blob: 9b878d023dac8a1f54586a6070d02d724e633cb5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2020, Broadcom */
/*
* 8250-core based driver for Broadcom ns16550a UARTs
*
* This driver uses the standard 8250 driver core but adds additional
* optional features including the ability to use a baud rate clock
* mux for more accurate high speed baud rate selection and also
* an optional DMA engine.
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/dma-mapping.h>
#include <linux/tty_flip.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include "8250.h"
/* Register definitions for UART DMA block. Version 1.1 or later. */
#define UDMA_ARB_RX 0x00
#define UDMA_ARB_TX 0x04
#define UDMA_ARB_REQ 0x00000001
#define UDMA_ARB_GRANT 0x00000002
#define UDMA_RX_REVISION 0x00
#define UDMA_RX_REVISION_REQUIRED 0x00000101
#define UDMA_RX_CTRL 0x04
#define UDMA_RX_CTRL_BUF_CLOSE_MODE 0x00010000
#define UDMA_RX_CTRL_MASK_WR_DONE 0x00008000
#define UDMA_RX_CTRL_ENDIAN_OVERRIDE 0x00004000
#define UDMA_RX_CTRL_ENDIAN 0x00002000
#define UDMA_RX_CTRL_OE_IS_ERR 0x00001000
#define UDMA_RX_CTRL_PE_IS_ERR 0x00000800
#define UDMA_RX_CTRL_FE_IS_ERR 0x00000400
#define UDMA_RX_CTRL_NUM_BUF_USED_MASK 0x000003c0
#define UDMA_RX_CTRL_NUM_BUF_USED_SHIFT 6
#define UDMA_RX_CTRL_BUF_CLOSE_CLK_SEL_SYS 0x00000020
#define UDMA_RX_CTRL_BUF_CLOSE_ENA 0x00000010
#define UDMA_RX_CTRL_TIMEOUT_CLK_SEL_SYS 0x00000008
#define UDMA_RX_CTRL_TIMEOUT_ENA 0x00000004
#define UDMA_RX_CTRL_ABORT 0x00000002
#define UDMA_RX_CTRL_ENA 0x00000001
#define UDMA_RX_STATUS 0x08
#define UDMA_RX_STATUS_ACTIVE_BUF_MASK 0x0000000f
#define UDMA_RX_TRANSFER_LEN 0x0c
#define UDMA_RX_TRANSFER_TOTAL 0x10
#define UDMA_RX_BUFFER_SIZE 0x14
#define UDMA_RX_SRC_ADDR 0x18
#define UDMA_RX_TIMEOUT 0x1c
#define UDMA_RX_BUFFER_CLOSE 0x20
#define UDMA_RX_BLOCKOUT_COUNTER 0x24
#define UDMA_RX_BUF0_PTR_LO 0x28
#define UDMA_RX_BUF0_PTR_HI 0x2c
#define UDMA_RX_BUF0_STATUS 0x30
#define UDMA_RX_BUFX_STATUS_OVERRUN_ERR 0x00000010
#define UDMA_RX_BUFX_STATUS_FRAME_ERR 0x00000008
#define UDMA_RX_BUFX_STATUS_PARITY_ERR 0x00000004
#define UDMA_RX_BUFX_STATUS_CLOSE_EXPIRED 0x00000002
#define UDMA_RX_BUFX_STATUS_DATA_RDY 0x00000001
#define UDMA_RX_BUF0_DATA_LEN 0x34
#define UDMA_RX_BUF1_PTR_LO 0x38
#define UDMA_RX_BUF1_PTR_HI 0x3c
#define UDMA_RX_BUF1_STATUS 0x40
#define UDMA_RX_BUF1_DATA_LEN 0x44
#define UDMA_TX_REVISION 0x00
#define UDMA_TX_REVISION_REQUIRED 0x00000101
#define UDMA_TX_CTRL 0x04
#define UDMA_TX_CTRL_ENDIAN_OVERRIDE 0x00000080
#define UDMA_TX_CTRL_ENDIAN 0x00000040
#define UDMA_TX_CTRL_NUM_BUF_USED_MASK 0x00000030
#define UDMA_TX_CTRL_NUM_BUF_USED_1 0x00000010
#define UDMA_TX_CTRL_ABORT 0x00000002
#define UDMA_TX_CTRL_ENA 0x00000001
#define UDMA_TX_DST_ADDR 0x08
#define UDMA_TX_BLOCKOUT_COUNTER 0x10
#define UDMA_TX_TRANSFER_LEN 0x14
#define UDMA_TX_TRANSFER_TOTAL 0x18
#define UDMA_TX_STATUS 0x20
#define UDMA_TX_BUF0_PTR_LO 0x24
#define UDMA_TX_BUF0_PTR_HI 0x28
#define UDMA_TX_BUF0_STATUS 0x2c
#define UDMA_TX_BUFX_LAST 0x00000002
#define UDMA_TX_BUFX_EMPTY 0x00000001
#define UDMA_TX_BUF0_DATA_LEN 0x30
#define UDMA_TX_BUF0_DATA_SENT 0x34
#define UDMA_TX_BUF1_PTR_LO 0x38
#define UDMA_INTR_STATUS 0x00
#define UDMA_INTR_ARB_TX_GRANT 0x00040000
#define UDMA_INTR_ARB_RX_GRANT 0x00020000
#define UDMA_INTR_TX_ALL_EMPTY 0x00010000
#define UDMA_INTR_TX_EMPTY_BUF1 0x00008000
#define UDMA_INTR_TX_EMPTY_BUF0 0x00004000
#define UDMA_INTR_TX_ABORT 0x00002000
#define UDMA_INTR_TX_DONE 0x00001000
