|  | /* | 
|  | *  linux/kernel/time/timekeeping.c | 
|  | * | 
|  | *  Kernel timekeeping code and accessor functions | 
|  | * | 
|  | *  This code was moved from linux/kernel/timer.c. | 
|  | *  Please see that file for copyright and history logs. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/timekeeper_internal.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/loadavg.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/pvclock_gtod.h> | 
|  | #include <linux/compiler.h> | 
|  |  | 
|  | #include "tick-internal.h" | 
|  | #include "ntp_internal.h" | 
|  | #include "timekeeping_internal.h" | 
|  |  | 
|  | #define TK_CLEAR_NTP		(1 << 0) | 
|  | #define TK_MIRROR		(1 << 1) | 
|  | #define TK_CLOCK_WAS_SET	(1 << 2) | 
|  |  | 
|  | /* | 
|  | * The most important data for readout fits into a single 64 byte | 
|  | * cache line. | 
|  | */ | 
|  | static struct { | 
|  | seqcount_t		seq; | 
|  | struct timekeeper	timekeeper; | 
|  | } tk_core ____cacheline_aligned; | 
|  |  | 
|  | static DEFINE_RAW_SPINLOCK(timekeeper_lock); | 
|  | static struct timekeeper shadow_timekeeper; | 
|  |  | 
|  | /** | 
|  | * struct tk_fast - NMI safe timekeeper | 
|  | * @seq:	Sequence counter for protecting updates. The lowest bit | 
|  | *		is the index for the tk_read_base array | 
|  | * @base:	tk_read_base array. Access is indexed by the lowest bit of | 
|  | *		@seq. | 
|  | * | 
|  | * See @update_fast_timekeeper() below. | 
|  | */ | 
|  | struct tk_fast { | 
|  | seqcount_t		seq; | 
|  | struct tk_read_base	base[2]; | 
|  | }; | 
|  |  | 
|  | /* Suspend-time cycles value for halted fast timekeeper. */ | 
|  | static u64 cycles_at_suspend; | 
|  |  | 
|  | static u64 dummy_clock_read(struct clocksource *cs) | 
|  | { | 
|  | return cycles_at_suspend; | 
|  | } | 
|  |  | 
|  | static struct clocksource dummy_clock = { | 
|  | .read = dummy_clock_read, | 
|  | }; | 
|  |  | 
|  | static struct tk_fast tk_fast_mono ____cacheline_aligned = { | 
|  | .base[0] = { .clock = &dummy_clock, }, | 
|  | .base[1] = { .clock = &dummy_clock, }, | 
|  | }; | 
|  |  | 
|  | static struct tk_fast tk_fast_raw  ____cacheline_aligned = { | 
|  | .base[0] = { .clock = &dummy_clock, }, | 
|  | .base[1] = { .clock = &dummy_clock, }, | 
|  | }; | 
|  |  | 
|  | /* flag for if timekeeping is suspended */ | 
|  | int __read_mostly timekeeping_suspended; | 
|  |  | 
|  | static inline void tk_normalize_xtime(struct timekeeper *tk) | 
|  | { | 
|  | while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { | 
|  | tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
|  | tk->xtime_sec++; | 
|  | } | 
|  | while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { | 
|  | tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; | 
|  | tk->raw_sec++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct timespec64 tk_xtime(struct timekeeper *tk) | 
|  | { | 
|  | struct timespec64 ts; | 
|  |  | 
|  | ts.tv_sec = tk->xtime_sec; | 
|  | ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
|  | return ts; | 
|  | } | 
|  |  | 
|  | static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) | 
|  | { | 
|  | tk->xtime_sec = ts->tv_sec; | 
|  | tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
|  | } | 
|  |  | 
|  | static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) | 
|  | { | 
|  | tk->xtime_sec += ts->tv_sec; | 
|  | tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
|  | tk_normalize_xtime(tk); | 
|  | } | 
|  |  | 
|  | static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) | 
|  | { | 
|  | struct timespec64 tmp; | 
|  |  | 
|  | /* | 
|  | * Verify consistency of: offset_real = -wall_to_monotonic | 
|  | * before modifying anything | 
|  | */ | 
|  | set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, | 
|  | -tk->wall_to_monotonic.tv_nsec); | 
|  | WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); | 
|  | tk->wall_to_monotonic = wtm; | 
|  | set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); | 
|  | tk->offs_real = timespec64_to_ktime(tmp); | 
|  | tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); | 
|  | } | 
|  |  | 
|  | static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) | 
|  | { | 
|  | /* Update both bases so mono and raw stay coupled. */ | 
|  | tk->tkr_mono.base += delta; | 
|  | tk->tkr_raw.base += delta; | 
|  |  | 
|  | /* Accumulate time spent in suspend */ | 
|  | tk->time_suspended += delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * tk_clock_read - atomic clocksource read() helper | 
|  | * | 
|  | * This helper is necessary to use in the read paths because, while the | 
|  | * seqlock ensures we don't return a bad value while structures are updated, | 
|  | * it doesn't protect from potential crashes. There is the possibility that | 
|  | * the tkr's clocksource may change between the read reference, and the | 
|  | * clock reference passed to the read function.  This can cause crashes if | 
|  | * the wrong clocksource is passed to the wrong read function. | 
|  | * This isn't necessary to use when holding the timekeeper_lock or doing | 
|  | * a read of the fast-timekeeper tkrs (which is protected by its own locking | 
|  | * and update logic). | 
|  | */ | 
|  | static inline u64 tk_clock_read(struct tk_read_base *tkr) | 
|  | { | 
|  | struct clocksource *clock = READ_ONCE(tkr->clock); | 
|  |  | 
|  | return clock->read(clock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_TIMEKEEPING | 
|  | #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ | 
|  |  | 
|  | static void timekeeping_check_update(struct timekeeper *tk, u64 offset) | 
|  | { | 
|  |  | 
|  | u64 max_cycles = tk->tkr_mono.clock->max_cycles; | 
|  | const char *name = tk->tkr_mono.clock->name; | 
|  |  | 
|  | if (offset > max_cycles) { | 
|  | printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", | 
|  | offset, name, max_cycles); | 
|  | printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); | 
|  | } else { | 
|  | if (offset > (max_cycles >> 1)) { | 
|  | printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", | 
|  | offset, name, max_cycles >> 1); | 
|  | printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tk->underflow_seen) { | 
|  | if (jiffies - tk->last_warning > WARNING_FREQ) { | 
|  | printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); | 
|  | printk_deferred("         Please report this, consider using a different clocksource, if possible.\n"); | 
|  | printk_deferred("         Your kernel is probably still fine.\n"); | 
|  | tk->last_warning = jiffies; | 
|  | } | 
|  | tk->underflow_seen = 0; | 
|  | } | 
|  |  | 
|  | if (tk->overflow_seen) { | 
|  | if (jiffies - tk->last_warning > WARNING_FREQ) { | 
|  | printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); | 
|  | printk_deferred("         Please report this, consider using a different clocksource, if possible.\n"); | 
|  | printk_deferred("         Your kernel is probably still fine.\n"); | 
|  | tk->last_warning = jiffies; | 
|  | } | 
|  | tk->overflow_seen = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | u64 now, last, mask, max, delta; | 
|  | unsigned int seq; | 
|  |  | 
|  | /* | 
|  | * Since we're called holding a seqlock, the data may shift | 
|  | * under us while we're doing the calculation. This can cause | 
|  | * false positives, since we'd note a problem but throw the | 
|  | * results away. So nest another seqlock here to atomically | 
|  | * grab the points we are checking with. | 
|  | */ | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | now = tk_clock_read(tkr); | 
|  | last = tkr->cycle_last; | 
|  | mask = tkr->mask; | 
|  | max = tkr->clock->max_cycles; | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | delta = clocksource_delta(now, last, mask); | 
|  |  | 
|  | /* | 
|  | * Try to catch underflows by checking if we are seeing small | 
|  | * mask-relative negative values. | 
|  | */ | 
|  | if (unlikely((~delta & mask) < (mask >> 3))) { | 
|  | tk->underflow_seen = 1; | 
|  | delta = 0; | 
|  | } | 
|  |  | 
|  | /* Cap delta value to the max_cycles values to avoid mult overflows */ | 
|  | if (unlikely(delta > max)) { | 
|  | tk->overflow_seen = 1; | 
|  | delta = tkr->clock->max_cycles; | 
|  | } | 
|  |  | 
|  | return delta; | 
|  | } | 
|  | #else | 
|  | static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) | 
|  | { | 
|  | } | 
|  | static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) | 
|  | { | 
|  | u64 cycle_now, delta; | 
|  |  | 
|  | /* read clocksource */ | 
|  | cycle_now = tk_clock_read(tkr); | 
|  |  | 
|  | /* calculate the delta since the last update_wall_time */ | 
|  | delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); | 
|  |  | 
|  | return delta; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * tk_setup_internals - Set up internals to use clocksource clock. | 
|  | * | 
|  | * @tk:		The target timekeeper to setup. | 
|  | * @clock:		Pointer to clocksource. | 
|  | * | 
|  | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | 
|  | * pair and interval request. | 
|  | * | 
|  | * Unless you're the timekeeping code, you should not be using this! | 
|  | */ | 
|  | static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) | 
|  | { | 
|  | u64 interval; | 
|  | u64 tmp, ntpinterval; | 
|  | struct clocksource *old_clock; | 
|  |  | 
