| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * 2002-10-15 Posix Clocks & timers |
| * by George Anzinger george@mvista.com |
| * Copyright (C) 2002 2003 by MontaVista Software. |
| * |
| * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. |
| * Copyright (C) 2004 Boris Hu |
| * |
| * These are all the functions necessary to implement POSIX clocks & timers |
| */ |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/time.h> |
| #include <linux/mutex.h> |
| #include <linux/sched/task.h> |
| |
| #include <linux/uaccess.h> |
| #include <linux/list.h> |
| #include <linux/init.h> |
| #include <linux/compiler.h> |
| #include <linux/hash.h> |
| #include <linux/posix-clock.h> |
| #include <linux/posix-timers.h> |
| #include <linux/syscalls.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| #include <linux/export.h> |
| #include <linux/hashtable.h> |
| #include <linux/compat.h> |
| #include <linux/nospec.h> |
| #include <linux/time_namespace.h> |
| |
| #include "timekeeping.h" |
| #include "posix-timers.h" |
| |
| static struct kmem_cache *posix_timers_cache; |
| |
| /* |
| * Timers are managed in a hash table for lockless lookup. The hash key is |
| * constructed from current::signal and the timer ID and the timer is |
| * matched against current::signal and the timer ID when walking the hash |
| * bucket list. |
| * |
| * This allows checkpoint/restore to reconstruct the exact timer IDs for |
| * a process. |
| */ |
| static DEFINE_HASHTABLE(posix_timers_hashtable, 9); |
| static DEFINE_SPINLOCK(hash_lock); |
| |
| static const struct k_clock * const posix_clocks[]; |
| static const struct k_clock *clockid_to_kclock(const clockid_t id); |
| static const struct k_clock clock_realtime, clock_monotonic; |
| |
| /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */ |
| #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ |
| ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) |
| #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" |
| #endif |
| |
| static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
| |
| #define lock_timer(tid, flags) \ |
| ({ struct k_itimer *__timr; \ |
| __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ |
| __timr; \ |
| }) |
| |
| static int hash(struct signal_struct *sig, unsigned int nr) |
| { |
| return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); |
| } |
| |
| static struct k_itimer *__posix_timers_find(struct hlist_head *head, |
| struct signal_struct *sig, |
| timer_t id) |
| { |
| struct k_itimer *timer; |
| |
| hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) { |
| /* timer->it_signal can be set concurrently */ |
| if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id)) |
| return timer; |
| } |
| return NULL; |
| } |
| |
| static struct k_itimer *posix_timer_by_id(timer_t id) |
| { |
| struct signal_struct *sig = current->signal; |
| struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; |
| |
| return __posix_timers_find(head, sig, id); |
| } |
| |
| static int posix_timer_add(struct k_itimer *timer) |
| { |
| struct signal_struct *sig = current->signal; |
| struct hlist_head *head; |
| unsigned int cnt, id; |
| |
| /* |
| * FIXME: Replace this by a per signal struct xarray once there is |
| * a plan to handle the resulting CRIU regression gracefully. |
| */ |
| for (cnt = 0; cnt <= INT_MAX; cnt++) { |
| spin_lock(&hash_lock); |
| id = sig->next_posix_timer_id; |
| |
| /* Write the next ID back. Clamp it to the positive space */ |
| sig->next_posix_timer_id = (id + 1) & INT_MAX; |
| |
| head = &posix_timers_hashtable[hash(sig, id)]; |
| if (!__posix_timers_find(head, sig, id)) { |
| hlist_add_head_rcu(&timer->t_hash, head); |
| spin_unlock(&hash_lock); |
| return id; |
| } |
| spin_unlock(&hash_lock); |
| } |
| /* POSIX return code when no timer ID could be allocated */ |
| return -EAGAIN; |
| } |
| |
| static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
| { |
| spin_unlock_irqrestore(&timr->it_lock, flags); |
| } |
| |
| static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_real_ts64(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_realtime_ktime(clockid_t which_clock) |
| { |
| return ktime_get_real(); |
| } |
| |
| static int posix_clock_realtime_set(const clockid_t which_clock, |
| const struct timespec64 *tp) |
| { |
| return do_sys_settimeofday64(tp, NULL); |
| } |
| |
| static int posix_clock_realtime_adj(const clockid_t which_clock, |
| struct __kernel_timex *t) |
| { |
| return do_adjtimex(t); |
| } |
| |
| static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_ts64(tp); |
| timens_add_monotonic(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) |
| { |
| return ktime_get(); |
| } |
| |
| static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_raw_ts64(tp); |
| timens_add_monotonic(tp); |
| return 0; |
| } |
| |
| static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_coarse_real_ts64(tp); |
| return 0; |
| } |
| |
| static int posix_get_monotonic_coarse(clockid_t which_clock, |
| struct timespec64 *tp) |
| { |
| ktime_get_coarse_ts64(tp); |
| timens_add_monotonic(tp); |
| return 0; |
| } |
| |
| static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) |
| { |
| *tp = ktime_to_timespec64(KTIME_LOW_RES); |
| return 0; |
| } |
| |
| static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_boottime_ts64(tp); |
