| /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_types.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_filestream.h" | 
 | #include "xfs_vnodeops.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_fsops.h" | 
 |  | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 |  | 
 | struct workqueue_struct	*xfs_syncd_wq;	/* sync workqueue */ | 
 |  | 
 | /* | 
 |  * The inode lookup is done in batches to keep the amount of lock traffic and | 
 |  * radix tree lookups to a minimum. The batch size is a trade off between | 
 |  * lookup reduction and stack usage. This is in the reclaim path, so we can't | 
 |  * be too greedy. | 
 |  */ | 
 | #define XFS_LOOKUP_BATCH	32 | 
 |  | 
 | STATIC int | 
 | xfs_inode_ag_walk_grab( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct inode		*inode = VFS_I(ip); | 
 |  | 
 | 	ASSERT(rcu_read_lock_held()); | 
 |  | 
 | 	/* | 
 | 	 * check for stale RCU freed inode | 
 | 	 * | 
 | 	 * If the inode has been reallocated, it doesn't matter if it's not in | 
 | 	 * the AG we are walking - we are walking for writeback, so if it | 
 | 	 * passes all the "valid inode" checks and is dirty, then we'll write | 
 | 	 * it back anyway.  If it has been reallocated and still being | 
 | 	 * initialised, the XFS_INEW check below will catch it. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (!ip->i_ino) | 
 | 		goto out_unlock_noent; | 
 |  | 
 | 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | 
 | 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) | 
 | 		goto out_unlock_noent; | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 	/* nothing to sync during shutdown */ | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
 | 		return EFSCORRUPTED; | 
 |  | 
 | 	/* If we can't grab the inode, it must on it's way to reclaim. */ | 
 | 	if (!igrab(inode)) | 
 | 		return ENOENT; | 
 |  | 
 | 	if (is_bad_inode(inode)) { | 
 | 		IRELE(ip); | 
 | 		return ENOENT; | 
 | 	} | 
 |  | 
 | 	/* inode is valid */ | 
 | 	return 0; | 
 |  | 
 | out_unlock_noent: | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	return ENOENT; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_inode_ag_walk( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			(*execute)(struct xfs_inode *ip, | 
 | 					   struct xfs_perag *pag, int flags), | 
 | 	int			flags) | 
 | { | 
 | 	uint32_t		first_index; | 
 | 	int			last_error = 0; | 
 | 	int			skipped; | 
 | 	int			done; | 
 | 	int			nr_found; | 
 |  | 
 | restart: | 
 | 	done = 0; | 
 | 	skipped = 0; | 
 | 	first_index = 0; | 
 | 	nr_found = 0; | 
 | 	do { | 
 | 		struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
 | 		int		error = 0; | 
 | 		int		i; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | 
 | 					(void **)batch, first_index, | 
 | 					XFS_LOOKUP_BATCH); | 
 | 		if (!nr_found) { | 
 | 			rcu_read_unlock(); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Grab the inodes before we drop the lock. if we found | 
 | 		 * nothing, nr == 0 and the loop will be skipped. | 
 | 		 */ | 
 | 		for (i = 0; i < nr_found; i++) { | 
 | 			struct xfs_inode *ip = batch[i]; | 
 |  | 
 | 			if (done || xfs_inode_ag_walk_grab(ip)) | 
 | 				batch[i] = NULL; | 
 |  | 
 | 			/* | 
 | 			 * Update the index for the next lookup. Catch | 
 | 			 * overflows into the next AG range which can occur if | 
 | 			 * we have inodes in the last block of the AG and we | 
 | 			 * are currently pointing to the last inode. | 
 | 			 * | 
 | 			 * Because we may see inodes that are from the wrong AG | 
 | 			 * due to RCU freeing and reallocation, only update the | 
 | 			 * index if it lies in this AG. It was a race that lead | 
 | 			 * us to see this inode, so another lookup from the | 
 | 			 * same index will not find it again. | 
 | 			 */ | 
 | 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) | 
 | 				continue; | 
 | 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
 | 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
 | 				done = 1; | 
 | 		} | 
 |  | 
 | 		/* unlock now we've grabbed the inodes. */ | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		for (i = 0; i < nr_found; i++) { | 
 | 			if (!batch[i]) | 
 | 				continue; | 