|  | ++tk->cs_was_changed_seq; | 
|  | old_clock = tk->tkr_mono.clock; | 
|  | tk->tkr_mono.clock = clock; | 
|  | tk->tkr_mono.mask = clock->mask; | 
|  | tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); | 
|  |  | 
|  | tk->tkr_raw.clock = clock; | 
|  | tk->tkr_raw.mask = clock->mask; | 
|  | tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; | 
|  |  | 
|  | /* Do the ns -> cycle conversion first, using original mult */ | 
|  | tmp = NTP_INTERVAL_LENGTH; | 
|  | tmp <<= clock->shift; | 
|  | ntpinterval = tmp; | 
|  | tmp += clock->mult/2; | 
|  | do_div(tmp, clock->mult); | 
|  | if (tmp == 0) | 
|  | tmp = 1; | 
|  |  | 
|  | interval = (u64) tmp; | 
|  | tk->cycle_interval = interval; | 
|  |  | 
|  | /* Go back from cycles -> shifted ns */ | 
|  | tk->xtime_interval = interval * clock->mult; | 
|  | tk->xtime_remainder = ntpinterval - tk->xtime_interval; | 
|  | tk->raw_interval = interval * clock->mult; | 
|  |  | 
|  | /* if changing clocks, convert xtime_nsec shift units */ | 
|  | if (old_clock) { | 
|  | int shift_change = clock->shift - old_clock->shift; | 
|  | if (shift_change < 0) { | 
|  | tk->tkr_mono.xtime_nsec >>= -shift_change; | 
|  | tk->tkr_raw.xtime_nsec >>= -shift_change; | 
|  | } else { | 
|  | tk->tkr_mono.xtime_nsec <<= shift_change; | 
|  | tk->tkr_raw.xtime_nsec <<= shift_change; | 
|  | } | 
|  | } | 
|  |  | 
|  | tk->tkr_mono.shift = clock->shift; | 
|  | tk->tkr_raw.shift = clock->shift; | 
|  |  | 
|  | tk->ntp_error = 0; | 
|  | tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | 
|  | tk->ntp_tick = ntpinterval << tk->ntp_error_shift; | 
|  |  | 
|  | /* | 
|  | * The timekeeper keeps its own mult values for the currently | 
|  | * active clocksource. These value will be adjusted via NTP | 
|  | * to counteract clock drifting. | 
|  | */ | 
|  | tk->tkr_mono.mult = clock->mult; | 
|  | tk->tkr_raw.mult = clock->mult; | 
|  | tk->ntp_err_mult = 0; | 
|  | tk->skip_second_overflow = 0; | 
|  | } | 
|  |  | 
|  | /* Timekeeper helper functions. */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET | 
|  | static u32 default_arch_gettimeoffset(void) { return 0; } | 
|  | u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; | 
|  | #else | 
|  | static inline u32 arch_gettimeoffset(void) { return 0; } | 
|  | #endif | 
|  |  | 
|  | static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) | 
|  | { | 
|  | u64 nsec; | 
|  |  | 
|  | nsec = delta * tkr->mult + tkr->xtime_nsec; | 
|  | nsec >>= tkr->shift; | 
|  |  | 
|  | /* If arch requires, add in get_arch_timeoffset() */ | 
|  | return nsec + arch_gettimeoffset(); | 
|  | } | 
|  |  | 
|  | static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) | 
|  | { | 
|  | u64 delta; | 
|  |  | 
|  | delta = timekeeping_get_delta(tkr); | 
|  | return timekeeping_delta_to_ns(tkr, delta); | 
|  | } | 
|  |  | 
|  | static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) | 
|  | { | 
|  | u64 delta; | 
|  |  | 
|  | /* calculate the delta since the last update_wall_time */ | 
|  | delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); | 
|  | return timekeeping_delta_to_ns(tkr, delta); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. | 
|  | * @tkr: Timekeeping readout base from which we take the update | 
|  | * | 
|  | * We want to use this from any context including NMI and tracing / | 
|  | * instrumenting the timekeeping code itself. | 
|  | * | 
|  | * Employ the latch technique; see @raw_write_seqcount_latch. | 
|  | * | 
|  | * So if a NMI hits the update of base[0] then it will use base[1] | 
|  | * which is still consistent. In the worst case this can result is a | 
|  | * slightly wrong timestamp (a few nanoseconds). See | 
|  | * @ktime_get_mono_fast_ns. | 
|  | */ | 
|  | static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) | 
|  | { | 
|  | struct tk_read_base *base = tkf->base; | 
|  |  | 
|  | /* Force readers off to base[1] */ | 
|  | raw_write_seqcount_latch(&tkf->seq); | 
|  |  | 
|  | /* Update base[0] */ | 
|  | memcpy(base, tkr, sizeof(*base)); | 
|  |  | 
|  | /* Force readers back to base[0] */ | 
|  | raw_write_seqcount_latch(&tkf->seq); | 
|  |  | 
|  | /* Update base[1] */ | 
|  | memcpy(base + 1, base, sizeof(*base)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic | 
|  | * | 
|  | * This timestamp is not guaranteed to be monotonic across an update. | 
|  | * The timestamp is calculated by: | 
|  | * | 
|  | *	now = base_mono + clock_delta * slope | 
|  | * | 
|  | * So if the update lowers the slope, readers who are forced to the | 
|  | * not yet updated second array are still using the old steeper slope. | 
|  | * | 
|  | * tmono | 
|  | * ^ | 
|  | * |    o  n | 
|  | * |   o n | 
|  | * |  u | 
|  | * | o | 
|  | * |o | 
|  | * |12345678---> reader order | 
|  | * | 
|  | * o = old slope | 
|  | * u = update | 
|  | * n = new slope | 
|  | * | 
|  | * So reader 6 will observe time going backwards versus reader 5. | 
|  | * | 
|  | * While other CPUs are likely to be able observe that, the only way | 
|  | * for a CPU local observation is when an NMI hits in the middle of | 
|  | * the update. Timestamps taken from that NMI context might be ahead | 
|  | * of the following timestamps. Callers need to be aware of that and | 
|  | * deal with it. | 
|  | */ | 
|  | static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) | 
|  | { | 
|  | struct tk_read_base *tkr; | 
|  | unsigned int seq; | 
|  | u64 now; | 
|  |  | 
|  | do { | 
|  | seq = raw_read_seqcount_latch(&tkf->seq); | 
|  | tkr = tkf->base + (seq & 0x01); | 
|  | now = ktime_to_ns(tkr->base); | 
|  |  | 
|  | now += timekeeping_delta_to_ns(tkr, | 
|  | clocksource_delta( | 
|  | tk_clock_read(tkr), | 
|  | tkr->cycle_last, | 
|  | tkr->mask)); | 
|  | } while (read_seqcount_retry(&tkf->seq, seq)); | 
|  |  | 
|  | return now; | 
|  | } | 
|  |  | 
|  | u64 ktime_get_mono_fast_ns(void) | 
|  | { | 
|  | return __ktime_get_fast_ns(&tk_fast_mono); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); | 
|  |  | 
|  | u64 ktime_get_raw_fast_ns(void) | 
|  | { | 
|  | return __ktime_get_fast_ns(&tk_fast_raw); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); | 
|  |  | 
|  | /* | 
|  | * See comment for __ktime_get_fast_ns() vs. timestamp ordering | 
|  | */ | 
|  | static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) | 
|  | { | 
|  | struct tk_read_base *tkr; | 
|  | unsigned int seq; | 
|  | u64 now; | 
|  |  | 
|  | do { | 
|  | seq = raw_read_seqcount_latch(&tkf->seq); | 
|  | tkr = tkf->base + (seq & 0x01); | 
|  | now = ktime_to_ns(tkr->base_real); | 
|  |  | 
|  | now += timekeeping_delta_to_ns(tkr, | 
|  | clocksource_delta( | 
|  | tk_clock_read(tkr), | 
|  | tkr->cycle_last, | 
|  | tkr->mask)); | 
|  | } while (read_seqcount_retry(&tkf->seq, seq)); | 
|  |  | 
|  | return now; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. | 
|  | */ | 
|  | u64 ktime_get_real_fast_ns(void) | 
|  | { | 
|  | return __ktime_get_real_fast_ns(&tk_fast_mono); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); | 
|  |  | 
|  | /** | 
|  | * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. | 
|  | * @tk: Timekeeper to snapshot. | 
|  | * | 
|  | * It generally is unsafe to access the clocksource after timekeeping has been | 
|  | * suspended, so take a snapshot of the readout base of @tk and use it as the | 
|  | * fast timekeeper's readout base while suspended.  It will return the same | 
|  | * number of cycles every time until timekeeping is resumed at which time the | 
|  | * proper readout base for the fast timekeeper will be restored automatically. | 
|  | */ | 
|  | static void halt_fast_timekeeper(struct timekeeper *tk) | 
|  | { | 
|  | static struct tk_read_base tkr_dummy; | 
|  | struct tk_read_base *tkr = &tk->tkr_mono; | 
|  |  | 
|  | memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); | 
|  | cycles_at_suspend = tk_clock_read(tkr); | 
|  | tkr_dummy.clock = &dummy_clock; | 
|  | tkr_dummy.base_real = tkr->base + tk->offs_real; | 
|  | update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); | 
|  |  | 
|  | tkr = &tk->tkr_raw; | 
|  | memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); | 
|  | tkr_dummy.clock = &dummy_clock; | 
|  | update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); | 
|  | } | 
|  |  | 
|  | static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); | 
|  |  | 
|  | static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) | 
|  | { | 
|  | raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pvclock_gtod_register_notifier - register a pvclock timedata update listener | 
|  | */ | 
|  | int pvclock_gtod_register_notifier(struct notifier_block *nb) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); | 
|  | update_pvclock_gtod(tk, true); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); | 
|  |  | 
|  | /** | 
|  | * pvclock_gtod_unregister_notifier - unregister a pvclock | 
|  | * timedata update listener | 
|  | */ | 
|  | int pvclock_gtod_unregister_notifier(struct notifier_block *nb) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); | 
|  |  | 
|  | /* | 
|  | * tk_update_leap_state - helper to update the next_leap_ktime | 
|  | */ | 
|  | static inline void tk_update_leap_state(struct timekeeper *tk) | 
|  | { | 
|  | tk->next_leap_ktime = ntp_get_next_leap(); | 