| timens_add_boottime(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) |
| { |
| return ktime_get_boottime(); |
| } |
| |
| static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_clocktai_ts64(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_tai_ktime(clockid_t which_clock) |
| { |
| return ktime_get_clocktai(); |
| } |
| |
| static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) |
| { |
| tp->tv_sec = 0; |
| tp->tv_nsec = hrtimer_resolution; |
| return 0; |
| } |
| |
| static __init int init_posix_timers(void) |
| { |
| posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| sizeof(struct k_itimer), 0, |
| SLAB_PANIC | SLAB_ACCOUNT, NULL); |
| return 0; |
| } |
| __initcall(init_posix_timers); |
| |
| /* |
| * The siginfo si_overrun field and the return value of timer_getoverrun(2) |
| * are of type int. Clamp the overrun value to INT_MAX |
| */ |
| static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) |
| { |
| s64 sum = timr->it_overrun_last + (s64)baseval; |
| |
| return sum > (s64)INT_MAX ? INT_MAX : (int)sum; |
| } |
| |
| static void common_hrtimer_rearm(struct k_itimer *timr) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| |
| timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), |
| timr->it_interval); |
| hrtimer_restart(timer); |
| } |
| |
| /* |
| * This function is called from the signal delivery code if |
| * info->si_sys_private is not zero, which indicates that the timer has to |
| * be rearmed. Restart the timer and update info::si_overrun. |
| */ |
| void posixtimer_rearm(struct kernel_siginfo *info) |
| { |
| struct k_itimer *timr; |
| unsigned long flags; |
| |
| timr = lock_timer(info->si_tid, &flags); |
| if (!timr) |
| return; |
| |
| if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { |
| timr->kclock->timer_rearm(timr); |
| |
| timr->it_active = 1; |
| timr->it_overrun_last = timr->it_overrun; |
| timr->it_overrun = -1LL; |
| ++timr->it_requeue_pending; |
| |
| info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); |
| } |
| |
| unlock_timer(timr, flags); |
| } |
| |
| int posix_timer_event(struct k_itimer *timr, int si_private) |
| { |
| enum pid_type type; |
| int ret; |
| /* |
| * FIXME: if ->sigq is queued we can race with |
| * dequeue_signal()->posixtimer_rearm(). |
| * |
| * If dequeue_signal() sees the "right" value of |
| * si_sys_private it calls posixtimer_rearm(). |
| * We re-queue ->sigq and drop ->it_lock(). |
| * posixtimer_rearm() locks the timer |
| * and re-schedules it while ->sigq is pending. |
| * Not really bad, but not that we want. |
| */ |
| timr->sigq->info.si_sys_private = si_private; |
| |
| type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; |
| ret = send_sigqueue(timr->sigq, timr->it_pid, type); |
| /* If we failed to send the signal the timer stops. */ |
| return ret > 0; |
| } |
| |
| /* |
| * This function gets called when a POSIX.1b interval timer expires from |
| * the HRTIMER interrupt (soft interrupt on RT kernels). |
| * |
| * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI |
| * based timers. |
| */ |
| static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
| { |
| enum hrtimer_restart ret = HRTIMER_NORESTART; |
| struct k_itimer *timr; |
| unsigned long flags; |
| int si_private = 0; |
| |
| timr = container_of(timer, struct k_itimer, it.real.timer); |
| spin_lock_irqsave(&timr->it_lock, flags); |
| |
| timr->it_active = 0; |
| if (timr->it_interval != 0) |
| si_private = ++timr->it_requeue_pending; |
| |
| if (posix_timer_event(timr, si_private)) { |
| /* |
| * The signal was not queued due to SIG_IGN. As a |
| * consequence the timer is not going to be rearmed from |
| * the signal delivery path. But as a real signal handler |
| * can be installed later the timer must be rearmed here. |
| */ |
| if (timr->it_interval != 0) { |
| ktime_t now = hrtimer_cb_get_time(timer); |
| |
| /* |
| * FIXME: What we really want, is to stop this |
| * timer completely and restart it in case the |
| * SIG_IGN is removed. This is a non trivial |
| * change to the signal handling code. |
| * |
| * For now let timers with an interval less than a |
| * jiffie expire every jiffie and recheck for a |
| * valid signal handler. |
| * |
| * This avoids interrupt starvation in case of a |
| * very small interval, which would expire the |
| * timer immediately again. |
| * |
| * Moving now ahead of time by one jiffie tricks |
| * hrtimer_forward() to expire the timer later, |
| * while it still maintains the overrun accuracy |
| * for the price of a slight inconsistency in the |
| * timer_gettime() case. This is at least better |
| * than a timer storm. |
| * |
| * Only required when high resolution timers are |
| * enabled as the periodic tick based timers are |
| * automatically aligned to the next tick. |
| */ |
| if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) { |
| ktime_t kj = TICK_NSEC; |
| |
| if (timr->it_interval < kj) |
| now = ktime_add(now, kj); |
| } |
| |
| timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval); |
| ret = HRTIMER_RESTART; |
| ++timr->it_requeue_pending; |
| timr->it_active = 1; |
| } |
| } |
| |
| unlock_timer(timr, flags); |
| return ret; |
| } |
| |
| static struct pid *good_sigevent(sigevent_t * event) |
| { |
| struct pid *pid = task_tgid(current); |
| struct task_struct *rtn; |
| |
| switch (event->sigev_notify) { |
| case SIGEV_SIGNAL | SIGEV_THREAD_ID: |