 | 			error = execute(batch[i], pag, flags); | 
 | 			IRELE(batch[i]); | 
 | 			if (error == EAGAIN) { | 
 | 				skipped++; | 
 | 				continue; | 
 | 			} | 
 | 			if (error && last_error != EFSCORRUPTED) | 
 | 				last_error = error; | 
 | 		} | 
 |  | 
 | 		/* bail out if the filesystem is corrupted.  */ | 
 | 		if (error == EFSCORRUPTED) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 	} while (nr_found && !done); | 
 |  | 
 | 	if (skipped) { | 
 | 		delay(1); | 
 | 		goto restart; | 
 | 	} | 
 | 	return last_error; | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_ag_iterator( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			(*execute)(struct xfs_inode *ip, | 
 | 					   struct xfs_perag *pag, int flags), | 
 | 	int			flags) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	int			error = 0; | 
 | 	int			last_error = 0; | 
 | 	xfs_agnumber_t		ag; | 
 |  | 
 | 	ag = 0; | 
 | 	while ((pag = xfs_perag_get(mp, ag))) { | 
 | 		ag = pag->pag_agno + 1; | 
 | 		error = xfs_inode_ag_walk(mp, pag, execute, flags); | 
 | 		xfs_perag_put(pag); | 
 | 		if (error) { | 
 | 			last_error = error; | 
 | 			if (error == EFSCORRUPTED) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return XFS_ERROR(last_error); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_sync_inode_data( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			flags) | 
 | { | 
 | 	struct inode		*inode = VFS_I(ip); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	int			error = 0; | 
 |  | 
 | 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
 | 		goto out_wait; | 
 |  | 
 | 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { | 
 | 		if (flags & SYNC_TRYLOCK) | 
 | 			goto out_wait; | 
 | 		xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 	} | 
 |  | 
 | 	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? | 
 | 				0 : XBF_ASYNC, FI_NONE); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 |  | 
 |  out_wait: | 
 | 	if (flags & SYNC_WAIT) | 
 | 		xfs_ioend_wait(ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_sync_inode_attr( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			flags) | 
 | { | 
 | 	int			error = 0; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 	if (xfs_inode_clean(ip)) | 
 | 		goto out_unlock; | 
 | 	if (!xfs_iflock_nowait(ip)) { | 
 | 		if (!(flags & SYNC_WAIT)) | 
 | 			goto out_unlock; | 
 | 		xfs_iflock(ip); | 
 | 	} | 
 |  | 
 | 	if (xfs_inode_clean(ip)) { | 
 | 		xfs_ifunlock(ip); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	error = xfs_iflush(ip, flags); | 
 |  | 
 | 	/* | 
 | 	 * We don't want to try again on non-blocking flushes that can't run | 
 | 	 * again immediately. If an inode really must be written, then that's | 
 | 	 * what the SYNC_WAIT flag is for. | 
 | 	 */ | 
 | 	if (error == EAGAIN) { | 
 | 		ASSERT(!(flags & SYNC_WAIT)); | 
 | 		error = 0; | 
 | 	} | 
 |  | 
 |  out_unlock: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Write out pagecache data for the whole filesystem. | 
 |  */ | 
 | STATIC int | 
 | xfs_sync_data( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags) | 
 | { | 
 | 	int			error; | 
 |  | 
 | 	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); | 
 |  | 
 | 	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags); | 
 | 	if (error) | 
 | 		return XFS_ERROR(error); | 
 |  | 
 | 	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Write out inode metadata (attributes) for the whole filesystem. | 
 |  */ | 
 | STATIC int | 
 | xfs_sync_attr( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags) | 
 | { | 
 | 	ASSERT((flags & ~SYNC_WAIT) == 0); | 
 |  | 
 | 	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_sync_fsdata( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	struct xfs_buf		*bp; | 
 |  | 
 | 	/* | 
 | 	 * If the buffer is pinned then push on the log so we won't get stuck | 
 | 	 * waiting in the write for someone, maybe ourselves, to flush the log. | 
 | 	 * | 
 | 	 * Even though we just pushed the log above, we did not have the | 
 | 	 * superblock buffer locked at that point so it can become pinned in | 
 | 	 * between there and here. | 
 | 	 */ | 
 | 	bp = xfs_getsb(mp, 0); | 
 | 	if (xfs_buf_ispinned(bp)) | 