|  | if (tk->next_leap_ktime != KTIME_MAX) | 
|  | /* Convert to monotonic time */ | 
|  | tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the ktime_t based scalar nsec members of the timekeeper | 
|  | */ | 
|  | static inline void tk_update_ktime_data(struct timekeeper *tk) | 
|  | { | 
|  | u64 seconds; | 
|  | u32 nsec; | 
|  |  | 
|  | /* | 
|  | * The xtime based monotonic readout is: | 
|  | *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); | 
|  | * The ktime based monotonic readout is: | 
|  | *	nsec = base_mono + now(); | 
|  | * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec | 
|  | */ | 
|  | seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); | 
|  | nsec = (u32) tk->wall_to_monotonic.tv_nsec; | 
|  | tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); | 
|  |  | 
|  | /* | 
|  | * The sum of the nanoseconds portions of xtime and | 
|  | * wall_to_monotonic can be greater/equal one second. Take | 
|  | * this into account before updating tk->ktime_sec. | 
|  | */ | 
|  | nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
|  | if (nsec >= NSEC_PER_SEC) | 
|  | seconds++; | 
|  | tk->ktime_sec = seconds; | 
|  |  | 
|  | /* Update the monotonic raw base */ | 
|  | tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); | 
|  | } | 
|  |  | 
|  | /* must hold timekeeper_lock */ | 
|  | static void timekeeping_update(struct timekeeper *tk, unsigned int action) | 
|  | { | 
|  | if (action & TK_CLEAR_NTP) { | 
|  | tk->ntp_error = 0; | 
|  | ntp_clear(); | 
|  | } | 
|  |  | 
|  | tk_update_leap_state(tk); | 
|  | tk_update_ktime_data(tk); | 
|  |  | 
|  | update_vsyscall(tk); | 
|  | update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); | 
|  |  | 
|  | tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; | 
|  | update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); | 
|  | update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw); | 
|  |  | 
|  | if (action & TK_CLOCK_WAS_SET) | 
|  | tk->clock_was_set_seq++; | 
|  | /* | 
|  | * The mirroring of the data to the shadow-timekeeper needs | 
|  | * to happen last here to ensure we don't over-write the | 
|  | * timekeeper structure on the next update with stale data | 
|  | */ | 
|  | if (action & TK_MIRROR) | 
|  | memcpy(&shadow_timekeeper, &tk_core.timekeeper, | 
|  | sizeof(tk_core.timekeeper)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_forward_now - update clock to the current time | 
|  | * | 
|  | * Forward the current clock to update its state since the last call to | 
|  | * update_wall_time(). This is useful before significant clock changes, | 
|  | * as it avoids having to deal with this time offset explicitly. | 
|  | */ | 
|  | static void timekeeping_forward_now(struct timekeeper *tk) | 
|  | { | 
|  | u64 cycle_now, delta; | 
|  |  | 
|  | cycle_now = tk_clock_read(&tk->tkr_mono); | 
|  | delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); | 
|  | tk->tkr_mono.cycle_last = cycle_now; | 
|  | tk->tkr_raw.cycle_last  = cycle_now; | 
|  |  | 
|  | tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; | 
|  |  | 
|  | /* If arch requires, add in get_arch_timeoffset() */ | 
|  | tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; | 
|  |  | 
|  |  | 
|  | tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; | 
|  |  | 
|  | /* If arch requires, add in get_arch_timeoffset() */ | 
|  | tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; | 
|  |  | 
|  | tk_normalize_xtime(tk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __getnstimeofday64 - Returns the time of day in a timespec64. | 
|  | * @ts:		pointer to the timespec to be set | 
|  | * | 
|  | * Updates the time of day in the timespec. | 
|  | * Returns 0 on success, or -ve when suspended (timespec will be undefined). | 
|  | */ | 
|  | int __getnstimeofday64(struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long seq; | 
|  | u64 nsecs; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | ts->tv_sec = tk->xtime_sec; | 
|  | nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | ts->tv_nsec = 0; | 
|  | timespec64_add_ns(ts, nsecs); | 
|  |  | 
|  | /* | 
|  | * Do not bail out early, in case there were callers still using | 
|  | * the value, even in the face of the WARN_ON. | 
|  | */ | 
|  | if (unlikely(timekeeping_suspended)) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__getnstimeofday64); | 
|  |  | 
|  | /** | 
|  | * getnstimeofday64 - Returns the time of day in a timespec64. | 
|  | * @ts:		pointer to the timespec64 to be set | 
|  | * | 
|  | * Returns the time of day in a timespec64 (WARN if suspended). | 
|  | */ | 
|  | void getnstimeofday64(struct timespec64 *ts) | 
|  | { | 
|  | WARN_ON(__getnstimeofday64(ts)); | 
|  | } | 
|  | EXPORT_SYMBOL(getnstimeofday64); | 
|  |  | 
|  | ktime_t ktime_get(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned int seq; | 
|  | ktime_t base; | 
|  | u64 nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | base = tk->tkr_mono.base; | 
|  | nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return ktime_add_ns(base, nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get); | 
|  |  | 
|  | u32 ktime_get_resolution_ns(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned int seq; | 
|  | u32 nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return nsecs; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); | 
|  |  | 
|  | static ktime_t *offsets[TK_OFFS_MAX] = { | 
|  | [TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real, | 
|  | [TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai, | 
|  | }; | 
|  |  | 
|  | ktime_t ktime_get_with_offset(enum tk_offsets offs) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned int seq; | 
|  | ktime_t base, *offset = offsets[offs]; | 
|  | u64 nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | base = ktime_add(tk->tkr_mono.base, *offset); | 
|  | nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return ktime_add_ns(base, nsecs); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_with_offset); | 
|  |  | 
|  | /** | 
|  | * ktime_mono_to_any() - convert mononotic time to any other time | 
|  | * @tmono:	time to convert. | 
|  | * @offs:	which offset to use | 
|  | */ | 
|  | ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) | 
|  | { | 
|  | ktime_t *offset = offsets[offs]; | 
|  | unsigned long seq; | 
|  | ktime_t tconv; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | tconv = ktime_add(tmono, *offset); | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return tconv; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_mono_to_any); | 
|  |  | 
|  | /** | 
|  | * ktime_get_raw - Returns the raw monotonic time in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_get_raw(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned int seq; | 
|  | ktime_t base; | 
|  | u64 nsecs; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | base = tk->tkr_raw.base; | 
|  | nsecs = timekeeping_get_ns(&tk->tkr_raw); | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return ktime_add_ns(base, nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_raw); | 
|  |  | 
|  | /** | 
|  | * ktime_get_ts64 - get the monotonic clock in timespec64 format | 
|  | * @ts:		pointer to timespec variable | 
|  | * | 
|  | * The function calculates the monotonic clock from the realtime | 
|  | * clock and the wall_to_monotonic offset and stores the result | 
|  | * in normalized timespec64 format in the variable pointed to by @ts. | 
|  | */ | 
|  | void ktime_get_ts64(struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct timespec64 tomono; | 
|  | unsigned int seq; | 
|  | u64 nsec; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | ts->tv_sec = tk->xtime_sec; | 
|  | nsec = timekeeping_get_ns(&tk->tkr_mono); | 
|  | tomono = tk->wall_to_monotonic; | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | ts->tv_sec += tomono.tv_sec; | 
|  | ts->tv_nsec = 0; | 
|  | timespec64_add_ns(ts, nsec + tomono.tv_nsec); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_ts64); | 
|  |  | 
|  | /** | 
|  | * ktime_get_active_ts64 - Get the active non-suspended monotonic clock | 
|  | * @ts:		pointer to timespec variable | 
|  | * | 
|  | * The function calculates the monotonic clock from the realtime clock and | 
|  | * the wall_to_monotonic offset, subtracts the accumulated suspend time and | 
|  | * stores the result in normalized timespec64 format in the variable | 
|  | * pointed to by @ts. | 
|  | */ | 
|  | void ktime_get_active_ts64(struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct timespec64 tomono, tsusp; | 
|  | u64 nsec, nssusp; | 
|  | unsigned int seq; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | ts->tv_sec = tk->xtime_sec; | 
|  | nsec = timekeeping_get_ns(&tk->tkr_mono); | 
|  | tomono = tk->wall_to_monotonic; | 
|  | nssusp = tk->time_suspended; | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | ts->tv_sec += tomono.tv_sec; | 
|  | ts->tv_nsec = 0; | 
|  | timespec64_add_ns(ts, nsec + tomono.tv_nsec); | 
|  | tsusp = ns_to_timespec64(nssusp); | 
|  | *ts = timespec64_sub(*ts, tsusp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC | 
|  | * | 
|  | * Returns the seconds portion of CLOCK_MONOTONIC with a single non | 
|  | * serialized read. tk->ktime_sec is of type 'unsigned long' so this | 
|  | * works on both 32 and 64 bit systems. On 32 bit systems the readout | 