| pid = find_vpid(event->sigev_notify_thread_id); |
| rtn = pid_task(pid, PIDTYPE_PID); |
| if (!rtn || !same_thread_group(rtn, current)) |
| return NULL; |
| fallthrough; |
| case SIGEV_SIGNAL: |
| case SIGEV_THREAD: |
| if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) |
| return NULL; |
| fallthrough; |
| case SIGEV_NONE: |
| return pid; |
| default: |
| return NULL; |
| } |
| } |
| |
| static struct k_itimer * alloc_posix_timer(void) |
| { |
| struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
| |
| if (!tmr) |
| return tmr; |
| if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
| kmem_cache_free(posix_timers_cache, tmr); |
| return NULL; |
| } |
| clear_siginfo(&tmr->sigq->info); |
| return tmr; |
| } |
| |
| static void k_itimer_rcu_free(struct rcu_head *head) |
| { |
| struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); |
| |
| kmem_cache_free(posix_timers_cache, tmr); |
| } |
| |
| static void posix_timer_free(struct k_itimer *tmr) |
| { |
| put_pid(tmr->it_pid); |
| sigqueue_free(tmr->sigq); |
| call_rcu(&tmr->rcu, k_itimer_rcu_free); |
| } |
| |
| static void posix_timer_unhash_and_free(struct k_itimer *tmr) |
| { |
| spin_lock(&hash_lock); |
| hlist_del_rcu(&tmr->t_hash); |
| spin_unlock(&hash_lock); |
| posix_timer_free(tmr); |
| } |
| |
| static int common_timer_create(struct k_itimer *new_timer) |
| { |
| hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); |
| return 0; |
| } |
| |
| /* Create a POSIX.1b interval timer. */ |
| static int do_timer_create(clockid_t which_clock, struct sigevent *event, |
| timer_t __user *created_timer_id) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct k_itimer *new_timer; |
| int error, new_timer_id; |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->timer_create) |
| return -EOPNOTSUPP; |
| |
| new_timer = alloc_posix_timer(); |
| if (unlikely(!new_timer)) |
| return -EAGAIN; |
| |
| spin_lock_init(&new_timer->it_lock); |
| |
| /* |
| * Add the timer to the hash table. The timer is not yet valid |
| * because new_timer::it_signal is still NULL. The timer id is also |
| * not yet visible to user space. |
| */ |
| new_timer_id = posix_timer_add(new_timer); |
| if (new_timer_id < 0) { |
| posix_timer_free(new_timer); |
| return new_timer_id; |
| } |
| |
| new_timer->it_id = (timer_t) new_timer_id; |
| new_timer->it_clock = which_clock; |
| new_timer->kclock = kc; |
| new_timer->it_overrun = -1LL; |
| |
| if (event) { |
| rcu_read_lock(); |
| new_timer->it_pid = get_pid(good_sigevent(event)); |
| rcu_read_unlock(); |
| if (!new_timer->it_pid) { |
| error = -EINVAL; |
| goto out; |
| } |
| new_timer->it_sigev_notify = event->sigev_notify; |
| new_timer->sigq->info.si_signo = event->sigev_signo; |
| new_timer->sigq->info.si_value = event->sigev_value; |
| } else { |
| new_timer->it_sigev_notify = SIGEV_SIGNAL; |
| new_timer->sigq->info.si_signo = SIGALRM; |
| memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); |
| new_timer->sigq->info.si_value.sival_int = new_timer->it_id; |
| new_timer->it_pid = get_pid(task_tgid(current)); |
| } |
| |
| new_timer->sigq->info.si_tid = new_timer->it_id; |
| new_timer->sigq->info.si_code = SI_TIMER; |
| |
| if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) { |
| error = -EFAULT; |
| goto out; |
| } |
| /* |
| * After succesful copy out, the timer ID is visible to user space |
| * now but not yet valid because new_timer::signal is still NULL. |
| * |
| * Complete the initialization with the clock specific create |
| * callback. |
| */ |
| error = kc->timer_create(new_timer); |
| if (error) |
| goto out; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| /* This makes the timer valid in the hash table */ |
| WRITE_ONCE(new_timer->it_signal, current->signal); |
| list_add(&new_timer->list, ¤t->signal->posix_timers); |
| spin_unlock_irq(¤t->sighand->siglock); |
| /* |
| * After unlocking sighand::siglock @new_timer is subject to |
| * concurrent removal and cannot be touched anymore |
| */ |
| return 0; |
| out: |
| posix_timer_unhash_and_free(new_timer); |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
| struct sigevent __user *, timer_event_spec, |
| timer_t __user *, created_timer_id) |
| { |
| if (timer_event_spec) { |
| sigevent_t event; |
| |
| if (copy_from_user(&event, timer_event_spec, sizeof (event))) |
| return -EFAULT; |
| return do_timer_create(which_clock, &event, created_timer_id); |
| } |
| return do_timer_create(which_clock, NULL, created_timer_id); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, |
| struct compat_sigevent __user *, timer_event_spec, |
| timer_t __user *, created_timer_id) |
| { |
| if (timer_event_spec) { |
| sigevent_t event; |
| |
| if (get_compat_sigevent(&event, timer_event_spec)) |
| return -EFAULT; |
| return do_timer_create(which_clock, &event, created_timer_id); |
| } |
| return do_timer_create(which_clock, NULL, created_timer_id); |
| } |
| #endif |
| |
| static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
| { |
| struct k_itimer *timr; |
| |
| /* |
| * timer_t could be any type >= int and we want to make sure any |
| * @timer_id outside positive int range fails lookup. |
| */ |
| if ((unsigned long long)timer_id > INT_MAX) |
| return NULL; |
| |
| /* |
| * The hash lookup and the timers are RCU protected. |
| * |
| * Timers are added to the hash in invalid state where |