 | 		xfs_log_force(mp, 0); | 
 |  | 
 | 	return xfs_bwrite(mp, bp); | 
 | } | 
 |  | 
 | /* | 
 |  * When remounting a filesystem read-only or freezing the filesystem, we have | 
 |  * two phases to execute. This first phase is syncing the data before we | 
 |  * quiesce the filesystem, and the second is flushing all the inodes out after | 
 |  * we've waited for all the transactions created by the first phase to | 
 |  * complete. The second phase ensures that the inodes are written to their | 
 |  * location on disk rather than just existing in transactions in the log. This | 
 |  * means after a quiesce there is no log replay required to write the inodes to | 
 |  * disk (this is the main difference between a sync and a quiesce). | 
 |  */ | 
 | /* | 
 |  * First stage of freeze - no writers will make progress now we are here, | 
 |  * so we flush delwri and delalloc buffers here, then wait for all I/O to | 
 |  * complete.  Data is frozen at that point. Metadata is not frozen, | 
 |  * transactions can still occur here so don't bother flushing the buftarg | 
 |  * because it'll just get dirty again. | 
 |  */ | 
 | int | 
 | xfs_quiesce_data( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int			error, error2 = 0; | 
 |  | 
 | 	xfs_qm_sync(mp, SYNC_TRYLOCK); | 
 | 	xfs_qm_sync(mp, SYNC_WAIT); | 
 |  | 
 | 	/* force out the newly dirtied log buffers */ | 
 | 	xfs_log_force(mp, XFS_LOG_SYNC); | 
 |  | 
 | 	/* write superblock and hoover up shutdown errors */ | 
 | 	error = xfs_sync_fsdata(mp); | 
 |  | 
 | 	/* make sure all delwri buffers are written out */ | 
 | 	xfs_flush_buftarg(mp->m_ddev_targp, 1); | 
 |  | 
 | 	/* mark the log as covered if needed */ | 
 | 	if (xfs_log_need_covered(mp)) | 
 | 		error2 = xfs_fs_log_dummy(mp); | 
 |  | 
 | 	/* flush data-only devices */ | 
 | 	if (mp->m_rtdev_targp) | 
 | 		XFS_bflush(mp->m_rtdev_targp); | 
 |  | 
 | 	return error ? error : error2; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_quiesce_fs( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int	count = 0, pincount; | 
 |  | 
 | 	xfs_reclaim_inodes(mp, 0); | 
 | 	xfs_flush_buftarg(mp->m_ddev_targp, 0); | 
 |  | 
 | 	/* | 
 | 	 * This loop must run at least twice.  The first instance of the loop | 
 | 	 * will flush most meta data but that will generate more meta data | 
 | 	 * (typically directory updates).  Which then must be flushed and | 
 | 	 * logged before we can write the unmount record. We also so sync | 
 | 	 * reclaim of inodes to catch any that the above delwri flush skipped. | 
 | 	 */ | 
 | 	do { | 
 | 		xfs_reclaim_inodes(mp, SYNC_WAIT); | 
 | 		xfs_sync_attr(mp, SYNC_WAIT); | 
 | 		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); | 
 | 		if (!pincount) { | 
 | 			delay(50); | 
 | 			count++; | 
 | 		} | 
 | 	} while (count < 2); | 
 | } | 
 |  | 
 | /* | 
 |  * Second stage of a quiesce. The data is already synced, now we have to take | 
 |  * care of the metadata. New transactions are already blocked, so we need to | 
 |  * wait for any remaining transactions to drain out before proceeding. | 
 |  */ | 
 | void | 
 | xfs_quiesce_attr( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int	error = 0; | 
 |  | 
 | 	/* wait for all modifications to complete */ | 
 | 	while (atomic_read(&mp->m_active_trans) > 0) | 
 | 		delay(100); | 
 |  | 
 | 	/* flush inodes and push all remaining buffers out to disk */ | 
 | 	xfs_quiesce_fs(mp); | 
 |  | 
 | 	/* | 
 | 	 * Just warn here till VFS can correctly support | 
 | 	 * read-only remount without racing. | 
 | 	 */ | 
 | 	WARN_ON(atomic_read(&mp->m_active_trans) != 0); | 
 |  | 
 | 	/* Push the superblock and write an unmount record */ | 
 | 	error = xfs_log_sbcount(mp); | 
 | 	if (error) | 
 | 		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " | 
 | 				"Frozen image may not be consistent."); | 
 | 	xfs_log_unmount_write(mp); | 
 | 	xfs_unmountfs_writesb(mp); | 
 | } | 
 |  | 
 | static void | 
 | xfs_syncd_queue_sync( | 
 | 	struct xfs_mount        *mp) | 
 | { | 
 | 	queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work, | 
 | 				msecs_to_jiffies(xfs_syncd_centisecs * 10)); | 
 | } | 
 |  | 
 | /* | 