|  | * covers ~136 years of uptime which should be enough to prevent | 
|  | * premature wrap arounds. | 
|  | */ | 
|  | time64_t ktime_get_seconds(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  | return tk->ktime_sec; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_seconds); | 
|  |  | 
|  | /** | 
|  | * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME | 
|  | * | 
|  | * Returns the wall clock seconds since 1970. This replaces the | 
|  | * get_seconds() interface which is not y2038 safe on 32bit systems. | 
|  | * | 
|  | * For 64bit systems the fast access to tk->xtime_sec is preserved. On | 
|  | * 32bit systems the access must be protected with the sequence | 
|  | * counter to provide "atomic" access to the 64bit tk->xtime_sec | 
|  | * value. | 
|  | */ | 
|  | time64_t ktime_get_real_seconds(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | time64_t seconds; | 
|  | unsigned int seq; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_64BIT)) | 
|  | return tk->xtime_sec; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | seconds = tk->xtime_sec; | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return seconds; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_real_seconds); | 
|  |  | 
|  | /** | 
|  | * __ktime_get_real_seconds - The same as ktime_get_real_seconds | 
|  | * but without the sequence counter protect. This internal function | 
|  | * is called just when timekeeping lock is already held. | 
|  | */ | 
|  | time64_t __ktime_get_real_seconds(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  |  | 
|  | return tk->xtime_sec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter | 
|  | * @systime_snapshot:	pointer to struct receiving the system time snapshot | 
|  | */ | 
|  | void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long seq; | 
|  | ktime_t base_raw; | 
|  | ktime_t base_real; | 
|  | u64 nsec_raw; | 
|  | u64 nsec_real; | 
|  | u64 now; | 
|  |  | 
|  | WARN_ON_ONCE(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | now = tk_clock_read(&tk->tkr_mono); | 
|  | systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; | 
|  | systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; | 
|  | base_real = ktime_add(tk->tkr_mono.base, | 
|  | tk_core.timekeeper.offs_real); | 
|  | base_raw = tk->tkr_raw.base; | 
|  | nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); | 
|  | nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now); | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | systime_snapshot->cycles = now; | 
|  | systime_snapshot->real = ktime_add_ns(base_real, nsec_real); | 
|  | systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_snapshot); | 
|  |  | 
|  | /* Scale base by mult/div checking for overflow */ | 
|  | static int scale64_check_overflow(u64 mult, u64 div, u64 *base) | 
|  | { | 
|  | u64 tmp, rem; | 
|  |  | 
|  | tmp = div64_u64_rem(*base, div, &rem); | 
|  |  | 
|  | if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || | 
|  | ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) | 
|  | return -EOVERFLOW; | 
|  | tmp *= mult; | 
|  | rem *= mult; | 
|  |  | 
|  | do_div(rem, div); | 
|  | *base = tmp + rem; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval | 
|  | * @history:			Snapshot representing start of history | 
|  | * @partial_history_cycles:	Cycle offset into history (fractional part) | 
|  | * @total_history_cycles:	Total history length in cycles | 
|  | * @discontinuity:		True indicates clock was set on history period | 
|  | * @ts:				Cross timestamp that should be adjusted using | 
|  | *	partial/total ratio | 
|  | * | 
|  | * Helper function used by get_device_system_crosststamp() to correct the | 
|  | * crosstimestamp corresponding to the start of the current interval to the | 
|  | * system counter value (timestamp point) provided by the driver. The | 
|  | * total_history_* quantities are the total history starting at the provided | 
|  | * reference point and ending at the start of the current interval. The cycle | 
|  | * count between the driver timestamp point and the start of the current | 
|  | * interval is partial_history_cycles. | 
|  | */ | 
|  | static int adjust_historical_crosststamp(struct system_time_snapshot *history, | 
|  | u64 partial_history_cycles, | 
|  | u64 total_history_cycles, | 
|  | bool discontinuity, | 
|  | struct system_device_crosststamp *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | u64 corr_raw, corr_real; | 
|  | bool interp_forward; | 
|  | int ret; | 
|  |  | 
|  | if (total_history_cycles == 0 || partial_history_cycles == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Interpolate shortest distance from beginning or end of history */ | 
|  | interp_forward = partial_history_cycles > total_history_cycles / 2; | 
|  | partial_history_cycles = interp_forward ? | 
|  | total_history_cycles - partial_history_cycles : | 
|  | partial_history_cycles; | 
|  |  | 
|  | /* | 
|  | * Scale the monotonic raw time delta by: | 
|  | *	partial_history_cycles / total_history_cycles | 
|  | */ | 
|  | corr_raw = (u64)ktime_to_ns( | 
|  | ktime_sub(ts->sys_monoraw, history->raw)); | 
|  | ret = scale64_check_overflow(partial_history_cycles, | 
|  | total_history_cycles, &corr_raw); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If there is a discontinuity in the history, scale monotonic raw | 
|  | *	correction by: | 
|  | *	mult(real)/mult(raw) yielding the realtime correction | 
|  | * Otherwise, calculate the realtime correction similar to monotonic | 
|  | *	raw calculation | 
|  | */ | 
|  | if (discontinuity) { | 
|  | corr_real = mul_u64_u32_div | 
|  | (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); | 
|  | } else { | 
|  | corr_real = (u64)ktime_to_ns( | 
|  | ktime_sub(ts->sys_realtime, history->real)); | 
|  | ret = scale64_check_overflow(partial_history_cycles, | 
|  | total_history_cycles, &corr_real); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Fixup monotonic raw and real time time values */ | 
|  | if (interp_forward) { | 
|  | ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); | 
|  | ts->sys_realtime = ktime_add_ns(history->real, corr_real); | 
|  | } else { | 
|  | ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); | 
|  | ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cycle_between - true if test occurs chronologically between before and after | 
|  | */ | 
|  | static bool cycle_between(u64 before, u64 test, u64 after) | 
|  | { | 
|  | if (test > before && test < after) | 
|  | return true; | 
|  | if (test < before && before > after) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_device_system_crosststamp - Synchronously capture system/device timestamp | 
|  | * @get_time_fn:	Callback to get simultaneous device time and | 
|  | *	system counter from the device driver | 
|  | * @ctx:		Context passed to get_time_fn() | 
|  | * @history_begin:	Historical reference point used to interpolate system | 
|  | *	time when counter provided by the driver is before the current interval | 
|  | * @xtstamp:		Receives simultaneously captured system and device time | 
|  | * | 
|  | * Reads a timestamp from a device and correlates it to system time | 
|  | */ | 
|  | int get_device_system_crosststamp(int (*get_time_fn) | 
|  | (ktime_t *device_time, | 
|  | struct system_counterval_t *sys_counterval, | 
|  | void *ctx), | 
|  | void *ctx, | 
|  | struct system_time_snapshot *history_begin, | 
|  | struct system_device_crosststamp *xtstamp) | 
|  | { | 
|  | struct system_counterval_t system_counterval; | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | u64 cycles, now, interval_start; | 
|  | unsigned int clock_was_set_seq = 0; | 
|  | ktime_t base_real, base_raw; | 
|  | u64 nsec_real, nsec_raw; | 
|  | u8 cs_was_changed_seq; | 
|  | unsigned long seq; | 
|  | bool do_interp; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | /* | 
|  | * Try to synchronously capture device time and a system | 
|  | * counter value calling back into the device driver | 
|  | */ | 
|  | ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Verify that the clocksource associated with the captured | 
|  | * system counter value is the same as the currently installed | 
|  | * timekeeper clocksource | 
|  | */ | 
|  | if (tk->tkr_mono.clock != system_counterval.cs) | 
|  | return -ENODEV; | 
|  | cycles = system_counterval.cycles; | 
|  |  | 
|  | /* | 
|  | * Check whether the system counter value provided by the | 
|  | * device driver is on the current timekeeping interval. | 
|  | */ | 
|  | now = tk_clock_read(&tk->tkr_mono); | 
|  | interval_start = tk->tkr_mono.cycle_last; | 
|  | if (!cycle_between(interval_start, cycles, now)) { | 
|  | clock_was_set_seq = tk->clock_was_set_seq; | 
|  | cs_was_changed_seq = tk->cs_was_changed_seq; | 
|  | cycles = interval_start; | 
|  | do_interp = true; | 
|  | } else { | 
|  | do_interp = false; | 
|  | } | 
|  |  | 
|  | base_real = ktime_add(tk->tkr_mono.base, | 
|  | tk_core.timekeeper.offs_real); | 
|  | base_raw = tk->tkr_raw.base; | 
|  |  | 
|  | nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, | 
|  | system_counterval.cycles); | 
|  | nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, | 
|  | system_counterval.cycles); | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); | 