| * timr::it_signal == NULL. timer::it_signal is only set after the |
| * rest of the initialization succeeded. |
| * |
| * Timer destruction happens in steps: |
| * 1) Set timr::it_signal to NULL with timr::it_lock held |
| * 2) Release timr::it_lock |
| * 3) Remove from the hash under hash_lock |
| * 4) Call RCU for removal after the grace period |
| * |
| * Holding rcu_read_lock() accross the lookup ensures that |
| * the timer cannot be freed. |
| * |
| * The lookup validates locklessly that timr::it_signal == |
| * current::it_signal and timr::it_id == @timer_id. timr::it_id |
| * can't change, but timr::it_signal becomes NULL during |
| * destruction. |
| */ |
| rcu_read_lock(); |
| timr = posix_timer_by_id(timer_id); |
| if (timr) { |
| spin_lock_irqsave(&timr->it_lock, *flags); |
| /* |
| * Validate under timr::it_lock that timr::it_signal is |
| * still valid. Pairs with #1 above. |
| */ |
| if (timr->it_signal == current->signal) { |
| rcu_read_unlock(); |
| return timr; |
| } |
| spin_unlock_irqrestore(&timr->it_lock, *flags); |
| } |
| rcu_read_unlock(); |
| |
| return NULL; |
| } |
| |
| static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| |
| return __hrtimer_expires_remaining_adjusted(timer, now); |
| } |
| |
| static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| |
| return hrtimer_forward(timer, now, timr->it_interval); |
| } |
| |
| /* |
| * Get the time remaining on a POSIX.1b interval timer. |
| * |
| * Two issues to handle here: |
| * |
| * 1) The timer has a requeue pending. The return value must appear as |
| * if the timer has been requeued right now. |
| * |
| * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued |
| * into the hrtimer queue and therefore never expired. Emulate expiry |
| * here taking #1 into account. |
| */ |
| void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) |
| { |
| const struct k_clock *kc = timr->kclock; |
| ktime_t now, remaining, iv; |
| bool sig_none; |
| |
| sig_none = timr->it_sigev_notify == SIGEV_NONE; |
| iv = timr->it_interval; |
| |
| /* interval timer ? */ |
| if (iv) { |
| cur_setting->it_interval = ktime_to_timespec64(iv); |
| } else if (!timr->it_active) { |
| /* |
| * SIGEV_NONE oneshot timers are never queued and therefore |
| * timr->it_active is always false. The check below |
| * vs. remaining time will handle this case. |
| * |
| * For all other timers there is nothing to update here, so |
| * return. |
| */ |
| if (!sig_none) |
| return; |
| } |
| |
| now = kc->clock_get_ktime(timr->it_clock); |
| |
| /* |
| * If this is an interval timer and either has requeue pending or |
| * is a SIGEV_NONE timer move the expiry time forward by intervals, |
| * so expiry is > now. |
| */ |
| if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) |
| timr->it_overrun += kc->timer_forward(timr, now); |
| |
| remaining = kc->timer_remaining(timr, now); |
| /* |
| * As @now is retrieved before a possible timer_forward() and |
| * cannot be reevaluated by the compiler @remaining is based on the |
| * same @now value. Therefore @remaining is consistent vs. @now. |
| * |
| * Consequently all interval timers, i.e. @iv > 0, cannot have a |
| * remaining time <= 0 because timer_forward() guarantees to move |
| * them forward so that the next timer expiry is > @now. |
| */ |
| if (remaining <= 0) { |
| /* |
| * A single shot SIGEV_NONE timer must return 0, when it is |
| * expired! Timers which have a real signal delivery mode |
| * must return a remaining time greater than 0 because the |
| * signal has not yet been delivered. |
| */ |
| if (!sig_none) |
| cur_setting->it_value.tv_nsec = 1; |
| } else { |
| cur_setting->it_value = ktime_to_timespec64(remaining); |
| } |
| } |
| |
| static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) |
| { |
| const struct k_clock *kc; |
| struct k_itimer *timr; |
| unsigned long flags; |
| int ret = 0; |
| |
| timr = lock_timer(timer_id, &flags); |
| if (!timr) |
| return -EINVAL; |
| |
| memset(setting, 0, sizeof(*setting)); |
| kc = timr->kclock; |
| if (WARN_ON_ONCE(!kc || !kc->timer_get)) |
| ret = -EINVAL; |
| else |
| kc->timer_get(timr, setting); |
| |
| unlock_timer(timr, flags); |
| return ret; |
| } |
| |
| /* Get the time remaining on a POSIX.1b interval timer. */ |
| SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
| struct __kernel_itimerspec __user *, setting) |
| { |
| struct itimerspec64 cur_setting; |
| |
| int ret = do_timer_gettime(timer_id, &cur_setting); |
| if (!ret) { |
| if (put_itimerspec64(&cur_setting, setting)) |
| ret = -EFAULT; |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, |
| struct old_itimerspec32 __user *, setting) |
| { |
| struct itimerspec64 cur_setting; |
| |
| int ret = do_timer_gettime(timer_id, &cur_setting); |
| if (!ret) { |
| if (put_old_itimerspec32(&cur_setting, setting)) |
| ret = -EFAULT; |
| } |
| return ret; |
| } |
| |
| #endif |
| |
| /** |
| * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer |
| * @timer_id: The timer ID which identifies the timer |
| * |
| * The "overrun count" of a timer is one plus the number of expiration |
| * intervals which have elapsed between the first expiry, which queues the |
| * signal and the actual signal delivery. On signal delivery the "overrun |
| * count" is calculated and cached, so it can be returned directly here. |
| * |
| * As this is relative to the last queued signal the returned overrun count |