 |  * Every sync period we need to unpin all items, reclaim inodes and sync | 
 |  * disk quotas.  We might need to cover the log to indicate that the | 
 |  * filesystem is idle and not frozen. | 
 |  */ | 
 | STATIC void | 
 | xfs_sync_worker( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	struct xfs_mount *mp = container_of(to_delayed_work(work), | 
 | 					struct xfs_mount, m_sync_work); | 
 | 	int		error; | 
 |  | 
 | 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 		/* dgc: errors ignored here */ | 
 | 		if (mp->m_super->s_frozen == SB_UNFROZEN && | 
 | 		    xfs_log_need_covered(mp)) | 
 | 			error = xfs_fs_log_dummy(mp); | 
 | 		else | 
 | 			xfs_log_force(mp, 0); | 
 | 		error = xfs_qm_sync(mp, SYNC_TRYLOCK); | 
 |  | 
 | 		/* start pushing all the metadata that is currently dirty */ | 
 | 		xfs_ail_push_all(mp->m_ail); | 
 | 	} | 
 |  | 
 | 	/* queue us up again */ | 
 | 	xfs_syncd_queue_sync(mp); | 
 | } | 
 |  | 
 | /* | 
 |  * Queue a new inode reclaim pass if there are reclaimable inodes and there | 
 |  * isn't a reclaim pass already in progress. By default it runs every 5s based | 
 |  * on the xfs syncd work default of 30s. Perhaps this should have it's own | 
 |  * tunable, but that can be done if this method proves to be ineffective or too | 
 |  * aggressive. | 
 |  */ | 
 | static void | 
 | xfs_syncd_queue_reclaim( | 
 | 	struct xfs_mount        *mp) | 
 | { | 
 |  | 
 | 	/* | 
 | 	 * We can have inodes enter reclaim after we've shut down the syncd | 
 | 	 * workqueue during unmount, so don't allow reclaim work to be queued | 
 | 	 * during unmount. | 
 | 	 */ | 
 | 	if (!(mp->m_super->s_flags & MS_ACTIVE)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | 
 | 		queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work, | 
 | 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * This is a fast pass over the inode cache to try to get reclaim moving on as | 
 |  * many inodes as possible in a short period of time. It kicks itself every few | 
 |  * seconds, as well as being kicked by the inode cache shrinker when memory | 
 |  * goes low. It scans as quickly as possible avoiding locked inodes or those | 
 |  * already being flushed, and once done schedules a future pass. | 
 |  */ | 
 | STATIC void | 
 | xfs_reclaim_worker( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	struct xfs_mount *mp = container_of(to_delayed_work(work), | 
 | 					struct xfs_mount, m_reclaim_work); | 
 |  | 
 | 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | 
 | 	xfs_syncd_queue_reclaim(mp); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush delayed allocate data, attempting to free up reserved space | 
 |  * from existing allocations.  At this point a new allocation attempt | 
 |  * has failed with ENOSPC and we are in the process of scratching our | 
 |  * heads, looking about for more room. | 
 |  * | 
 |  * Queue a new data flush if there isn't one already in progress and | 
 |  * wait for completion of the flush. This means that we only ever have one | 
 |  * inode flush in progress no matter how many ENOSPC events are occurring and | 
 |  * so will prevent the system from bogging down due to every concurrent | 
 |  * ENOSPC event scanning all the active inodes in the system for writeback. | 
 |  */ | 
 | void | 
 | xfs_flush_inodes( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 |  | 
 | 	queue_work(xfs_syncd_wq, &mp->m_flush_work); | 
 | 	flush_work_sync(&mp->m_flush_work); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_flush_worker( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	struct xfs_mount *mp = container_of(work, | 
 | 					struct xfs_mount, m_flush_work); | 
 |  | 
 | 	xfs_sync_data(mp, SYNC_TRYLOCK); | 
 | 	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); | 
 | } | 
 |  | 
 | int | 
 | xfs_syncd_init( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	INIT_WORK(&mp->m_flush_work, xfs_flush_worker); | 
 | 	INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker); | 
 | 	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); | 
 |  | 
 | 	xfs_syncd_queue_sync(mp); | 
 | 	xfs_syncd_queue_reclaim(mp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | xfs_syncd_stop( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	cancel_delayed_work_sync(&mp->m_sync_work); | 