|  | xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); | 
|  |  | 
|  | /* | 
|  | * Interpolate if necessary, adjusting back from the start of the | 
|  | * current interval | 
|  | */ | 
|  | if (do_interp) { | 
|  | u64 partial_history_cycles, total_history_cycles; | 
|  | bool discontinuity; | 
|  |  | 
|  | /* | 
|  | * Check that the counter value occurs after the provided | 
|  | * history reference and that the history doesn't cross a | 
|  | * clocksource change | 
|  | */ | 
|  | if (!history_begin || | 
|  | !cycle_between(history_begin->cycles, | 
|  | system_counterval.cycles, cycles) || | 
|  | history_begin->cs_was_changed_seq != cs_was_changed_seq) | 
|  | return -EINVAL; | 
|  | partial_history_cycles = cycles - system_counterval.cycles; | 
|  | total_history_cycles = cycles - history_begin->cycles; | 
|  | discontinuity = | 
|  | history_begin->clock_was_set_seq != clock_was_set_seq; | 
|  |  | 
|  | ret = adjust_historical_crosststamp(history_begin, | 
|  | partial_history_cycles, | 
|  | total_history_cycles, | 
|  | discontinuity, xtstamp); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_device_system_crosststamp); | 
|  |  | 
|  | /** | 
|  | * do_gettimeofday - Returns the time of day in a timeval | 
|  | * @tv:		pointer to the timeval to be set | 
|  | * | 
|  | * NOTE: Users should be converted to using getnstimeofday() | 
|  | */ | 
|  | void do_gettimeofday(struct timeval *tv) | 
|  | { | 
|  | struct timespec64 now; | 
|  |  | 
|  | getnstimeofday64(&now); | 
|  | tv->tv_sec = now.tv_sec; | 
|  | tv->tv_usec = now.tv_nsec/1000; | 
|  | } | 
|  | EXPORT_SYMBOL(do_gettimeofday); | 
|  |  | 
|  | /** | 
|  | * do_settimeofday64 - Sets the time of day. | 
|  | * @ts:     pointer to the timespec64 variable containing the new time | 
|  | * | 
|  | * Sets the time of day to the new time and update NTP and notify hrtimers | 
|  | */ | 
|  | int do_settimeofday64(const struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct timespec64 ts_delta, xt; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!timespec64_valid_strict(ts)) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | timekeeping_forward_now(tk); | 
|  |  | 
|  | xt = tk_xtime(tk); | 
|  | ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; | 
|  | ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; | 
|  |  | 
|  | if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); | 
|  |  | 
|  | tk_set_xtime(tk, ts); | 
|  | out: | 
|  | timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | /* signal hrtimers about time change */ | 
|  | clock_was_set(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(do_settimeofday64); | 
|  |  | 
|  | /** | 
|  | * timekeeping_inject_offset - Adds or subtracts from the current time. | 
|  | * @tv:		pointer to the timespec variable containing the offset | 
|  | * | 
|  | * Adds or subtracts an offset value from the current time. | 
|  | */ | 
|  | static int timekeeping_inject_offset(struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long flags; | 
|  | struct timespec64 tmp; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | timekeeping_forward_now(tk); | 
|  |  | 
|  | /* Make sure the proposed value is valid */ | 
|  | tmp = timespec64_add(tk_xtime(tk), *ts); | 
|  | if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || | 
|  | !timespec64_valid_strict(&tmp)) { | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | tk_xtime_add(tk, ts); | 
|  | tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); | 
|  |  | 
|  | error: /* even if we error out, we forwarded the time, so call update */ | 
|  | timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | /* signal hrtimers about time change */ | 
|  | clock_was_set(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Indicates if there is an offset between the system clock and the hardware | 
|  | * clock/persistent clock/rtc. | 
|  | */ | 
|  | int persistent_clock_is_local; | 
|  |  | 
|  | /* | 
|  | * Adjust the time obtained from the CMOS to be UTC time instead of | 
|  | * local time. | 
|  | * | 
|  | * This is ugly, but preferable to the alternatives.  Otherwise we | 
|  | * would either need to write a program to do it in /etc/rc (and risk | 
|  | * confusion if the program gets run more than once; it would also be | 
|  | * hard to make the program warp the clock precisely n hours)  or | 
|  | * compile in the timezone information into the kernel.  Bad, bad.... | 
|  | * | 
|  | *						- TYT, 1992-01-01 | 
|  | * | 
|  | * The best thing to do is to keep the CMOS clock in universal time (UTC) | 
|  | * as real UNIX machines always do it. This avoids all headaches about | 
|  | * daylight saving times and warping kernel clocks. | 
|  | */ | 
|  | void timekeeping_warp_clock(void) | 
|  | { | 
|  | if (sys_tz.tz_minuteswest != 0) { | 
|  | struct timespec64 adjust; | 
|  |  | 
|  | persistent_clock_is_local = 1; | 
|  | adjust.tv_sec = sys_tz.tz_minuteswest * 60; | 
|  | adjust.tv_nsec = 0; | 
|  | timekeeping_inject_offset(&adjust); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic | 
|  | * | 
|  | */ | 
|  | static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) | 
|  | { | 
|  | tk->tai_offset = tai_offset; | 
|  | tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * change_clocksource - Swaps clocksources if a new one is available | 
|  | * | 
|  | * Accumulates current time interval and initializes new clocksource | 
|  | */ | 
|  | static int change_clocksource(void *data) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct clocksource *new, *old; | 
|  | unsigned long flags; | 
|  |  | 
|  | new = (struct clocksource *) data; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | timekeeping_forward_now(tk); | 
|  | /* | 
|  | * If the cs is in module, get a module reference. Succeeds | 
|  | * for built-in code (owner == NULL) as well. | 
|  | */ | 
|  | if (try_module_get(new->owner)) { | 
|  | if (!new->enable || new->enable(new) == 0) { | 
|  | old = tk->tkr_mono.clock; | 
|  | tk_setup_internals(tk, new); | 
|  | if (old->disable) | 
|  | old->disable(old); | 
|  | module_put(old->owner); | 
|  | } else { | 
|  | module_put(new->owner); | 
|  | } | 
|  | } | 
|  | timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_notify - Install a new clock source | 
|  | * @clock:		pointer to the clock source | 
|  | * | 
|  | * This function is called from clocksource.c after a new, better clock | 
|  | * source has been registered. The caller holds the clocksource_mutex. | 
|  | */ | 
|  | int timekeeping_notify(struct clocksource *clock) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  |  | 
|  | if (tk->tkr_mono.clock == clock) | 
|  | return 0; | 
|  | stop_machine(change_clocksource, clock, NULL); | 
|  | tick_clock_notify(); | 
|  | return tk->tkr_mono.clock == clock ? 0 : -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * getrawmonotonic64 - Returns the raw monotonic time in a timespec | 
|  | * @ts:		pointer to the timespec64 to be set | 
|  | * | 
|  | * Returns the raw monotonic time (completely un-modified by ntp) | 
|  | */ | 
|  | void getrawmonotonic64(struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long seq; | 
|  | u64 nsecs; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  | ts->tv_sec = tk->raw_sec; | 
|  | nsecs = timekeeping_get_ns(&tk->tkr_raw); | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | ts->tv_nsec = 0; | 
|  | timespec64_add_ns(ts, nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL(getrawmonotonic64); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres | 
|  | */ | 
|  | int timekeeping_valid_for_hres(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long seq; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_max_deferment - Returns max time the clocksource can be deferred | 
|  | */ | 
|  | u64 timekeeping_max_deferment(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long seq; | 
|  | u64 ret; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | ret = tk->tkr_mono.clock->max_idle_ns; | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_persistent_clock -  Return time from the persistent clock. | 
|  | * | 
|  | * Weak dummy function for arches that do not yet support it. | 
|  | * Reads the time from the battery backed persistent clock. | 
|  | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | 
|  | * | 
|  | *  XXX - Do be sure to remove it once all arches implement it. | 
|  | */ | 
|  | void __weak read_persistent_clock(struct timespec *ts) | 
|  | { | 
|  | ts->tv_sec = 0; | 
|  | ts->tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | void __weak read_persistent_clock64(struct timespec64 *ts64) | 
|  | { | 
|  | struct timespec ts; | 
|  |  | 
|  | read_persistent_clock(&ts); | 
|  | *ts64 = timespec_to_timespec64(ts); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_boot_clock64 -  Return time of the system start. | 
|  | * | 
|  | * Weak dummy function for arches that do not yet support it. | 
|  | * Function to read the exact time the system has been started. | 
|  | * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. | 
|  | * | 
|  | *  XXX - Do be sure to remove it once all arches implement it. | 
|  | */ | 
|  | void __weak read_boot_clock64(struct timespec64 *ts) | 
|  | { | 
|  | ts->tv_sec = 0; | 