| * is meaningless outside of the signal delivery path and even there it |
| * does not accurately reflect the current state when user space evaluates |
| * it. |
| * |
| * Returns: |
| * -EINVAL @timer_id is invalid |
| * 1..INT_MAX The number of overruns related to the last delivered signal |
| */ |
| SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
| { |
| struct k_itimer *timr; |
| unsigned long flags; |
| int overrun; |
| |
| timr = lock_timer(timer_id, &flags); |
| if (!timr) |
| return -EINVAL; |
| |
| overrun = timer_overrun_to_int(timr, 0); |
| unlock_timer(timr, flags); |
| |
| return overrun; |
| } |
| |
| static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, |
| bool absolute, bool sigev_none) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| enum hrtimer_mode mode; |
| |
| mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
| /* |
| * Posix magic: Relative CLOCK_REALTIME timers are not affected by |
| * clock modifications, so they become CLOCK_MONOTONIC based under the |
| * hood. See hrtimer_init(). Update timr->kclock, so the generic |
| * functions which use timr->kclock->clock_get_*() work. |
| * |
| * Note: it_clock stays unmodified, because the next timer_set() might |
| * use ABSTIME, so it needs to switch back. |
| */ |
| if (timr->it_clock == CLOCK_REALTIME) |
| timr->kclock = absolute ? &clock_realtime : &clock_monotonic; |
| |
| hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
| timr->it.real.timer.function = posix_timer_fn; |
| |
| if (!absolute) |
| expires = ktime_add_safe(expires, timer->base->get_time()); |
| hrtimer_set_expires(timer, expires); |
| |
| if (!sigev_none) |
| hrtimer_start_expires(timer, HRTIMER_MODE_ABS); |
| } |
| |
| static int common_hrtimer_try_to_cancel(struct k_itimer *timr) |
| { |
| return hrtimer_try_to_cancel(&timr->it.real.timer); |
| } |
| |
| static void common_timer_wait_running(struct k_itimer *timer) |
| { |
| hrtimer_cancel_wait_running(&timer->it.real.timer); |
| } |
| |
| /* |
| * On PREEMPT_RT this prevents priority inversion and a potential livelock |
| * against the ksoftirqd thread in case that ksoftirqd gets preempted while |
| * executing a hrtimer callback. |
| * |
| * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this |
| * just results in a cpu_relax(). |
| * |
| * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is |
| * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this |
| * prevents spinning on an eventually scheduled out task and a livelock |
| * when the task which tries to delete or disarm the timer has preempted |
| * the task which runs the expiry in task work context. |
| */ |
| static struct k_itimer *timer_wait_running(struct k_itimer *timer, |
| unsigned long *flags) |
| { |
| const struct k_clock *kc = READ_ONCE(timer->kclock); |
| timer_t timer_id = READ_ONCE(timer->it_id); |
| |
| /* Prevent kfree(timer) after dropping the lock */ |
| rcu_read_lock(); |
| unlock_timer(timer, *flags); |
| |
| /* |
| * kc->timer_wait_running() might drop RCU lock. So @timer |
| * cannot be touched anymore after the function returns! |
| */ |
| if (!WARN_ON_ONCE(!kc->timer_wait_running)) |
| kc->timer_wait_running(timer); |
| |
| rcu_read_unlock(); |
| /* Relock the timer. It might be not longer hashed. */ |
| return lock_timer(timer_id, flags); |
| } |
| |
| /* Set a POSIX.1b interval timer. */ |
| int common_timer_set(struct k_itimer *timr, int flags, |
| struct itimerspec64 *new_setting, |
| struct itimerspec64 *old_setting) |
| { |
| const struct k_clock *kc = timr->kclock; |
| bool sigev_none; |
| ktime_t expires; |
| |
| if (old_setting) |
| common_timer_get(timr, old_setting); |
| |
| /* Prevent rearming by clearing the interval */ |
| timr->it_interval = 0; |
| /* |
| * Careful here. On SMP systems the timer expiry function could be |
| * active and spinning on timr->it_lock. |
| */ |
| if (kc->timer_try_to_cancel(timr) < 0) |
| return TIMER_RETRY; |
| |
| timr->it_active = 0; |
| timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
| ~REQUEUE_PENDING; |
| timr->it_overrun_last = 0; |
| |
| /* Switch off the timer when it_value is zero */ |
| if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
| return 0; |
| |
| timr->it_interval = timespec64_to_ktime(new_setting->it_interval); |
| expires = timespec64_to_ktime(new_setting->it_value); |
| if (flags & TIMER_ABSTIME) |
| expires = timens_ktime_to_host(timr->it_clock, expires); |
| sigev_none = timr->it_sigev_notify == SIGEV_NONE; |
| |
| kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); |
| timr->it_active = !sigev_none; |
| return 0; |
| } |
| |
| static int do_timer_settime(timer_t timer_id, int tmr_flags, |
| struct itimerspec64 *new_spec64, |
| struct itimerspec64 *old_spec64) |
| { |
| const struct k_clock *kc; |
| struct k_itimer *timr; |
| unsigned long flags; |
| int error = 0; |
| |
| if (!timespec64_valid(&new_spec64->it_interval) || |
| !timespec64_valid(&new_spec64->it_value)) |
| return -EINVAL; |
| |
| if (old_spec64) |
| memset(old_spec64, 0, sizeof(*old_spec64)); |
| |
| timr = lock_timer(timer_id, &flags); |
| retry: |
| if (!timr) |
| return -EINVAL; |
| |
| kc = timr->kclock; |
| if (WARN_ON_ONCE(!kc || !kc->timer_set)) |
| error = -EINVAL; |
| else |
| error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); |
| |
| if (error == TIMER_RETRY) { |
| // We already got the old time... |