#define UDMA_INTR_RX_ERROR 0x00000800
#define UDMA_INTR_RX_TIMEOUT 0x00000400
#define UDMA_INTR_RX_READY_BUF7 0x00000200
#define UDMA_INTR_RX_READY_BUF6 0x00000100
#define UDMA_INTR_RX_READY_BUF5 0x00000080
#define UDMA_INTR_RX_READY_BUF4 0x00000040
#define UDMA_INTR_RX_READY_BUF3 0x00000020
#define UDMA_INTR_RX_READY_BUF2 0x00000010
#define UDMA_INTR_RX_READY_BUF1 0x00000008
#define UDMA_INTR_RX_READY_BUF0 0x00000004
#define UDMA_INTR_RX_READY_MASK 0x000003fc
#define UDMA_INTR_RX_READY_SHIFT 2
#define UDMA_INTR_RX_ABORT 0x00000002
#define UDMA_INTR_RX_DONE 0x00000001
#define UDMA_INTR_SET 0x04
#define UDMA_INTR_CLEAR 0x08
#define UDMA_INTR_MASK_STATUS 0x0c
#define UDMA_INTR_MASK_SET 0x10
#define UDMA_INTR_MASK_CLEAR 0x14
#define UDMA_RX_INTERRUPTS ( \
UDMA_INTR_RX_ERROR | \
UDMA_INTR_RX_TIMEOUT | \
UDMA_INTR_RX_READY_BUF0 | \
UDMA_INTR_RX_READY_BUF1 | \
UDMA_INTR_RX_READY_BUF2 | \
UDMA_INTR_RX_READY_BUF3 | \
UDMA_INTR_RX_READY_BUF4 | \
UDMA_INTR_RX_READY_BUF5 | \
UDMA_INTR_RX_READY_BUF6 | \
UDMA_INTR_RX_READY_BUF7 | \
UDMA_INTR_RX_ABORT | \
UDMA_INTR_RX_DONE)
#define UDMA_RX_ERR_INTERRUPTS ( \
UDMA_INTR_RX_ERROR | \
UDMA_INTR_RX_TIMEOUT | \
UDMA_INTR_RX_ABORT | \
UDMA_INTR_RX_DONE)
#define UDMA_TX_INTERRUPTS ( \
UDMA_INTR_TX_ABORT | \
UDMA_INTR_TX_DONE)
#define UDMA_IS_RX_INTERRUPT(status) ((status) & UDMA_RX_INTERRUPTS)
#define UDMA_IS_TX_INTERRUPT(status) ((status) & UDMA_TX_INTERRUPTS)
/* Current devices have 8 sets of RX buffer registers */
#define UDMA_RX_BUFS_COUNT 8
#define UDMA_RX_BUFS_REG_OFFSET (UDMA_RX_BUF1_PTR_LO - UDMA_RX_BUF0_PTR_LO)
#define UDMA_RX_BUFx_PTR_LO(x) (UDMA_RX_BUF0_PTR_LO + \
((x) * UDMA_RX_BUFS_REG_OFFSET))
#define UDMA_RX_BUFx_PTR_HI(x) (UDMA_RX_BUF0_PTR_HI + \
((x) * UDMA_RX_BUFS_REG_OFFSET))
#define UDMA_RX_BUFx_STATUS(x) (UDMA_RX_BUF0_STATUS + \
((x) * UDMA_RX_BUFS_REG_OFFSET))
#define UDMA_RX_BUFx_DATA_LEN(x) (UDMA_RX_BUF0_DATA_LEN + \
((x) * UDMA_RX_BUFS_REG_OFFSET))
/* Current devices have 2 sets of TX buffer registers */
#define UDMA_TX_BUFS_COUNT 2
#define UDMA_TX_BUFS_REG_OFFSET (UDMA_TX_BUF1_PTR_LO - UDMA_TX_BUF0_PTR_LO)
#define UDMA_TX_BUFx_PTR_LO(x) (UDMA_TX_BUF0_PTR_LO + \
((x) * UDMA_TX_BUFS_REG_OFFSET))
#define UDMA_TX_BUFx_PTR_HI(x) (UDMA_TX_BUF0_PTR_HI + \
((x) * UDMA_TX_BUFS_REG_OFFSET))
#define UDMA_TX_BUFx_STATUS(x) (UDMA_TX_BUF0_STATUS + \
((x) * UDMA_TX_BUFS_REG_OFFSET))
#define UDMA_TX_BUFx_DATA_LEN(x) (UDMA_TX_BUF0_DATA_LEN + \
((x) * UDMA_TX_BUFS_REG_OFFSET))
#define UDMA_TX_BUFx_DATA_SENT(x) (UDMA_TX_BUF0_DATA_SENT + \
((x) * UDMA_TX_BUFS_REG_OFFSET))
#define REGS_8250 0
#define REGS_DMA_RX 1
#define REGS_DMA_TX 2
#define REGS_DMA_ISR 3
#define REGS_DMA_ARB 4
#define REGS_MAX 5
#define TX_BUF_SIZE 4096
#define RX_BUF_SIZE 4096
#define RX_BUFS_COUNT 2
#define KHZ 1000
#define MHZ(x) ((x) * KHZ * KHZ)
static const u32 brcmstb_rate_table[] = {
MHZ(81),
MHZ(108),
MHZ(64), /* Actually 64285715 for some chips */
MHZ(48),
};
static const u32 brcmstb_rate_table_7278[] = {
MHZ(81),
MHZ(108),
0,
MHZ(48),
};
struct brcmuart_priv {
int line;
struct clk *baud_mux_clk;
unsigned long default_mux_rate;
u32 real_rates[ARRAY_SIZE(brcmstb_rate_table)];
const u32 *rate_table;
ktime_t char_wait;
struct uart_port *up;
struct hrtimer hrt;
bool shutdown;
bool dma_enabled;
struct uart_8250_dma dma;
void __iomem *regs[REGS_MAX];
dma_addr_t rx_addr;
void *rx_bufs;
size_t rx_size;
int rx_next_buf;
dma_addr_t tx_addr;
void *tx_buf;
size_t tx_size;
bool tx_running;
bool rx_running;
