev_state_delete = nfp_net_xfrm_del_state,
.xdo_dev_offload_ok = nfp_net_ipsec_offload_ok,
};
void nfp_net_ipsec_init(struct nfp_net *nn)
{
if (!(nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC))
return;
xa_init_flags(&nn->xa_ipsec, XA_FLAGS_ALLOC);
nn->dp.netdev->xfrmdev_ops = &nfp_net_ipsec_xfrmdev_ops;
}
void nfp_net_ipsec_clean(struct nfp_net *nn)
{
if (!(nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC))
return;
WARN_ON(!xa_empty(&nn->xa_ipsec));
xa_destroy(&nn->xa_ipsec);
}
bool nfp_net_ipsec_tx_prep(struct nfp_net_dp *dp, struct sk_buff *skb,
struct nfp_ipsec_offload *offload_info)
{
struct xfrm_offload *xo = xfrm_offload(skb);
struct xfrm_state *x;
x = xfrm_input_state(skb);
if (!x)
return false;
offload_info->seq_hi = xo->seq.hi;
offload_info->seq_low = xo->seq.low;
offload_info->handle = x->xso.offload_handle;
return true;
}
int nfp_net_ipsec_rx(struct nfp_meta_parsed *meta, struct sk_buff *skb)
{
struct net_device *netdev = skb->dev;
struct xfrm_offload *xo;
struct xfrm_state *x;
struct sec_path *sp;
struct nfp_net *nn;
u32 saidx;
nn = netdev_priv(netdev);
saidx = meta->ipsec_saidx - 1;
if (saidx >= NFP_NET_IPSEC_MAX_SA_CNT)
return -EINVAL;
sp = secpath_set(skb);
if (unlikely(!sp))
return -ENOMEM;
xa_lock(&nn->xa_ipsec);
x = xa_load(&nn->xa_ipsec, saidx);
xa_unlock(&nn->xa_ipsec);
if (!x)
return -EINVAL;
xfrm_state_hold(x);
sp->xvec[sp->len++] = x;
sp->olen++;
xo = xfrm_offload(skb);
xo->flags = CRYPTO_DONE;
xo->status = CRYPTO_SUCCESS;
return 0;
}