|  | ts->tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | /* Flag for if timekeeping_resume() has injected sleeptime */ | 
|  | static bool sleeptime_injected; | 
|  |  | 
|  | /* Flag for if there is a persistent clock on this platform */ | 
|  | static bool persistent_clock_exists; | 
|  |  | 
|  | /* | 
|  | * timekeeping_init - Initializes the clocksource and common timekeeping values | 
|  | */ | 
|  | void __init timekeeping_init(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct clocksource *clock; | 
|  | unsigned long flags; | 
|  | struct timespec64 now, boot, tmp; | 
|  |  | 
|  | read_persistent_clock64(&now); | 
|  | if (!timespec64_valid_strict(&now)) { | 
|  | pr_warn("WARNING: Persistent clock returned invalid value!\n" | 
|  | "         Check your CMOS/BIOS settings.\n"); | 
|  | now.tv_sec = 0; | 
|  | now.tv_nsec = 0; | 
|  | } else if (now.tv_sec || now.tv_nsec) | 
|  | persistent_clock_exists = true; | 
|  |  | 
|  | read_boot_clock64(&boot); | 
|  | if (!timespec64_valid_strict(&boot)) { | 
|  | pr_warn("WARNING: Boot clock returned invalid value!\n" | 
|  | "         Check your CMOS/BIOS settings.\n"); | 
|  | boot.tv_sec = 0; | 
|  | boot.tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  | ntp_init(); | 
|  |  | 
|  | clock = clocksource_default_clock(); | 
|  | if (clock->enable) | 
|  | clock->enable(clock); | 
|  | tk_setup_internals(tk, clock); | 
|  |  | 
|  | tk_set_xtime(tk, &now); | 
|  | tk->raw_sec = 0; | 
|  | if (boot.tv_sec == 0 && boot.tv_nsec == 0) | 
|  | boot = tk_xtime(tk); | 
|  |  | 
|  | set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); | 
|  | tk_set_wall_to_mono(tk, tmp); | 
|  |  | 
|  | timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  | } | 
|  |  | 
|  | /* time in seconds when suspend began for persistent clock */ | 
|  | static struct timespec64 timekeeping_suspend_time; | 
|  |  | 
|  | /** | 
|  | * __timekeeping_inject_sleeptime - Internal function to add sleep interval | 
|  | * @delta: pointer to a timespec delta value | 
|  | * | 
|  | * Takes a timespec offset measuring a suspend interval and properly | 
|  | * adds the sleep offset to the timekeeping variables. | 
|  | */ | 
|  | static void __timekeeping_inject_sleeptime(struct timekeeper *tk, | 
|  | struct timespec64 *delta) | 
|  | { | 
|  | if (!timespec64_valid_strict(delta)) { | 
|  | printk_deferred(KERN_WARNING | 
|  | "__timekeeping_inject_sleeptime: Invalid " | 
|  | "sleep delta value!\n"); | 
|  | return; | 
|  | } | 
|  | tk_xtime_add(tk, delta); | 
|  | tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); | 
|  | tk_debug_account_sleep_time(delta); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) | 
|  | /** | 
|  | * We have three kinds of time sources to use for sleep time | 
|  | * injection, the preference order is: | 
|  | * 1) non-stop clocksource | 
|  | * 2) persistent clock (ie: RTC accessible when irqs are off) | 
|  | * 3) RTC | 
|  | * | 
|  | * 1) and 2) are used by timekeeping, 3) by RTC subsystem. | 
|  | * If system has neither 1) nor 2), 3) will be used finally. | 
|  | * | 
|  | * | 
|  | * If timekeeping has injected sleeptime via either 1) or 2), | 
|  | * 3) becomes needless, so in this case we don't need to call | 
|  | * rtc_resume(), and this is what timekeeping_rtc_skipresume() | 
|  | * means. | 
|  | */ | 
|  | bool timekeeping_rtc_skipresume(void) | 
|  | { | 
|  | return sleeptime_injected; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * 1) can be determined whether to use or not only when doing | 
|  | * timekeeping_resume() which is invoked after rtc_suspend(), | 
|  | * so we can't skip rtc_suspend() surely if system has 1). | 
|  | * | 
|  | * But if system has 2), 2) will definitely be used, so in this | 
|  | * case we don't need to call rtc_suspend(), and this is what | 
|  | * timekeeping_rtc_skipsuspend() means. | 
|  | */ | 
|  | bool timekeeping_rtc_skipsuspend(void) | 
|  | { | 
|  | return persistent_clock_exists; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values | 
|  | * @delta: pointer to a timespec64 delta value | 
|  | * | 
|  | * This hook is for architectures that cannot support read_persistent_clock64 | 
|  | * because their RTC/persistent clock is only accessible when irqs are enabled. | 
|  | * and also don't have an effective nonstop clocksource. | 
|  | * | 
|  | * This function should only be called by rtc_resume(), and allows | 
|  | * a suspend offset to be injected into the timekeeping values. | 
|  | */ | 
|  | void timekeeping_inject_sleeptime64(struct timespec64 *delta) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | timekeeping_forward_now(tk); | 
|  |  | 
|  | __timekeeping_inject_sleeptime(tk, delta); | 
|  |  | 
|  | timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | /* signal hrtimers about time change */ | 
|  | clock_was_set(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 
|  | */ | 
|  | void timekeeping_resume(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct clocksource *clock = tk->tkr_mono.clock; | 
|  | unsigned long flags; | 
|  | struct timespec64 ts_new, ts_delta; | 
|  | u64 cycle_now; | 
|  |  | 
|  | sleeptime_injected = false; | 
|  | read_persistent_clock64(&ts_new); | 
|  |  | 
|  | clockevents_resume(); | 
|  | clocksource_resume(); | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | /* | 
|  | * After system resumes, we need to calculate the suspended time and | 
|  | * compensate it for the OS time. There are 3 sources that could be | 
|  | * used: Nonstop clocksource during suspend, persistent clock and rtc | 
|  | * device. | 
|  | * | 
|  | * One specific platform may have 1 or 2 or all of them, and the | 
|  | * preference will be: | 
|  | *	suspend-nonstop clocksource -> persistent clock -> rtc | 
|  | * The less preferred source will only be tried if there is no better | 
|  | * usable source. The rtc part is handled separately in rtc core code. | 
|  | */ | 
|  | cycle_now = tk_clock_read(&tk->tkr_mono); | 
|  | if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && | 
|  | cycle_now > tk->tkr_mono.cycle_last) { | 
|  | u64 nsec, cyc_delta; | 
|  |  | 
|  | cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, | 
|  | tk->tkr_mono.mask); | 
|  | nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); | 
|  | ts_delta = ns_to_timespec64(nsec); | 
|  | sleeptime_injected = true; | 
|  | } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { | 
|  | ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); | 
|  | sleeptime_injected = true; | 
|  | } | 
|  |  | 
|  | if (sleeptime_injected) | 
|  | __timekeeping_inject_sleeptime(tk, &ts_delta); | 
|  |  | 
|  | /* Re-base the last cycle value */ | 
|  | tk->tkr_mono.cycle_last = cycle_now; | 
|  | tk->tkr_raw.cycle_last  = cycle_now; | 
|  |  | 
|  | tk->ntp_error = 0; | 
|  | timekeeping_suspended = 0; | 
|  | timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | touch_softlockup_watchdog(); | 
|  |  | 
|  | tick_resume(); | 
|  | hrtimers_resume(); | 
|  | } | 
|  |  | 
|  | int timekeeping_suspend(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long flags; | 
|  | struct timespec64		delta, delta_delta; | 
|  | static struct timespec64	old_delta; | 
|  |  | 
|  | read_persistent_clock64(&timekeeping_suspend_time); | 
|  |  | 
|  | /* | 
|  | * On some systems the persistent_clock can not be detected at | 
|  | * timekeeping_init by its return value, so if we see a valid | 
|  | * value returned, update the persistent_clock_exists flag. | 
|  | */ | 
|  | if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) | 
|  | persistent_clock_exists = true; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  | timekeeping_forward_now(tk); | 
|  | timekeeping_suspended = 1; | 
|  |  | 
|  | if (persistent_clock_exists) { | 
|  | /* | 
|  | * To avoid drift caused by repeated suspend/resumes, | 
|  | * which each can add ~1 second drift error, | 
|  | * try to compensate so the difference in system time | 
|  | * and persistent_clock time stays close to constant. | 
|  | */ | 
|  | delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); | 
|  | delta_delta = timespec64_sub(delta, old_delta); | 
|  | if (abs(delta_delta.tv_sec) >= 2) { | 
|  | /* | 
|  | * if delta_delta is too large, assume time correction | 
|  | * has occurred and set old_delta to the current delta. | 
|  | */ | 
|  | old_delta = delta; | 
|  | } else { | 
|  | /* Otherwise try to adjust old_system to compensate */ | 
|  | timekeeping_suspend_time = | 
|  | timespec64_add(timekeeping_suspend_time, delta_delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | timekeeping_update(tk, TK_MIRROR); | 
|  | halt_fast_timekeeper(tk); | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | tick_suspend(); | 
|  | clocksource_suspend(); | 
|  | clockevents_suspend(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* sysfs resume/suspend bits for timekeeping */ | 
|  | static struct syscore_ops timekeeping_syscore_ops = { | 
|  | .resume		= timekeeping_resume, | 
|  | .suspend	= timekeeping_suspend, | 
|  | }; | 
|  |  | 
|  | static int __init timekeeping_init_ops(void) | 
|  | { | 
|  | register_syscore_ops(&timekeeping_syscore_ops); | 
|  | return 0; | 
|  | } | 
|  | device_initcall(timekeeping_init_ops); | 
|  |  | 
|  | /* | 
|  | * Apply a multiplier adjustment to the timekeeper | 
|  | */ | 