struct dentry *debugfs_dir;
/* stats exposed through debugfs */
u64 dma_rx_partial_buf;
u64 dma_rx_full_buf;
u32 rx_bad_timeout_late_char;
u32 rx_bad_timeout_no_char;
u32 rx_missing_close_timeout;
u32 rx_err;
u32 rx_timeout;
u32 rx_abort;
u32 saved_mctrl;
};
static struct dentry *brcmuart_debugfs_root;
/*
* Register access routines
*/
static u32 udma_readl(struct brcmuart_priv *priv,
int reg_type, int offset)
{
return readl(priv->regs[reg_type] + offset);
}
static void udma_writel(struct brcmuart_priv *priv,
int reg_type, int offset, u32 value)
{
writel(value, priv->regs[reg_type] + offset);
}
static void udma_set(struct brcmuart_priv *priv,
int reg_type, int offset, u32 bits)
{
void __iomem *reg = priv->regs[reg_type] + offset;
u32 value;
value = readl(reg);
value |= bits;
writel(value, reg);
}
static void udma_unset(struct brcmuart_priv *priv,
int reg_type, int offset, u32 bits)
{
void __iomem *reg = priv->regs[reg_type] + offset;
u32 value;
value = readl(reg);
value &= ~bits;
writel(value, reg);
}
/*
* The UART DMA engine hardware can be used by multiple UARTS, but
* only one at a time. Sharing is not currently supported so
* the first UART to request the DMA engine will get it and any
* subsequent requests by other UARTS will fail.
*/
static int brcmuart_arbitration(struct brcmuart_priv *priv, bool acquire)
{
u32 rx_grant;
u32 tx_grant;
int waits;
int ret = 0;
if (acquire) {
udma_set(priv, REGS_DMA_ARB, UDMA_ARB_RX, UDMA_ARB_REQ);
udma_set(priv, REGS_DMA_ARB, UDMA_ARB_TX, UDMA_ARB_REQ);
waits = 1;
while (1) {
rx_grant = udma_readl(priv, REGS_DMA_ARB, UDMA_ARB_RX);
tx_grant = udma_readl(priv, REGS_DMA_ARB, UDMA_ARB_TX);
if (rx_grant & tx_grant & UDMA_ARB_GRANT)
return 0;
if (waits-- == 0)
break;
msleep(1);
}
ret = 1;
}
udma_unset(priv, REGS_DMA_ARB, UDMA_ARB_RX, UDMA_ARB_REQ);
udma_unset(priv, REGS_DMA_ARB, UDMA_ARB_TX, UDMA_ARB_REQ);
return ret;
}
static void brcmuart_init_dma_hardware(struct brcmuart_priv *priv)
{
u32 daddr;
u32 value;
int x;
/* Start with all interrupts disabled */
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_SET, 0xffffffff);
udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFFER_SIZE, RX_BUF_SIZE);
/*
* Setup buffer close to happen when 32 character times have
* elapsed since the last character was received.
*/
udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFFER_CLOSE, 16*10*32);
value = (RX_BUFS_COUNT << UDMA_RX_CTRL_NUM_BUF_USED_SHIFT)
| UDMA_RX_CTRL_BUF_CLOSE_MODE
| UDMA_RX_CTRL_BUF_CLOSE_ENA;
udma_writel(priv, REGS_DMA_RX, UDMA_RX_CTRL, value);
udma_writel(priv, REGS_DMA_RX, UDMA_RX_BLOCKOUT_COUNTER, 0);
daddr = priv->rx_addr;
for (x = 0; x < RX_BUFS_COUNT; x++) {
/* Set RX transfer length to 0 for unknown */
udma_writel(priv, REGS_DMA_RX, UDMA_RX_TRANSFER_LEN, 0);
udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFx_PTR_LO(x),
lower_32_bits(daddr));
udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFx_PTR_HI(x),
upper_32_bits(daddr));
daddr += RX_BUF_SIZE;
}
daddr = priv->tx_addr;
udma_writel(priv, REGS_DMA_TX, UDMA_TX_BUFx_PTR_LO(0),
lower_32_bits(daddr));
udma_writel(priv, REGS_DMA_TX, UDMA_TX_BUFx_PTR_HI(0),
upper_32_bits(daddr));
udma_writel(priv, REGS_DMA_TX, UDMA_TX_CTRL,
UDMA_TX_CTRL_NUM_BUF_USED_1);
/* clear all interrupts then enable them */
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_CLEAR, 0xffffffff);
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_CLEAR,
UDMA_RX_INTERRUPTS | UDMA_TX_INTERRUPTS);
}
static void start_rx_dma(struct uart_8250_port *p)