 | 	cancel_delayed_work_sync(&mp->m_reclaim_work); | 
 | 	cancel_work_sync(&mp->m_flush_work); | 
 | } | 
 |  | 
 | void | 
 | __xfs_inode_set_reclaim_tag( | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	radix_tree_tag_set(&pag->pag_ici_root, | 
 | 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | 
 | 			   XFS_ICI_RECLAIM_TAG); | 
 |  | 
 | 	if (!pag->pag_ici_reclaimable) { | 
 | 		/* propagate the reclaim tag up into the perag radix tree */ | 
 | 		spin_lock(&ip->i_mount->m_perag_lock); | 
 | 		radix_tree_tag_set(&ip->i_mount->m_perag_tree, | 
 | 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
 | 				XFS_ICI_RECLAIM_TAG); | 
 | 		spin_unlock(&ip->i_mount->m_perag_lock); | 
 |  | 
 | 		/* schedule periodic background inode reclaim */ | 
 | 		xfs_syncd_queue_reclaim(ip->i_mount); | 
 |  | 
 | 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, | 
 | 							-1, _RET_IP_); | 
 | 	} | 
 | 	pag->pag_ici_reclaimable++; | 
 | } | 
 |  | 
 | /* | 
 |  * We set the inode flag atomically with the radix tree tag. | 
 |  * Once we get tag lookups on the radix tree, this inode flag | 
 |  * can go away. | 
 |  */ | 
 | void | 
 | xfs_inode_set_reclaim_tag( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct xfs_mount *mp = ip->i_mount; | 
 | 	struct xfs_perag *pag; | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	__xfs_inode_set_reclaim_tag(pag, ip); | 
 | 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 | 	xfs_perag_put(pag); | 
 | } | 
 |  | 
 | STATIC void | 
 | __xfs_inode_clear_reclaim( | 
 | 	xfs_perag_t	*pag, | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	pag->pag_ici_reclaimable--; | 
 | 	if (!pag->pag_ici_reclaimable) { | 
 | 		/* clear the reclaim tag from the perag radix tree */ | 
 | 		spin_lock(&ip->i_mount->m_perag_lock); | 
 | 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | 
 | 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
 | 				XFS_ICI_RECLAIM_TAG); | 
 | 		spin_unlock(&ip->i_mount->m_perag_lock); | 
 | 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, | 
 | 							-1, _RET_IP_); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | __xfs_inode_clear_reclaim_tag( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_perag_t	*pag, | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	radix_tree_tag_clear(&pag->pag_ici_root, | 
 | 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | 
 | 	__xfs_inode_clear_reclaim(pag, ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Grab the inode for reclaim exclusively. | 
 |  * Return 0 if we grabbed it, non-zero otherwise. | 
 |  */ | 
 | STATIC int | 
 | xfs_reclaim_inode_grab( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			flags) | 
 | { | 
 | 	ASSERT(rcu_read_lock_held()); | 
 |  | 
 | 	/* quick check for stale RCU freed inode */ | 
 | 	if (!ip->i_ino) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * do some unlocked checks first to avoid unnecessary lock traffic. | 
 | 	 * The first is a flush lock check, the second is a already in reclaim | 
 | 	 * check. Only do these checks if we are not going to block on locks. | 
 | 	 */ | 
 | 	if ((flags & SYNC_TRYLOCK) && | 
 | 	    (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) { | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The radix tree lock here protects a thread in xfs_iget from racing | 
 | 	 * with us starting reclaim on the inode.  Once we have the | 
 | 	 * XFS_IRECLAIM flag set it will not touch us. | 
 | 	 * | 
 | 	 * Due to RCU lookup, we may find inodes that have been freed and only | 
 | 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that | 
 | 	 * aren't candidates for reclaim at all, so we must check the | 
 | 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | 
 | 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
 | 		/* not a reclaim candidate. */ | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		return 1; | 
 | 	} | 
 | 	__xfs_iflags_set(ip, XFS_IRECLAIM); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Inodes in different states need to be treated differently, and the return | 