| old_spec64 = NULL; |
| /* Unlocks and relocks the timer if it still exists */ |
| timr = timer_wait_running(timr, &flags); |
| goto retry; |
| } |
| unlock_timer(timr, flags); |
| |
| return error; |
| } |
| |
| /* Set a POSIX.1b interval timer */ |
| SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
| const struct __kernel_itimerspec __user *, new_setting, |
| struct __kernel_itimerspec __user *, old_setting) |
| { |
| struct itimerspec64 new_spec, old_spec, *rtn; |
| int error = 0; |
| |
| if (!new_setting) |
| return -EINVAL; |
| |
| if (get_itimerspec64(&new_spec, new_setting)) |
| return -EFAULT; |
| |
| rtn = old_setting ? &old_spec : NULL; |
| error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| if (!error && old_setting) { |
| if (put_itimerspec64(&old_spec, old_setting)) |
| error = -EFAULT; |
| } |
| return error; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, |
| struct old_itimerspec32 __user *, new, |
| struct old_itimerspec32 __user *, old) |
| { |
| struct itimerspec64 new_spec, old_spec; |
| struct itimerspec64 *rtn = old ? &old_spec : NULL; |
| int error = 0; |
| |
| if (!new) |
| return -EINVAL; |
| if (get_old_itimerspec32(&new_spec, new)) |
| return -EFAULT; |
| |
| error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| if (!error && old) { |
| if (put_old_itimerspec32(&old_spec, old)) |
| error = -EFAULT; |
| } |
| return error; |
| } |
| #endif |
| |
| int common_timer_del(struct k_itimer *timer) |
| { |
| const struct k_clock *kc = timer->kclock; |
| |
| timer->it_interval = 0; |
| if (kc->timer_try_to_cancel(timer) < 0) |
| return TIMER_RETRY; |
| timer->it_active = 0; |
| return 0; |
| } |
| |
| static inline int timer_delete_hook(struct k_itimer *timer) |
| { |
| const struct k_clock *kc = timer->kclock; |
| |
| if (WARN_ON_ONCE(!kc || !kc->timer_del)) |
| return -EINVAL; |
| return kc->timer_del(timer); |
| } |
| |
| /* Delete a POSIX.1b interval timer. */ |
| SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
| { |
| struct k_itimer *timer; |
| unsigned long flags; |
| |
| timer = lock_timer(timer_id, &flags); |
| |
| retry_delete: |
| if (!timer) |
| return -EINVAL; |
| |
| if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { |
| /* Unlocks and relocks the timer if it still exists */ |
| timer = timer_wait_running(timer, &flags); |
| goto retry_delete; |
| } |
| |
| spin_lock(¤t->sighand->siglock); |
| list_del(&timer->list); |
| spin_unlock(¤t->sighand->siglock); |
| /* |
| * A concurrent lookup could check timer::it_signal lockless. It |
| * will reevaluate with timer::it_lock held and observe the NULL. |
| */ |
| WRITE_ONCE(timer->it_signal, NULL); |
| |
| unlock_timer(timer, flags); |
| posix_timer_unhash_and_free(timer); |
| return 0; |
| } |
| |
| /* |
| * Delete a timer if it is armed, remove it from the hash and schedule it |
| * for RCU freeing. |
| */ |
| static void itimer_delete(struct k_itimer *timer) |
| { |
| unsigned long flags; |
| |
| /* |
| * irqsave is required to make timer_wait_running() work. |
| */ |
| spin_lock_irqsave(&timer->it_lock, flags); |
| |
| retry_delete: |
| /* |
| * Even if the timer is not longer accessible from other tasks |
| * it still might be armed and queued in the underlying timer |
| * mechanism. Worse, that timer mechanism might run the expiry |
| * function concurrently. |
| */ |
| if (timer_delete_hook(timer) == TIMER_RETRY) { |
| /* |
| * Timer is expired concurrently, prevent livelocks |
| * and pointless spinning on RT. |
| * |
| * timer_wait_running() drops timer::it_lock, which opens |
| * the possibility for another task to delete the timer. |
| * |
| * That's not possible here because this is invoked from |
| * do_exit() only for the last thread of the thread group. |
| * So no other task can access and delete that timer. |
| */ |
| if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer)) |
| return; |
| |
| goto retry_delete; |
| } |
| list_del(&timer->list); |
| |
| /* |
| * Setting timer::it_signal to NULL is technically not required |
| * here as nothing can access the timer anymore legitimately via |
| * the hash table. Set it to NULL nevertheless so that all deletion |
| * paths are consistent. |
| */ |
| WRITE_ONCE(timer->it_signal, NULL); |
| |
| spin_unlock_irqrestore(&timer->it_lock, flags); |
| posix_timer_unhash_and_free(timer); |
| } |
| |
| /* |
| * Invoked from do_exit() when the last thread of a thread group exits. |
| * At that point no other task can access the timers of the dying |
| * task anymore. |
| */ |
| void exit_itimers(struct task_struct *tsk) |
| { |
| struct list_head timers; |
| struct k_itimer *tmr; |
| |
| if (list_empty(&tsk->signal->posix_timers)) |
| return; |
| |
| /* Protect against concurrent read via /proc/$PID/timers */ |
| spin_lock_irq(&tsk->sighand->siglock); |
| list_replace_init(&tsk->signal->posix_timers, &timers); |
| spin_unlock_irq(&tsk->sighand->siglock); |
| |
| /* The timers are not longer accessible via tsk::signal */ |
| while (!list_empty(&timers)) { |
| tmr = list_first_entry(&timers, struct k_itimer, list); |
| itimer_delete(tmr); |
| } |
| } |
| |
| SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
| const struct __kernel_timespec __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 new_tp; |
| |
| if (!kc || !kc->clock_set) |
| return -EINVAL; |
| |
| if (get_timespec64(&new_tp, tp)) |