{
struct brcmuart_priv *priv = p->port.private_data;
int x;
udma_unset(priv, REGS_DMA_RX, UDMA_RX_CTRL, UDMA_RX_CTRL_ENA);
/* Clear the RX ready bit for all buffers */
for (x = 0; x < RX_BUFS_COUNT; x++)
udma_unset(priv, REGS_DMA_RX, UDMA_RX_BUFx_STATUS(x),
UDMA_RX_BUFX_STATUS_DATA_RDY);
/* always start with buffer 0 */
udma_unset(priv, REGS_DMA_RX, UDMA_RX_STATUS,
UDMA_RX_STATUS_ACTIVE_BUF_MASK);
priv->rx_next_buf = 0;
udma_set(priv, REGS_DMA_RX, UDMA_RX_CTRL, UDMA_RX_CTRL_ENA);
priv->rx_running = true;
}
static void stop_rx_dma(struct uart_8250_port *p)
{
struct brcmuart_priv *priv = p->port.private_data;
/* If RX is running, set the RX ABORT */
if (priv->rx_running)
udma_set(priv, REGS_DMA_RX, UDMA_RX_CTRL, UDMA_RX_CTRL_ABORT);
}
static int stop_tx_dma(struct uart_8250_port *p)
{
struct brcmuart_priv *priv = p->port.private_data;
u32 value;
/* If TX is running, set the TX ABORT */
value = udma_readl(priv, REGS_DMA_TX, UDMA_TX_CTRL);
if (value & UDMA_TX_CTRL_ENA)
udma_set(priv, REGS_DMA_TX, UDMA_TX_CTRL, UDMA_TX_CTRL_ABORT);
priv->tx_running = false;
return 0;
}
/*
* NOTE: printk's in this routine will hang the system if this is
* the console tty
*/
static int brcmuart_tx_dma(struct uart_8250_port *p)
{
struct brcmuart_priv *priv = p->port.private_data;
struct circ_buf *xmit = &p->port.state->xmit;
u32 tx_size;
if (uart_tx_stopped(&p->port) || priv->tx_running ||
uart_circ_empty(xmit)) {
return 0;
}
tx_size = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
priv->dma.tx_err = 0;
memcpy(priv->tx_buf, &xmit->buf[xmit->tail], tx_size);
xmit->tail += tx_size;
xmit->tail &= UART_XMIT_SIZE - 1;
p->port.icount.tx += tx_size;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&p->port);
udma_writel(priv, REGS_DMA_TX, UDMA_TX_TRANSFER_LEN, tx_size);
udma_writel(priv, REGS_DMA_TX, UDMA_TX_BUF0_DATA_LEN, tx_size);
udma_unset(priv, REGS_DMA_TX, UDMA_TX_BUF0_STATUS, UDMA_TX_BUFX_EMPTY);
udma_set(priv, REGS_DMA_TX, UDMA_TX_CTRL, UDMA_TX_CTRL_ENA);
priv->tx_running = true;
return 0;
}
static void brcmuart_rx_buf_done_isr(struct uart_port *up, int index)
{
struct brcmuart_priv *priv = up->private_data;
struct tty_port *tty_port = &up->state->port;
u32 status;
u32 length;
u32 copied;
/* Make sure we're still in sync with the hardware */
status = udma_readl(priv, REGS_DMA_RX, UDMA_RX_BUFx_STATUS(index));
length = udma_readl(priv, REGS_DMA_RX, UDMA_RX_BUFx_DATA_LEN(index));
if ((status & UDMA_RX_BUFX_STATUS_DATA_RDY) == 0) {
dev_err(up->dev, "RX done interrupt but DATA_RDY not found\n");
return;
}
if (status & (UDMA_RX_BUFX_STATUS_OVERRUN_ERR |
UDMA_RX_BUFX_STATUS_FRAME_ERR |
UDMA_RX_BUFX_STATUS_PARITY_ERR)) {
if (status & UDMA_RX_BUFX_STATUS_OVERRUN_ERR) {
up->icount.overrun++;
dev_warn(up->dev, "RX OVERRUN Error\n");
}
if (status & UDMA_RX_BUFX_STATUS_FRAME_ERR) {
up->icount.frame++;
dev_warn(up->dev, "RX FRAMING Error\n");
}
if (status & UDMA_RX_BUFX_STATUS_PARITY_ERR) {
up->icount.parity++;
dev_warn(up->dev, "RX PARITY Error\n");
}
}
copied = (u32)tty_insert_flip_string(
tty_port,
priv->rx_bufs + (index * RX_BUF_SIZE),
length);
if (copied != length) {
dev_warn(up->dev, "Flip buffer overrun of %d bytes\n",
length - copied);
up->icount.overrun += length - copied;
}
up->icount.rx += length;
if (status & UDMA_RX_BUFX_STATUS_CLOSE_EXPIRED)
priv->dma_rx_partial_buf++;
else if (length != RX_BUF_SIZE)
/*
* This is a bug in the controller that doesn't cause
* any problems but will be fixed in the future.