 |  * value of xfs_iflush is not sufficient to get this right. The following table | 
 |  * lists the inode states and the reclaim actions necessary for non-blocking | 
 |  * reclaim: | 
 |  * | 
 |  * | 
 |  *	inode state	     iflush ret		required action | 
 |  *      ---------------      ----------         --------------- | 
 |  *	bad			-		reclaim | 
 |  *	shutdown		EIO		unpin and reclaim | 
 |  *	clean, unpinned		0		reclaim | 
 |  *	stale, unpinned		0		reclaim | 
 |  *	clean, pinned(*)	0		requeue | 
 |  *	stale, pinned		EAGAIN		requeue | 
 |  *	dirty, delwri ok	0		requeue | 
 |  *	dirty, delwri blocked	EAGAIN		requeue | 
 |  *	dirty, sync flush	0		reclaim | 
 |  * | 
 |  * (*) dgc: I don't think the clean, pinned state is possible but it gets | 
 |  * handled anyway given the order of checks implemented. | 
 |  * | 
 |  * As can be seen from the table, the return value of xfs_iflush() is not | 
 |  * sufficient to correctly decide the reclaim action here. The checks in | 
 |  * xfs_iflush() might look like duplicates, but they are not. | 
 |  * | 
 |  * Also, because we get the flush lock first, we know that any inode that has | 
 |  * been flushed delwri has had the flush completed by the time we check that | 
 |  * the inode is clean. The clean inode check needs to be done before flushing | 
 |  * the inode delwri otherwise we would loop forever requeuing clean inodes as | 
 |  * we cannot tell apart a successful delwri flush and a clean inode from the | 
 |  * return value of xfs_iflush(). | 
 |  * | 
 |  * Note that because the inode is flushed delayed write by background | 
 |  * writeback, the flush lock may already be held here and waiting on it can | 
 |  * result in very long latencies. Hence for sync reclaims, where we wait on the | 
 |  * flush lock, the caller should push out delayed write inodes first before | 
 |  * trying to reclaim them to minimise the amount of time spent waiting. For | 
 |  * background relaim, we just requeue the inode for the next pass. | 
 |  * | 
 |  * Hence the order of actions after gaining the locks should be: | 
 |  *	bad		=> reclaim | 
 |  *	shutdown	=> unpin and reclaim | 
 |  *	pinned, delwri	=> requeue | 
 |  *	pinned, sync	=> unpin | 
 |  *	stale		=> reclaim | 
 |  *	clean		=> reclaim | 
 |  *	dirty, delwri	=> flush and requeue | 
 |  *	dirty, sync	=> flush, wait and reclaim | 
 |  */ | 
 | STATIC int | 
 | xfs_reclaim_inode( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			sync_mode) | 
 | { | 
 | 	int	error; | 
 |  | 
 | restart: | 
 | 	error = 0; | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	if (!xfs_iflock_nowait(ip)) { | 
 | 		if (!(sync_mode & SYNC_WAIT)) | 
 | 			goto out; | 
 | 		xfs_iflock(ip); | 
 | 	} | 
 |  | 
 | 	if (is_bad_inode(VFS_I(ip))) | 
 | 		goto reclaim; | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 		xfs_iunpin_wait(ip); | 
 | 		goto reclaim; | 
 | 	} | 
 | 	if (xfs_ipincount(ip)) { | 
 | 		if (!(sync_mode & SYNC_WAIT)) { | 
 | 			xfs_ifunlock(ip); | 
 | 			goto out; | 
 | 		} | 
 | 		xfs_iunpin_wait(ip); | 
 | 	} | 
 | 	if (xfs_iflags_test(ip, XFS_ISTALE)) | 
 | 		goto reclaim; | 
 | 	if (xfs_inode_clean(ip)) | 
 | 		goto reclaim; | 
 |  | 
 | 	/* | 
 | 	 * Now we have an inode that needs flushing. | 
 | 	 * | 
 | 	 * We do a nonblocking flush here even if we are doing a SYNC_WAIT | 
 | 	 * reclaim as we can deadlock with inode cluster removal. | 
 | 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the | 
 | 	 * ip->i_lock, and we are doing the exact opposite here. As a result, | 
 | 	 * doing a blocking xfs_itobp() to get the cluster buffer will result | 
 | 	 * in an ABBA deadlock with xfs_ifree_cluster(). | 
 | 	 * | 
 | 	 * As xfs_ifree_cluser() must gather all inodes that are active in the | 
 | 	 * cache to mark them stale, if we hit this case we don't actually want | 
 | 	 * to do IO here - we want the inode marked stale so we can simply | 
 | 	 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush, | 
 | 	 * just unlock the inode, back off and try again. Hopefully the next | 
 | 	 * pass through will see the stale flag set on the inode. | 
 | 	 */ | 
 | 	error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode); | 
 | 	if (sync_mode & SYNC_WAIT) { | 