|  | static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, | 
|  | s64 offset, | 
|  | s32 mult_adj) | 
|  | { | 
|  | s64 interval = tk->cycle_interval; | 
|  |  | 
|  | if (mult_adj == 0) { | 
|  | return; | 
|  | } else if (mult_adj == -1) { | 
|  | interval = -interval; | 
|  | offset = -offset; | 
|  | } else if (mult_adj != 1) { | 
|  | interval *= mult_adj; | 
|  | offset *= mult_adj; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * So the following can be confusing. | 
|  | * | 
|  | * To keep things simple, lets assume mult_adj == 1 for now. | 
|  | * | 
|  | * When mult_adj != 1, remember that the interval and offset values | 
|  | * have been appropriately scaled so the math is the same. | 
|  | * | 
|  | * The basic idea here is that we're increasing the multiplier | 
|  | * by one, this causes the xtime_interval to be incremented by | 
|  | * one cycle_interval. This is because: | 
|  | *	xtime_interval = cycle_interval * mult | 
|  | * So if mult is being incremented by one: | 
|  | *	xtime_interval = cycle_interval * (mult + 1) | 
|  | * Its the same as: | 
|  | *	xtime_interval = (cycle_interval * mult) + cycle_interval | 
|  | * Which can be shortened to: | 
|  | *	xtime_interval += cycle_interval | 
|  | * | 
|  | * So offset stores the non-accumulated cycles. Thus the current | 
|  | * time (in shifted nanoseconds) is: | 
|  | *	now = (offset * adj) + xtime_nsec | 
|  | * Now, even though we're adjusting the clock frequency, we have | 
|  | * to keep time consistent. In other words, we can't jump back | 
|  | * in time, and we also want to avoid jumping forward in time. | 
|  | * | 
|  | * So given the same offset value, we need the time to be the same | 
|  | * both before and after the freq adjustment. | 
|  | *	now = (offset * adj_1) + xtime_nsec_1 | 
|  | *	now = (offset * adj_2) + xtime_nsec_2 | 
|  | * So: | 
|  | *	(offset * adj_1) + xtime_nsec_1 = | 
|  | *		(offset * adj_2) + xtime_nsec_2 | 
|  | * And we know: | 
|  | *	adj_2 = adj_1 + 1 | 
|  | * So: | 
|  | *	(offset * adj_1) + xtime_nsec_1 = | 
|  | *		(offset * (adj_1+1)) + xtime_nsec_2 | 
|  | *	(offset * adj_1) + xtime_nsec_1 = | 
|  | *		(offset * adj_1) + offset + xtime_nsec_2 | 
|  | * Canceling the sides: | 
|  | *	xtime_nsec_1 = offset + xtime_nsec_2 | 
|  | * Which gives us: | 
|  | *	xtime_nsec_2 = xtime_nsec_1 - offset | 
|  | * Which simplfies to: | 
|  | *	xtime_nsec -= offset | 
|  | */ | 
|  | if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { | 
|  | /* NTP adjustment caused clocksource mult overflow */ | 
|  | WARN_ON_ONCE(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tk->tkr_mono.mult += mult_adj; | 
|  | tk->xtime_interval += interval; | 
|  | tk->tkr_mono.xtime_nsec -= offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the timekeeper's multiplier to the correct frequency | 
|  | * and also to reduce the accumulated error value. | 
|  | */ | 
|  | static void timekeeping_adjust(struct timekeeper *tk, s64 offset) | 
|  | { | 
|  | u32 mult; | 
|  |  | 
|  | /* | 
|  | * Determine the multiplier from the current NTP tick length. | 
|  | * Avoid expensive division when the tick length doesn't change. | 
|  | */ | 
|  | if (likely(tk->ntp_tick == ntp_tick_length())) { | 
|  | mult = tk->tkr_mono.mult - tk->ntp_err_mult; | 
|  | } else { | 
|  | tk->ntp_tick = ntp_tick_length(); | 
|  | mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - | 
|  | tk->xtime_remainder, tk->cycle_interval); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the clock is behind the NTP time, increase the multiplier by 1 | 
|  | * to catch up with it. If it's ahead and there was a remainder in the | 
|  | * tick division, the clock will slow down. Otherwise it will stay | 
|  | * ahead until the tick length changes to a non-divisible value. | 
|  | */ | 
|  | tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; | 
|  | mult += tk->ntp_err_mult; | 
|  |  | 
|  | timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); | 
|  |  | 
|  | if (unlikely(tk->tkr_mono.clock->maxadj && | 
|  | (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) | 
|  | > tk->tkr_mono.clock->maxadj))) { | 
|  | printk_once(KERN_WARNING | 
|  | "Adjusting %s more than 11%% (%ld vs %ld)\n", | 
|  | tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, | 
|  | (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It may be possible that when we entered this function, xtime_nsec | 
|  | * was very small.  Further, if we're slightly speeding the clocksource | 
|  | * in the code above, its possible the required corrective factor to | 
|  | * xtime_nsec could cause it to underflow. | 
|  | * | 
|  | * Now, since we have already accumulated the second and the NTP | 
|  | * subsystem has been notified via second_overflow(), we need to skip | 
|  | * the next update. | 
|  | */ | 
|  | if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { | 
|  | tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << | 
|  | tk->tkr_mono.shift; | 
|  | tk->xtime_sec--; | 
|  | tk->skip_second_overflow = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * accumulate_nsecs_to_secs - Accumulates nsecs into secs | 
|  | * | 
|  | * Helper function that accumulates the nsecs greater than a second | 
|  | * from the xtime_nsec field to the xtime_secs field. | 
|  | * It also calls into the NTP code to handle leapsecond processing. | 
|  | * | 
|  | */ | 
|  | static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) | 
|  | { | 
|  | u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
|  | unsigned int clock_set = 0; | 
|  |  | 
|  | while (tk->tkr_mono.xtime_nsec >= nsecps) { | 
|  | int leap; | 
|  |  | 
|  | tk->tkr_mono.xtime_nsec -= nsecps; | 
|  | tk->xtime_sec++; | 
|  |  | 
|  | /* | 
|  | * Skip NTP update if this second was accumulated before, | 
|  | * i.e. xtime_nsec underflowed in timekeeping_adjust() | 
|  | */ | 
|  | if (unlikely(tk->skip_second_overflow)) { | 
|  | tk->skip_second_overflow = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Figure out if its a leap sec and apply if needed */ | 
|  | leap = second_overflow(tk->xtime_sec); | 
|  | if (unlikely(leap)) { | 
|  | struct timespec64 ts; | 
|  |  | 
|  | tk->xtime_sec += leap; | 
|  |  | 
|  | ts.tv_sec = leap; | 
|  | ts.tv_nsec = 0; | 
|  | tk_set_wall_to_mono(tk, | 
|  | timespec64_sub(tk->wall_to_monotonic, ts)); | 
|  |  | 
|  | __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); | 
|  |  | 
|  | clock_set = TK_CLOCK_WAS_SET; | 
|  | } | 
|  | } | 
|  | return clock_set; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * logarithmic_accumulation - shifted accumulation of cycles | 
|  | * | 
|  | * This functions accumulates a shifted interval of cycles into | 
|  | * into a shifted interval nanoseconds. Allows for O(log) accumulation | 
|  | * loop. | 
|  | * | 
|  | * Returns the unconsumed cycles. | 
|  | */ | 
|  | static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, | 
|  | u32 shift, unsigned int *clock_set) | 
|  | { | 
|  | u64 interval = tk->cycle_interval << shift; | 
|  | u64 snsec_per_sec; | 
|  |  | 
|  | /* If the offset is smaller than a shifted interval, do nothing */ | 
|  | if (offset < interval) | 
|  | return offset; | 
|  |  | 
|  | /* Accumulate one shifted interval */ | 
|  | offset -= interval; | 
|  | tk->tkr_mono.cycle_last += interval; | 
|  | tk->tkr_raw.cycle_last  += interval; | 
|  |  | 
|  | tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; | 
|  | *clock_set |= accumulate_nsecs_to_secs(tk); | 
|  |  | 
|  | /* Accumulate raw time */ | 
|  | tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; | 
|  | snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; | 
|  | while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { | 
|  | tk->tkr_raw.xtime_nsec -= snsec_per_sec; | 
|  | tk->raw_sec++; | 
|  | } | 
|  |  | 
|  | /* Accumulate error between NTP and clock interval */ | 
|  | tk->ntp_error += tk->ntp_tick << shift; | 
|  | tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << | 
|  | (tk->ntp_error_shift + shift); | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_wall_time - Uses the current clocksource to increment the wall time | 
|  | * | 
|  | */ | 
|  | void update_wall_time(void) | 
|  | { | 
|  | struct timekeeper *real_tk = &tk_core.timekeeper; | 
|  | struct timekeeper *tk = &shadow_timekeeper; | 
|  | u64 offset; | 
|  | int shift = 0, maxshift; | 
|  | unsigned int clock_set = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  |  | 
|  | /* Make sure we're fully resumed: */ | 
|  | if (unlikely(timekeeping_suspended)) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET | 
|  | offset = real_tk->cycle_interval; | 
|  | #else | 
|  | offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), | 
|  | tk->tkr_mono.cycle_last, tk->tkr_mono.mask); | 
|  | #endif | 
|  |  | 
|  | /* Check if there's really nothing to do */ | 
|  | if (offset < real_tk->cycle_interval) | 
|  | goto out; | 
|  |  | 
|  | /* Do some additional sanity checking */ | 
|  | timekeeping_check_update(tk, offset); | 
|  |  | 
|  | /* | 
|  | * With NO_HZ we may have to accumulate many cycle_intervals | 
|  | * (think "ticks") worth of time at once. To do this efficiently, | 
|  | * we calculate the largest doubling multiple of cycle_intervals | 
|  | * that is smaller than the offset.  We then accumulate that | 