*/
priv->rx_missing_close_timeout++;
else
priv->dma_rx_full_buf++;
tty_flip_buffer_push(tty_port);
}
static void brcmuart_rx_isr(struct uart_port *up, u32 rx_isr)
{
struct brcmuart_priv *priv = up->private_data;
struct device *dev = up->dev;
u32 rx_done_isr;
u32 check_isr;
rx_done_isr = (rx_isr & UDMA_INTR_RX_READY_MASK);
while (rx_done_isr) {
check_isr = UDMA_INTR_RX_READY_BUF0 << priv->rx_next_buf;
if (check_isr & rx_done_isr) {
brcmuart_rx_buf_done_isr(up, priv->rx_next_buf);
} else {
dev_err(dev,
"RX buffer ready out of sequence, restarting RX DMA\n");
start_rx_dma(up_to_u8250p(up));
break;
}
if (rx_isr & UDMA_RX_ERR_INTERRUPTS) {
if (rx_isr & UDMA_INTR_RX_ERROR)
priv->rx_err++;
if (rx_isr & UDMA_INTR_RX_TIMEOUT) {
priv->rx_timeout++;
dev_err(dev, "RX TIMEOUT Error\n");
}
if (rx_isr & UDMA_INTR_RX_ABORT)
priv->rx_abort++;
priv->rx_running = false;
}
/* If not ABORT, re-enable RX buffer */
if (!(rx_isr & UDMA_INTR_RX_ABORT))
udma_unset(priv, REGS_DMA_RX,
UDMA_RX_BUFx_STATUS(priv->rx_next_buf),
UDMA_RX_BUFX_STATUS_DATA_RDY);
rx_done_isr &= ~check_isr;
priv->rx_next_buf++;
if (priv->rx_next_buf == RX_BUFS_COUNT)
priv->rx_next_buf = 0;
}
}
static void brcmuart_tx_isr(struct uart_port *up, u32 isr)
{
struct brcmuart_priv *priv = up->private_data;
struct device *dev = up->dev;
struct uart_8250_port *port_8250 = up_to_u8250p(up);
struct circ_buf *xmit = &port_8250->port.state->xmit;
if (isr & UDMA_INTR_TX_ABORT) {
if (priv->tx_running)
dev_err(dev, "Unexpected TX_ABORT interrupt\n");
return;
}
priv->tx_running = false;
if (!uart_circ_empty(xmit) && !uart_tx_stopped(up))
brcmuart_tx_dma(port_8250);
}
static irqreturn_t brcmuart_isr(int irq, void *dev_id)
{
struct uart_port *up = dev_id;
struct device *dev = up->dev;
struct brcmuart_priv *priv = up->private_data;
unsigned long flags;
u32 interrupts;
u32 rval;
u32 tval;
interrupts = udma_readl(priv, REGS_DMA_ISR, UDMA_INTR_STATUS);
if (interrupts == 0)
return IRQ_NONE;
spin_lock_irqsave(&up->lock, flags);
/* Clear all interrupts */
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_CLEAR, interrupts);
rval = UDMA_IS_RX_INTERRUPT(interrupts);
if (rval)
brcmuart_rx_isr(up, rval);
tval = UDMA_IS_TX_INTERRUPT(interrupts);
if (tval)
brcmuart_tx_isr(up, tval);
if ((rval | tval) == 0)
dev_warn(dev, "Spurious interrupt: 0x%x\n", interrupts);
spin_unlock_irqrestore(&up->lock, flags);
return IRQ_HANDLED;
}
static int brcmuart_startup(struct uart_port *port)
{
int res;
struct uart_8250_port *up = up_to_u8250p(port);
struct brcmuart_priv *priv = up->port.private_data;
priv->shutdown = false;
/*
* prevent serial8250_do_startup() from allocating non-existent
* DMA resources
*/
up->dma = NULL;
res = serial8250_do_startup(port);
if (!priv->dma_enabled)
return res;
/*
* Disable the Receive Data Interrupt because the DMA engine
* will handle this.
*/
up->ier &= ~UART_IER_RDI;
serial_port_out(port, UART_IER, up->ier);
priv->tx_running = false;
priv->dma.rx_dma = NULL;
priv->dma.tx_dma = brcmuart_tx_dma;
up->dma = &priv->dma;
brcmuart_init_dma_hardware(priv);
start_rx_dma(up);
return res;
}
static void brcmuart_shutdown(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
struct brcmuart_priv *priv = up->port.private_data;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
priv->shutdown = true;
if (priv->dma_enabled) {
stop_rx_dma(up);
stop_tx_dma(up);
/* disable all interrupts */
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_SET,
UDMA_RX_INTERRUPTS | UDMA_TX_INTERRUPTS);
}
/*
* prevent serial8250_do_shutdown() from trying to free
* DMA resources that we never alloc'd for this driver.
*/
up->dma = NULL;
spin_unlock_irqrestore(&port->lock, flags);
serial8250_do_shutdown(port);
}
/*
* Not all clocks run at the exact specified rate, so set each requested
* rate and then get the actual rate.
*/
static void init_real_clk_rates(struct device *dev, struct brcmuart_priv *priv)
{
int x;
int rc;
priv->default_mux_rate = clk_get_rate(priv->baud_mux_clk);
for (x = 0; x < ARRAY_SIZE(priv->real_rates); x++) {
if (priv->rate_table[x] == 0) {
priv->real_rates[x] = 0;
continue;
}
rc = clk_set_rate(priv->baud_mux_clk, priv->rate_table[x]);
if (rc) {
dev_err(dev, "Error selecting BAUD MUX clock for %u\n",
priv->rate_table[x]);