| return -EFAULT; |
| |
| /* |
| * Permission checks have to be done inside the clock specific |
| * setter callback. |
| */ |
| return kc->clock_set(which_clock, &new_tp); |
| } |
| |
| SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
| struct __kernel_timespec __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 kernel_tp; |
| int error; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| error = kc->clock_get_timespec(which_clock, &kernel_tp); |
| |
| if (!error && put_timespec64(&kernel_tp, tp)) |
| error = -EFAULT; |
| |
| return error; |
| } |
| |
| int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->clock_adj) |
| return -EOPNOTSUPP; |
| |
| return kc->clock_adj(which_clock, ktx); |
| } |
| |
| SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
| struct __kernel_timex __user *, utx) |
| { |
| struct __kernel_timex ktx; |
| int err; |
| |
| if (copy_from_user(&ktx, utx, sizeof(ktx))) |
| return -EFAULT; |
| |
| err = do_clock_adjtime(which_clock, &ktx); |
| |
| if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| /** |
| * sys_clock_getres - Get the resolution of a clock |
| * @which_clock: The clock to get the resolution for |
| * @tp: Pointer to a a user space timespec64 for storage |
| * |
| * POSIX defines: |
| * |
| * "The clock_getres() function shall return the resolution of any |
| * clock. Clock resolutions are implementation-defined and cannot be set by |
| * a process. If the argument res is not NULL, the resolution of the |
| * specified clock shall be stored in the location pointed to by res. If |
| * res is NULL, the clock resolution is not returned. If the time argument |
| * of clock_settime() is not a multiple of res, then the value is truncated |
| * to a multiple of res." |
| * |
| * Due to the various hardware constraints the real resolution can vary |
| * wildly and even change during runtime when the underlying devices are |
| * replaced. The kernel also can use hardware devices with different |
| * resolutions for reading the time and for arming timers. |
| * |
| * The kernel therefore deviates from the POSIX spec in various aspects: |
| * |
| * 1) The resolution returned to user space |
| * |
| * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI, |
| * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW |
| * the kernel differentiates only two cases: |
| * |
| * I) Low resolution mode: |
| * |
| * When high resolution timers are disabled at compile or runtime |
| * the resolution returned is nanoseconds per tick, which represents |
| * the precision at which timers expire. |
| * |
| * II) High resolution mode: |
| * |
| * When high resolution timers are enabled the resolution returned |
| * is always one nanosecond independent of the actual resolution of |
| * the underlying hardware devices. |
| * |
| * For CLOCK_*_ALARM the actual resolution depends on system |
| * state. When system is running the resolution is the same as the |
| * resolution of the other clocks. During suspend the actual |
| * resolution is the resolution of the underlying RTC device which |
| * might be way less precise than the clockevent device used during |
| * running state. |
| * |
| * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution |
| * returned is always nanoseconds per tick. |
| * |
| * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution |
| * returned is always one nanosecond under the assumption that the |
| * underlying scheduler clock has a better resolution than nanoseconds |
| * per tick. |
| * |
| * For dynamic POSIX clocks (PTP devices) the resolution returned is |
| * always one nanosecond. |
| * |
| * 2) Affect on sys_clock_settime() |
| * |
| * The kernel does not truncate the time which is handed in to |
| * sys_clock_settime(). The kernel internal timekeeping is always using |
| * nanoseconds precision independent of the clocksource device which is |
| * used to read the time from. The resolution of that device only |
| * affects the presicion of the time returned by sys_clock_gettime(). |
| * |
| * Returns: |
| * 0 Success. @tp contains the resolution |
| * -EINVAL @which_clock is not a valid clock ID |
| * -EFAULT Copying the resolution to @tp faulted |
| * -ENODEV Dynamic POSIX clock is not backed by a device |
| * -EOPNOTSUPP Dynamic POSIX clock does not support getres() |
| */ |
| SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
| struct __kernel_timespec __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 rtn_tp; |
| int error; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| error = kc->clock_getres(which_clock, &rtn_tp); |
| |
| if (!error && tp && put_timespec64(&rtn_tp, tp)) |
| error = -EFAULT; |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, |
| struct old_timespec32 __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 ts; |
| |
| if (!kc || !kc->clock_set) |
| return -EINVAL; |
| |
| if (get_old_timespec32(&ts, tp)) |
| return -EFAULT; |
| |
| return kc->clock_set(which_clock, &ts); |
| } |
| |
| SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, |
| struct old_timespec32 __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 ts; |
| int err; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| err = kc->clock_get_timespec(which_clock, &ts); |
| |
| if (!err && put_old_timespec32(&ts, tp)) |
| err = -EFAULT; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, |