 | 		if (error == EAGAIN) { | 
 | 			xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 			/* backoff longer than in xfs_ifree_cluster */ | 
 | 			delay(2); | 
 | 			goto restart; | 
 | 		} | 
 | 		xfs_iflock(ip); | 
 | 		goto reclaim; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When we have to flush an inode but don't have SYNC_WAIT set, we | 
 | 	 * flush the inode out using a delwri buffer and wait for the next | 
 | 	 * call into reclaim to find it in a clean state instead of waiting for | 
 | 	 * it now. We also don't return errors here - if the error is transient | 
 | 	 * then the next reclaim pass will flush the inode, and if the error | 
 | 	 * is permanent then the next sync reclaim will reclaim the inode and | 
 | 	 * pass on the error. | 
 | 	 */ | 
 | 	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 		xfs_warn(ip->i_mount, | 
 | 			"inode 0x%llx background reclaim flush failed with %d", | 
 | 			(long long)ip->i_ino, error); | 
 | 	} | 
 | out: | 
 | 	xfs_iflags_clear(ip, XFS_IRECLAIM); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	/* | 
 | 	 * We could return EAGAIN here to make reclaim rescan the inode tree in | 
 | 	 * a short while. However, this just burns CPU time scanning the tree | 
 | 	 * waiting for IO to complete and xfssyncd never goes back to the idle | 
 | 	 * state. Instead, return 0 to let the next scheduled background reclaim | 
 | 	 * attempt to reclaim the inode again. | 
 | 	 */ | 
 | 	return 0; | 
 |  | 
 | reclaim: | 
 | 	xfs_ifunlock(ip); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	XFS_STATS_INC(xs_ig_reclaims); | 
 | 	/* | 
 | 	 * Remove the inode from the per-AG radix tree. | 
 | 	 * | 
 | 	 * Because radix_tree_delete won't complain even if the item was never | 
 | 	 * added to the tree assert that it's been there before to catch | 
 | 	 * problems with the inode life time early on. | 
 | 	 */ | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 | 	if (!radix_tree_delete(&pag->pag_ici_root, | 
 | 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) | 
 | 		ASSERT(0); | 
 | 	__xfs_inode_clear_reclaim(pag, ip); | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 |  | 
 | 	/* | 
 | 	 * Here we do an (almost) spurious inode lock in order to coordinate | 
 | 	 * with inode cache radix tree lookups.  This is because the lookup | 
 | 	 * can reference the inodes in the cache without taking references. | 
 | 	 * | 
 | 	 * We make that OK here by ensuring that we wait until the inode is | 
 | 	 * unlocked after the lookup before we go ahead and free it.  We get | 
 | 	 * both the ilock and the iolock because the code may need to drop the | 
 | 	 * ilock one but will still hold the iolock. | 
 | 	 */ | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 	xfs_qm_dqdetach(ip); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 |  | 
 | 	xfs_inode_free(ip); | 
 | 	return error; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | 
 |  * corrupted, we still want to try to reclaim all the inodes. If we don't, | 
 |  * then a shut down during filesystem unmount reclaim walk leak all the | 
 |  * unreclaimed inodes. | 
 |  */ | 
 | int | 
 | xfs_reclaim_inodes_ag( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags, | 
 | 	int			*nr_to_scan) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	int			error = 0; | 
 | 	int			last_error = 0; | 
 | 	xfs_agnumber_t		ag; | 
 | 	int			trylock = flags & SYNC_TRYLOCK; | 
 | 	int			skipped; | 
 |  | 
 | restart: | 
 | 	ag = 0; | 
 | 	skipped = 0; | 
 | 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
 | 		unsigned long	first_index = 0; | 
 | 		int		done = 0; | 
 | 		int		nr_found = 0; | 
 |  | 
 | 		ag = pag->pag_agno + 1; | 
 |  | 
 | 		if (trylock) { | 
 | 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | 
 | 				skipped++; | 
 | 				xfs_perag_put(pag); | 
 | 				continue; | 
 | 			} | 
 | 			first_index = pag->pag_ici_reclaim_cursor; | 
 | 		} else | 
 | 			mutex_lock(&pag->pag_ici_reclaim_lock); | 
 |  | 
 | 		do { | 
 | 			struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
 | 			int	i; | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			nr_found = radix_tree_gang_lookup_tag( | 