priv->real_rates[x] = priv->rate_table[x];
} else {
priv->real_rates[x] = clk_get_rate(priv->baud_mux_clk);
}
}
clk_set_rate(priv->baud_mux_clk, priv->default_mux_rate);
}
static void set_clock_mux(struct uart_port *up, struct brcmuart_priv *priv,
u32 baud)
{
u32 percent;
u32 best_percent = UINT_MAX;
u32 quot;
u32 best_quot = 1;
u32 rate;
int best_index = -1;
u64 hires_rate;
u64 hires_baud;
u64 hires_err;
int rc;
int i;
int real_baud;
/* If the Baud Mux Clock was not specified, just return */
if (priv->baud_mux_clk == NULL)
return;
/* Find the closest match for specified baud */
for (i = 0; i < ARRAY_SIZE(priv->real_rates); i++) {
if (priv->real_rates[i] == 0)
continue;
rate = priv->real_rates[i] / 16;
quot = DIV_ROUND_CLOSEST(rate, baud);
if (!quot)
continue;
/* increase resolution to get xx.xx percent */
hires_rate = (u64)rate * 10000;
hires_baud = (u64)baud * 10000;
hires_err = div_u64(hires_rate, (u64)quot);
/* get the delta */
if (hires_err > hires_baud)
hires_err = (hires_err - hires_baud);
else
hires_err = (hires_baud - hires_err);
percent = (unsigned long)DIV_ROUND_CLOSEST_ULL(hires_err, baud);
dev_dbg(up->dev,
"Baud rate: %u, MUX Clk: %u, Error: %u.%u%%\n",
baud, priv->real_rates[i], percent / 100,
percent % 100);
if (percent < best_percent) {
best_percent = percent;
best_index = i;
best_quot = quot;
}
}
if (best_index == -1) {
dev_err(up->dev, "Error, %d BAUD rate is too fast.\n", baud);
return;
}
rate = priv->real_rates[best_index];
rc = clk_set_rate(priv->baud_mux_clk, rate);
if (rc)
dev_err(up->dev, "Error selecting BAUD MUX clock\n");
/* Error over 3 percent will cause data errors */
if (best_percent > 300)
dev_err(up->dev, "Error, baud: %d has %u.%u%% error\n",
baud, percent / 100, percent % 100);
real_baud = rate / 16 / best_quot;
dev_dbg(up->dev, "Selecting BAUD MUX rate: %u\n", rate);
dev_dbg(up->dev, "Requested baud: %u, Actual baud: %u\n",
baud, real_baud);
/* calc nanoseconds for 1.5 characters time at the given baud rate */
i = NSEC_PER_SEC / real_baud / 10;
i += (i / 2);
priv->char_wait = ns_to_ktime(i);
up->uartclk = rate;
}
static void brcmstb_set_termios(struct uart_port *up,
struct ktermios *termios,
struct ktermios *old)
{
struct uart_8250_port *p8250 = up_to_u8250p(up);
struct brcmuart_priv *priv = up->private_data;
if (priv->dma_enabled)
stop_rx_dma(p8250);
set_clock_mux(up, priv, tty_termios_baud_rate(termios));
serial8250_do_set_termios(up, termios, old);
if (p8250->mcr & UART_MCR_AFE)
p8250->port.status |= UPSTAT_AUTOCTS;
if (priv->dma_enabled)
start_rx_dma(p8250);
}
static int brcmuart_handle_irq(struct uart_port *p)
{
unsigned int iir = serial_port_in(p, UART_IIR);
struct brcmuart_priv *priv = p->private_data;
struct uart_8250_port *up = up_to_u8250p(p);
unsigned int status;
unsigned long flags;
unsigned int ier;
unsigned int mcr;
int handled = 0;
/*
* There's a bug in some 8250 cores where we get a timeout
* interrupt but there is no data ready.
*/
if (((iir & UART_IIR_ID) == UART_IIR_RX_TIMEOUT) && !(priv->shutdown)) {
spin_lock_irqsave(&p->lock, flags);
status = serial_port_in(p, UART_LSR);
if ((status & UART_LSR_DR) == 0) {
ier = serial_port_in(p, UART_IER);
/*
* if Receive Data Interrupt is enabled and
* we're uing hardware flow control, deassert
* RTS and wait for any chars in the pipline to
* arrive and then check for DR again.
*/
if ((ier & UART_IER_RDI) && (up->mcr & UART_MCR_AFE)) {
ier &= ~(UART_IER_RLSI | UART_IER_RDI);
serial_port_out(p, UART_IER, ier);
mcr = serial_port_in(p, UART_MCR);
mcr &= ~UART_MCR_RTS;
serial_port_out(p, UART_MCR, mcr);
hrtimer_start(&priv->hrt, priv->char_wait,
HRTIMER_MODE_REL);
} else {
serial_port_in(p, UART_RX);
}
handled = 1;
}
spin_unlock_irqrestore(&p->lock, flags);
if (handled)
return 1;
}
return serial8250_handle_irq(p, iir);
}
static enum hrtimer_restart brcmuart_hrtimer_func(struct hrtimer *t)
{
struct brcmuart_priv *priv = container_of(t, struct brcmuart_priv, hrt);
struct uart_port *p = priv->up;
struct uart_8250_port *up = up_to_u8250p(p);
unsigned int status;
unsigned long flags;
if (priv->shutdown)
return HRTIMER_NORESTART;
spin_lock_irqsave(&p->lock, flags);
status = serial_port_in(p, UART_LSR);
/*
* If a character did not arrive after the timeout, clear the false
* receive timeout.