| struct old_timex32 __user *, utp) |
| { |
| struct __kernel_timex ktx; |
| int err; |
| |
| err = get_old_timex32(&ktx, utp); |
| if (err) |
| return err; |
| |
| err = do_clock_adjtime(which_clock, &ktx); |
| |
| if (err >= 0 && put_old_timex32(utp, &ktx)) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, |
| struct old_timespec32 __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 ts; |
| int err; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| err = kc->clock_getres(which_clock, &ts); |
| if (!err && tp && put_old_timespec32(&ts, tp)) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| #endif |
| |
| /* |
| * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI |
| */ |
| static int common_nsleep(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| ktime_t texp = timespec64_to_ktime(*rqtp); |
| |
| return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? |
| HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
| which_clock); |
| } |
| |
| /* |
| * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME |
| * |
| * Absolute nanosleeps for these clocks are time-namespace adjusted. |
| */ |
| static int common_nsleep_timens(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| ktime_t texp = timespec64_to_ktime(*rqtp); |
| |
| if (flags & TIMER_ABSTIME) |
| texp = timens_ktime_to_host(which_clock, texp); |
| |
| return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? |
| HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
| which_clock); |
| } |
| |
| SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
| const struct __kernel_timespec __user *, rqtp, |
| struct __kernel_timespec __user *, rmtp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 t; |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->nsleep) |
| return -EOPNOTSUPP; |
| |
| if (get_timespec64(&t, rqtp)) |
| return -EFAULT; |
| |
| if (!timespec64_valid(&t)) |
| return -EINVAL; |
| if (flags & TIMER_ABSTIME) |
| rmtp = NULL; |
| current->restart_block.fn = do_no_restart_syscall; |
| current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
| current->restart_block.nanosleep.rmtp = rmtp; |
| |
| return kc->nsleep(which_clock, flags, &t); |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, |
| struct old_timespec32 __user *, rqtp, |
| struct old_timespec32 __user *, rmtp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 t; |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->nsleep) |
| return -EOPNOTSUPP; |
| |
| if (get_old_timespec32(&t, rqtp)) |
| return -EFAULT; |
| |
| if (!timespec64_valid(&t)) |
| return -EINVAL; |
| if (flags & TIMER_ABSTIME) |
| rmtp = NULL; |
| current->restart_block.fn = do_no_restart_syscall; |
| current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
| current->restart_block.nanosleep.compat_rmtp = rmtp; |
| |
| return kc->nsleep(which_clock, flags, &t); |
| } |
| |
| #endif |
| |
| static const struct k_clock clock_realtime = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_timespec = posix_get_realtime_timespec, |
| .clock_get_ktime = posix_get_realtime_ktime, |
| .clock_set = posix_clock_realtime_set, |
| .clock_adj = posix_clock_realtime_adj, |
| .nsleep = common_nsleep, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock clock_monotonic = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_timespec = posix_get_monotonic_timespec, |
| .clock_get_ktime = posix_get_monotonic_ktime, |
| .nsleep = common_nsleep_timens, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock clock_monotonic_raw = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_timespec = posix_get_monotonic_raw, |
| }; |
| |
| static const struct k_clock clock_realtime_coarse = { |
| .clock_getres = posix_get_coarse_res, |
| .clock_get_timespec = posix_get_realtime_coarse, |
| }; |
| |
| static const struct k_clock clock_monotonic_coarse = { |
| .clock_getres = posix_get_coarse_res, |
| .clock_get_timespec = posix_get_monotonic_coarse, |
| }; |
| |
| static const struct k_clock clock_tai = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_ktime = posix_get_tai_ktime, |
| .clock_get_timespec = posix_get_tai_timespec, |
| .nsleep = common_nsleep, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock clock_boottime = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_ktime = posix_get_boottime_ktime, |
| .clock_get_timespec = posix_get_boottime_timespec, |
| .nsleep = common_nsleep_timens, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock * const posix_clocks[] = { |
| [CLOCK_REALTIME] = &clock_realtime, |
| [CLOCK_MONOTONIC] = &clock_monotonic, |
| [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, |
| [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, |
| [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, |
| [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, |
| [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, |
| [CLOCK_BOOTTIME] = &clock_boottime, |
| [CLOCK_REALTIME_ALARM] = &alarm_clock, |
| [CLOCK_BOOTTIME_ALARM] = &alarm_clock, |
| [CLOCK_TAI] = &clock_tai, |
| }; |
| |
| static const struct k_clock *clockid_to_kclock(const clockid_t id) |
| { |
| clockid_t idx = id; |
| |
| if (id < 0) { |
| return (id & CLOCKFD_MASK) == CLOCKFD ? |
| &clock_posix_dynamic : &clock_posix_cpu; |
| } |
| |
| if (id >= ARRAY_SIZE(posix_clocks)) |
| return NULL; |
| |
| return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; |
| } |