|  | * chunk in one go, and then try to consume the next smaller | 
|  | * doubled multiple. | 
|  | */ | 
|  | shift = ilog2(offset) - ilog2(tk->cycle_interval); | 
|  | shift = max(0, shift); | 
|  | /* Bound shift to one less than what overflows tick_length */ | 
|  | maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; | 
|  | shift = min(shift, maxshift); | 
|  | while (offset >= tk->cycle_interval) { | 
|  | offset = logarithmic_accumulation(tk, offset, shift, | 
|  | &clock_set); | 
|  | if (offset < tk->cycle_interval<<shift) | 
|  | shift--; | 
|  | } | 
|  |  | 
|  | /* Adjust the multiplier to correct NTP error */ | 
|  | timekeeping_adjust(tk, offset); | 
|  |  | 
|  | /* | 
|  | * Finally, make sure that after the rounding | 
|  | * xtime_nsec isn't larger than NSEC_PER_SEC | 
|  | */ | 
|  | clock_set |= accumulate_nsecs_to_secs(tk); | 
|  |  | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  | /* | 
|  | * Update the real timekeeper. | 
|  | * | 
|  | * We could avoid this memcpy by switching pointers, but that | 
|  | * requires changes to all other timekeeper usage sites as | 
|  | * well, i.e. move the timekeeper pointer getter into the | 
|  | * spinlocked/seqcount protected sections. And we trade this | 
|  | * memcpy under the tk_core.seq against one before we start | 
|  | * updating. | 
|  | */ | 
|  | timekeeping_update(tk, clock_set); | 
|  | memcpy(real_tk, tk, sizeof(*tk)); | 
|  | /* The memcpy must come last. Do not put anything here! */ | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | out: | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  | if (clock_set) | 
|  | /* Have to call _delayed version, since in irq context*/ | 
|  | clock_was_set_delayed(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * getboottime64 - Return the real time of system boot. | 
|  | * @ts:		pointer to the timespec64 to be set | 
|  | * | 
|  | * Returns the wall-time of boot in a timespec64. | 
|  | * | 
|  | * This is based on the wall_to_monotonic offset and the total suspend | 
|  | * time. Calls to settimeofday will affect the value returned (which | 
|  | * basically means that however wrong your real time clock is at boot time, | 
|  | * you get the right time here). | 
|  | */ | 
|  | void getboottime64(struct timespec64 *ts) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended); | 
|  |  | 
|  | *ts = ktime_to_timespec64(t); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(getboottime64); | 
|  |  | 
|  | unsigned long get_seconds(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  |  | 
|  | return tk->xtime_sec; | 
|  | } | 
|  | EXPORT_SYMBOL(get_seconds); | 
|  |  | 
|  | struct timespec __current_kernel_time(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  |  | 
|  | return timespec64_to_timespec(tk_xtime(tk)); | 
|  | } | 
|  |  | 
|  | struct timespec64 current_kernel_time64(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct timespec64 now; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | now = tk_xtime(tk); | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return now; | 
|  | } | 
|  | EXPORT_SYMBOL(current_kernel_time64); | 
|  |  | 
|  | struct timespec64 get_monotonic_coarse64(void) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | struct timespec64 now, mono; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | now = tk_xtime(tk); | 
|  | mono = tk->wall_to_monotonic; | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, | 
|  | now.tv_nsec + mono.tv_nsec); | 
|  |  | 
|  | return now; | 
|  | } | 
|  | EXPORT_SYMBOL(get_monotonic_coarse64); | 
|  |  | 
|  | /* | 
|  | * Must hold jiffies_lock | 
|  | */ | 
|  | void do_timer(unsigned long ticks) | 
|  | { | 
|  | jiffies_64 += ticks; | 
|  | calc_global_load(ticks); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_get_update_offsets_now - hrtimer helper | 
|  | * @cwsseq:	pointer to check and store the clock was set sequence number | 
|  | * @offs_real:	pointer to storage for monotonic -> realtime offset | 
|  | * @offs_tai:	pointer to storage for monotonic -> clock tai offset | 
|  | * | 
|  | * Returns current monotonic time and updates the offsets if the | 
|  | * sequence number in @cwsseq and timekeeper.clock_was_set_seq are | 
|  | * different. | 
|  | * | 
|  | * Called from hrtimer_interrupt() or retrigger_next_event() | 
|  | */ | 
|  | ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, | 
|  | ktime_t *offs_tai) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned int seq; | 
|  | ktime_t base; | 
|  | u64 nsecs; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | base = tk->tkr_mono.base; | 
|  | nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
|  | base = ktime_add_ns(base, nsecs); | 
|  |  | 
|  | if (*cwsseq != tk->clock_was_set_seq) { | 
|  | *cwsseq = tk->clock_was_set_seq; | 
|  | *offs_real = tk->offs_real; | 
|  | *offs_tai = tk->offs_tai; | 
|  | } | 
|  |  | 
|  | /* Handle leapsecond insertion adjustments */ | 
|  | if (unlikely(base >= tk->next_leap_ktime)) | 
|  | *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); | 
|  |  | 
|  | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|  |  | 
|  | return base; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex | 
|  | */ | 
|  | static int timekeeping_validate_timex(struct timex *txc) | 
|  | { | 
|  | if (txc->modes & ADJ_ADJTIME) { | 
|  | /* singleshot must not be used with any other mode bits */ | 
|  | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) | 
|  | return -EINVAL; | 
|  | if (!(txc->modes & ADJ_OFFSET_READONLY) && | 
|  | !capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  | } else { | 
|  | /* In order to modify anything, you gotta be super-user! */ | 
|  | if (txc->modes && !capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  | /* | 
|  | * if the quartz is off by more than 10% then | 
|  | * something is VERY wrong! | 
|  | */ | 
|  | if (txc->modes & ADJ_TICK && | 
|  | (txc->tick <  900000/USER_HZ || | 
|  | txc->tick > 1100000/USER_HZ)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_SETOFFSET) { | 
|  | /* In order to inject time, you gotta be super-user! */ | 
|  | if (!capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Validate if a timespec/timeval used to inject a time | 
|  | * offset is valid.  Offsets can be postive or negative, so | 
|  | * we don't check tv_sec. The value of the timeval/timespec | 
|  | * is the sum of its fields,but *NOTE*: | 
|  | * The field tv_usec/tv_nsec must always be non-negative and | 
|  | * we can't have more nanoseconds/microseconds than a second. | 
|  | */ | 
|  | if (txc->time.tv_usec < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (txc->modes & ADJ_NANO) { | 
|  | if (txc->time.tv_usec >= NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | if (txc->time.tv_usec >= USEC_PER_SEC) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for potential multiplication overflows that can | 
|  | * only happen on 64-bit systems: | 
|  | */ | 
|  | if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { | 
|  | if (LLONG_MIN / PPM_SCALE > txc->freq) | 
|  | return -EINVAL; | 
|  | if (LLONG_MAX / PPM_SCALE < txc->freq) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * do_adjtimex() - Accessor function to NTP __do_adjtimex function | 
|  | */ | 
|  | int do_adjtimex(struct timex *txc) | 
|  | { | 
|  | struct timekeeper *tk = &tk_core.timekeeper; | 
|  | unsigned long flags; | 
|  | struct timespec64 ts; | 
|  | s32 orig_tai, tai; | 
|  | int ret; | 
|  |  | 
|  | /* Validate the data before disabling interrupts */ | 
|  | ret = timekeeping_validate_timex(txc); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (txc->modes & ADJ_SETOFFSET) { | 
|  | struct timespec64 delta; | 
|  | delta.tv_sec  = txc->time.tv_sec; | 
|  | delta.tv_nsec = txc->time.tv_usec; | 
|  | if (!(txc->modes & ADJ_NANO)) | 
|  | delta.tv_nsec *= 1000; | 
|  | ret = timekeeping_inject_offset(&delta); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | getnstimeofday64(&ts); | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | orig_tai = tai = tk->tai_offset; | 
|  | ret = __do_adjtimex(txc, &ts, &tai); | 
|  |  | 
|  | if (tai != orig_tai) { | 
|  | __timekeeping_set_tai_offset(tk, tai); | 
|  | timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
|  | } | 
|  | tk_update_leap_state(tk); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  |  | 
|  | if (tai != orig_tai) | 
|  | clock_was_set(); | 
|  |  | 
|  | ntp_notify_cmos_timer(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NTP_PPS | 
|  | /** | 
|  | * hardpps() - Accessor function to NTP __hardpps function | 
|  | */ | 
|  | void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
|  | write_seqcount_begin(&tk_core.seq); | 
|  |  | 
|  | __hardpps(phase_ts, raw_ts); | 
|  |  | 
|  | write_seqcount_end(&tk_core.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(hardpps); | 
|  | #endif /* CONFIG_NTP_PPS */ | 
|  |  | 
|  | /** | 
|  | * xtime_update() - advances the timekeeping infrastructure | 
|  | * @ticks:	number of ticks, that have elapsed since the last call. | 
|  | * | 
|  | * Must be called with interrupts disabled. | 
|  | */ | 
|  | void xtime_update(unsigned long ticks) | 
|  | { | 
|  | write_seqlock(&jiffies_lock); | 
|  | do_timer(ticks); | 
|  | write_sequnlock(&jiffies_lock); | 
|  | update_wall_time(); | 
|  | } |