*/
if ((status & UART_LSR_DR) == 0) {
serial_port_in(p, UART_RX);
priv->rx_bad_timeout_no_char++;
} else {
priv->rx_bad_timeout_late_char++;
}
/* re-enable receive unless upper layer has disabled it */
if ((up->ier & (UART_IER_RLSI | UART_IER_RDI)) ==
(UART_IER_RLSI | UART_IER_RDI)) {
status = serial_port_in(p, UART_IER);
status |= (UART_IER_RLSI | UART_IER_RDI);
serial_port_out(p, UART_IER, status);
status = serial_port_in(p, UART_MCR);
status |= UART_MCR_RTS;
serial_port_out(p, UART_MCR, status);
}
spin_unlock_irqrestore(&p->lock, flags);
return HRTIMER_NORESTART;
}
static const struct of_device_id brcmuart_dt_ids[] = {
{
.compatible = "brcm,bcm7278-uart",
.data = brcmstb_rate_table_7278,
},
{
.compatible = "brcm,bcm7271-uart",
.data = brcmstb_rate_table,
},
{},
};
MODULE_DEVICE_TABLE(of, brcmuart_dt_ids);
static void brcmuart_free_bufs(struct device *dev, struct brcmuart_priv *priv)
{
if (priv->rx_bufs)
dma_free_coherent(dev, priv->rx_size, priv->rx_bufs,
priv->rx_addr);
if (priv->tx_buf)
dma_free_coherent(dev, priv->tx_size, priv->tx_buf,
priv->tx_addr);
}
static void brcmuart_throttle(struct uart_port *port)
{
struct brcmuart_priv *priv = port->private_data;
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_SET, UDMA_RX_INTERRUPTS);
}
static void brcmuart_unthrottle(struct uart_port *port)
{
struct brcmuart_priv *priv = port->private_data;
udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_CLEAR,
UDMA_RX_INTERRUPTS);
}
static int debugfs_stats_show(struct seq_file *s, void *unused)
{
struct brcmuart_priv *priv = s->private;
seq_printf(s, "rx_err:\t\t\t\t%u\n",
priv->rx_err);
seq_printf(s, "rx_timeout:\t\t\t%u\n",
priv->rx_timeout);
seq_printf(s, "rx_abort:\t\t\t%u\n",
priv->rx_abort);
seq_printf(s, "rx_bad_timeout_late_char:\t%u\n",
priv->rx_bad_timeout_late_char);
seq_printf(s, "rx_bad_timeout_no_char:\t\t%u\n",
priv->rx_bad_timeout_no_char);
seq_printf(s, "rx_missing_close_timeout:\t%u\n",
priv->rx_missing_close_timeout);
if (priv->dma_enabled) {
seq_printf(s, "dma_rx_partial_buf:\t\t%llu\n",
priv->dma_rx_partial_buf);
seq_printf(s, "dma_rx_full_buf:\t\t%llu\n",
priv->dma_rx_full_buf);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(debugfs_stats);
static void brcmuart_init_debugfs(struct brcmuart_priv *priv,
const char *device)
{
priv->debugfs_dir = debugfs_create_dir(device, brcmuart_debugfs_root);
debugfs_create_file("stats", 0444, priv->debugfs_dir, priv,
&debugfs_stats_fops);
}
static int brcmuart_probe(struct platform_device *pdev)
{
struct resource *regs;
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id = NULL;
struct uart_8250_port *new_port;
struct device *dev = &pdev->dev;
struct brcmuart_priv *priv;
struct clk *baud_mux_clk;
struct uart_8250_port up;
int irq;
void __iomem *membase = NULL;
resource_size_t mapbase = 0;
u32 clk_rate = 0;
int ret;
int x;
int dma_irq;
static const char * const reg_names[REGS_MAX] = {
"uart", "dma_rx", "dma_tx", "dma_intr2", "dma_arb"
};
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
priv = devm_kzalloc(dev, sizeof(struct brcmuart_priv),
GFP_KERNEL);
if (!priv)
return -ENOMEM;
of_id = of_match_node(brcmuart_dt_ids, np);
if (!of_id || !of_id->data)
priv->rate_table = brcmstb_rate_table;
else
priv->rate_table = of_id->data;
for (x = 0; x < REGS_MAX; x++) {
regs = platform_get_resource_byname(pdev, IORESOURCE_MEM,
reg_names[x]);
if (!regs)
break;
priv->regs[x] = devm_ioremap(dev, regs->start,
resource_size(regs));
if (!priv->regs[x])
return -ENOMEM;
if (x == REGS_8250) {
mapbase = regs->start;
membase = priv->regs[x];
}
}
/* We should have just the uart base registers or all the registers */
if (x != 1 && x != REGS_MAX) {
dev_warn(dev, "%s registers not specified\n", reg_names[x]);
return -EINVAL;
}
/* if the DMA registers were specified, try to enable DMA */
if (x > REGS_DMA_RX) {
if (brcmuart_arbitration(priv, 1) == 0) {
u32 txrev = 0;
u32 rxrev = 0;
txrev = udma_readl(priv, REGS_DMA_RX, UDMA_RX_REVISION);
rxrev = udma_readl(priv, REGS_DMA_TX, UDMA_TX_REVISION);
if ((txrev >= UDMA_TX_REVISION_REQUIRED) &&
(rxrev >= UDMA_RX_REVISION_REQUIRED)) {
/* Enable the use of the DMA hardware */
priv->dma_enabled = true;
} else {
brcmuart_arbitration(priv, 0);
dev_err(dev,
"Unsupported DMA Hardware Revision\n");
}
} else {
dev_err(dev,
"Timeout arbitrating for UART DMA hardware\n");
}
}
of_property_read_u32(np, "clock-frequency", &clk_rate);
/* See if a Baud clock has been specified */
baud_mux_clk = of_clk_get_by_name(np, "sw_baud");
if (IS_ERR(baud_mux_clk)) {
if (PTR_ERR(baud_mux_clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_dbg(dev, "BAUD MUX clock not specified\n");
} else {
dev_dbg(dev, "BAUD MUX clock found\n");
ret = clk_prepare_enable(baud_mux_clk);
if (ret)
return ret;
priv->baud_mux_clk = baud_mux_clk;
init_real_clk_rates(dev, priv);
clk_rate = priv->default_mux_rate;
}
if (clk_rate == 0) {
dev_err(dev, "clock-frequency or clk not defined\n");
return -EINVAL;
}
dev_dbg(dev, "DMA is %senabled\n", priv->dma_enabled ? "" : "not ");
memset(&up, 0, sizeof(up));
up.port.type = PORT_16550A;
up.port.uartclk = clk_rate;
up.port.dev = dev;
up.port.mapbase = mapbase;
up.port.membase = membase;
up.port.irq = irq;
up.port.handle_irq = brcmuart_handle_irq;
up.port.regshift = 2;
up.port.iotype = of_device_is_big_endian(np) ?