 | 					&pag->pag_ici_root, | 
 | 					(void **)batch, first_index, | 
 | 					XFS_LOOKUP_BATCH, | 
 | 					XFS_ICI_RECLAIM_TAG); | 
 | 			if (!nr_found) { | 
 | 				done = 1; | 
 | 				rcu_read_unlock(); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Grab the inodes before we drop the lock. if we found | 
 | 			 * nothing, nr == 0 and the loop will be skipped. | 
 | 			 */ | 
 | 			for (i = 0; i < nr_found; i++) { | 
 | 				struct xfs_inode *ip = batch[i]; | 
 |  | 
 | 				if (done || xfs_reclaim_inode_grab(ip, flags)) | 
 | 					batch[i] = NULL; | 
 |  | 
 | 				/* | 
 | 				 * Update the index for the next lookup. Catch | 
 | 				 * overflows into the next AG range which can | 
 | 				 * occur if we have inodes in the last block of | 
 | 				 * the AG and we are currently pointing to the | 
 | 				 * last inode. | 
 | 				 * | 
 | 				 * Because we may see inodes that are from the | 
 | 				 * wrong AG due to RCU freeing and | 
 | 				 * reallocation, only update the index if it | 
 | 				 * lies in this AG. It was a race that lead us | 
 | 				 * to see this inode, so another lookup from | 
 | 				 * the same index will not find it again. | 
 | 				 */ | 
 | 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) != | 
 | 								pag->pag_agno) | 
 | 					continue; | 
 | 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
 | 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
 | 					done = 1; | 
 | 			} | 
 |  | 
 | 			/* unlock now we've grabbed the inodes. */ | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			for (i = 0; i < nr_found; i++) { | 
 | 				if (!batch[i]) | 
 | 					continue; | 
 | 				error = xfs_reclaim_inode(batch[i], pag, flags); | 
 | 				if (error && last_error != EFSCORRUPTED) | 
 | 					last_error = error; | 
 | 			} | 
 |  | 
 | 			*nr_to_scan -= XFS_LOOKUP_BATCH; | 
 |  | 
 | 			cond_resched(); | 
 |  | 
 | 		} while (nr_found && !done && *nr_to_scan > 0); | 
 |  | 
 | 		if (trylock && !done) | 
 | 			pag->pag_ici_reclaim_cursor = first_index; | 
 | 		else | 
 | 			pag->pag_ici_reclaim_cursor = 0; | 
 | 		mutex_unlock(&pag->pag_ici_reclaim_lock); | 
 | 		xfs_perag_put(pag); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if we skipped any AG, and we still have scan count remaining, do | 
 | 	 * another pass this time using blocking reclaim semantics (i.e | 
 | 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This | 
 | 	 * ensure that when we get more reclaimers than AGs we block rather | 
 | 	 * than spin trying to execute reclaim. | 
 | 	 */ | 
 | 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { | 
 | 		trylock = 0; | 
 | 		goto restart; | 
 | 	} | 
 | 	return XFS_ERROR(last_error); | 
 | } | 
 |  | 
 | int | 
 | xfs_reclaim_inodes( | 
 | 	xfs_mount_t	*mp, | 
 | 	int		mode) | 
 | { | 
 | 	int		nr_to_scan = INT_MAX; | 
 |  | 
 | 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | 
 | } | 
 |  | 
 | /* | 
 |  * Scan a certain number of inodes for reclaim. | 
 |  * | 
 |  * When called we make sure that there is a background (fast) inode reclaim in | 
 |  * progress, while we will throttle the speed of reclaim via doing synchronous | 
 |  * reclaim of inodes. That means if we come across dirty inodes, we wait for | 
 |  * them to be cleaned, which we hope will not be very long due to the | 
 |  * background walker having already kicked the IO off on those dirty inodes. | 
 |  */ | 
 | void | 
 | xfs_reclaim_inodes_nr( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			nr_to_scan) | 
 | { | 
 | 	/* kick background reclaimer and push the AIL */ | 
 | 	xfs_syncd_queue_reclaim(mp); | 
 | 	xfs_ail_push_all(mp->m_ail); | 
 |  | 
 | 	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of reclaimable inodes in the filesystem for | 
 |  * the shrinker to determine how much to reclaim. | 
 |  */ | 
 | int | 
 | xfs_reclaim_inodes_count( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	xfs_agnumber_t		ag = 0; | 
 | 	int			reclaimable = 0; | 
 |  | 
 | 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
 | 		ag = pag->pag_agno + 1; | 
 | 		reclaimable += pag->pag_ici_reclaimable; | 
 | 		xfs_perag_put(pag); | 
 | 	} | 
 | 	return reclaimable; | 
 | } | 
 |  |