UPIO_MEM32BE : UPIO_MEM32;
up.port.flags = UPF_SHARE_IRQ | UPF_BOOT_AUTOCONF
| UPF_FIXED_PORT | UPF_FIXED_TYPE;
up.port.dev = dev;
up.port.private_data = priv;
up.capabilities = UART_CAP_FIFO | UART_CAP_AFE;
up.port.fifosize = 32;
/* Check for a fixed line number */
ret = of_alias_get_id(np, "serial");
if (ret >= 0)
up.port.line = ret;
/* setup HR timer */
hrtimer_init(&priv->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
priv->hrt.function = brcmuart_hrtimer_func;
up.port.shutdown = brcmuart_shutdown;
up.port.startup = brcmuart_startup;
up.port.throttle = brcmuart_throttle;
up.port.unthrottle = brcmuart_unthrottle;
up.port.set_termios = brcmstb_set_termios;
if (priv->dma_enabled) {
priv->rx_size = RX_BUF_SIZE * RX_BUFS_COUNT;
priv->rx_bufs = dma_alloc_coherent(dev,
priv->rx_size,
&priv->rx_addr, GFP_KERNEL);
if (!priv->rx_bufs) {
ret = -ENOMEM;
goto err;
}
priv->tx_size = UART_XMIT_SIZE;
priv->tx_buf = dma_alloc_coherent(dev,
priv->tx_size,
&priv->tx_addr, GFP_KERNEL);
if (!priv->tx_buf) {
ret = -ENOMEM;
goto err;
}
}
ret = serial8250_register_8250_port(&up);
if (ret < 0) {
dev_err(dev, "unable to register 8250 port\n");
goto err;
}
priv->line = ret;
new_port = serial8250_get_port(ret);
priv->up = &new_port->port;
if (priv->dma_enabled) {
dma_irq = platform_get_irq_byname(pdev, "dma");
if (dma_irq < 0) {
ret = dma_irq;
dev_err(dev, "no IRQ resource info\n");
goto err1;
}
ret = devm_request_irq(dev, dma_irq, brcmuart_isr,
IRQF_SHARED, "uart DMA irq", &new_port->port);
if (ret) {
dev_err(dev, "unable to register IRQ handler\n");
goto err1;
}
}
platform_set_drvdata(pdev, priv);
brcmuart_init_debugfs(priv, dev_name(&pdev->dev));
return 0;
err1:
serial8250_unregister_port(priv->line);
err:
brcmuart_free_bufs(dev, priv);
brcmuart_arbitration(priv, 0);
return ret;
}
static int brcmuart_remove(struct platform_device *pdev)
{
struct brcmuart_priv *priv = platform_get_drvdata(pdev);
debugfs_remove_recursive(priv->debugfs_dir);
hrtimer_cancel(&priv->hrt);
serial8250_unregister_port(priv->line);
brcmuart_free_bufs(&pdev->dev, priv);
brcmuart_arbitration(priv, 0);
return 0;
}
static int __maybe_unused brcmuart_suspend(struct device *dev)
{
struct brcmuart_priv *priv = dev_get_drvdata(dev);
struct uart_8250_port *up = serial8250_get_port(priv->line);
struct uart_port *port = &up->port;
serial8250_suspend_port(priv->line);
clk_disable_unprepare(priv->baud_mux_clk);
/*
* This will prevent resume from enabling RTS before the
* baud rate has been resored.
*/
priv->saved_mctrl = port->mctrl;
port->mctrl = 0;
return 0;
}
static int __maybe_unused brcmuart_resume(struct device *dev)
{
struct brcmuart_priv *priv = dev_get_drvdata(dev);
struct uart_8250_port *up = serial8250_get_port(priv->line);
struct uart_port *port = &up->port;
int ret;
ret = clk_prepare_enable(priv->baud_mux_clk);
if (ret)
dev_err(dev, "Error enabling BAUD MUX clock\n");
/*
* The hardware goes back to it's default after suspend
* so get the "clk" back in sync.
*/
ret = clk_set_rate(priv->baud_mux_clk, priv->default_mux_rate);
if (ret)
dev_err(dev, "Error restoring default BAUD MUX clock\n");
if (priv->dma_enabled) {
if (brcmuart_arbitration(priv, 1)) {
dev_err(dev, "Timeout arbitrating for DMA hardware on resume\n");
return(-EBUSY);
}
brcmuart_init_dma_hardware(priv);
start_rx_dma(serial8250_get_port(priv->line));
}
serial8250_resume_port(priv->line);
port->mctrl = priv->saved_mctrl;
return 0;
}
static const struct dev_pm_ops brcmuart_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(brcmuart_suspend, brcmuart_resume)
};
static struct platform_driver brcmuart_platform_driver = {
.driver = {
.name = "bcm7271-uart",
.pm = &brcmuart_dev_pm_ops,
.of_match_table = brcmuart_dt_ids,
},
.probe = brcmuart_probe,
.remove = brcmuart_remove,
};
static int __init brcmuart_init(void)
{
brcmuart_debugfs_root = debugfs_create_dir(
brcmuart_platform_driver.driver.name, NULL);
return platform_driver_register(&brcmuart_platform_driver);
}
module_init(brcmuart_init);
static void __exit brcmuart_deinit(void)
{
platform_driver_unregister(&brcmuart_platform_driver);
debugfs_remove_recursive(brcmuart_debugfs_root);
}
module_exit(brcmuart_deinit);
MODULE_AUTHOR("Al Cooper");
MODULE_DESCRIPTION("Broadcom NS16550A compatible serial port driver");
MODULE_LICENSE("GPL v2");