| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Routines for doing kexec-based kdump. |
| * |
| * Copyright (C) 2005, IBM Corp. |
| * |
| * Created by: Michael Ellerman |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/crash_dump.h> |
| #include <linux/io.h> |
| #include <linux/memblock.h> |
| #include <linux/of.h> |
| #include <asm/code-patching.h> |
| #include <asm/kdump.h> |
| #include <asm/firmware.h> |
| #include <linux/uio.h> |
| #include <asm/rtas.h> |
| #include <asm/inst.h> |
| |
| #ifdef DEBUG |
| #include <asm/udbg.h> |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifndef CONFIG_NONSTATIC_KERNEL |
| void __init reserve_kdump_trampoline(void) |
| { |
| memblock_reserve(0, KDUMP_RESERVE_LIMIT); |
| } |
| |
| static void __init create_trampoline(unsigned long addr) |
| { |
| u32 *p = (u32 *)addr; |
| |
| /* The maximum range of a single instruction branch, is the current |
| * instruction's address + (32 MB - 4) bytes. For the trampoline we |
| * need to branch to current address + 32 MB. So we insert a nop at |
| * the trampoline address, then the next instruction (+ 4 bytes) |
| * does a branch to (32 MB - 4). The net effect is that when we |
| * branch to "addr" we jump to ("addr" + 32 MB). Although it requires |
| * two instructions it doesn't require any registers. |
| */ |
| patch_instruction(p, ppc_inst(PPC_RAW_NOP())); |
| patch_branch(p + 1, addr + PHYSICAL_START, 0); |
| } |
| |
| void __init setup_kdump_trampoline(void) |
| { |
| unsigned long i; |
| |
| DBG(" -> setup_kdump_trampoline()\n"); |
| |
| for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) { |
| create_trampoline(i); |
| } |
| |
| #ifdef CONFIG_PPC_PSERIES |
| create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START); |
| create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START); |
| #endif /* CONFIG_PPC_PSERIES */ |
| |
| DBG(" <- setup_kdump_trampoline()\n"); |
| } |
| #endif /* CONFIG_NONSTATIC_KERNEL */ |
| |
| ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, |
| size_t csize, unsigned long offset) |
| { |
| void *vaddr; |
| phys_addr_t paddr; |
| |
| if (!csize) |
| return 0; |
| |
| csize = min_t(size_t, csize, PAGE_SIZE); |
| paddr = pfn << PAGE_SHIFT; |
| |
| if (memblock_is_region_memory(paddr, csize)) { |
| vaddr = __va(paddr); |
| csize = copy_to_iter(vaddr + offset, csize, iter); |
| } else { |
| vaddr = ioremap_cache(paddr, PAGE_SIZE); |
| csize = copy_to_iter(vaddr + offset, csize, iter); |
| iounmap(vaddr); |
| } |
| |
| return csize; |
| } |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* |
| * The crashkernel region will almost always overlap the RTAS region, so |
| * we have to be careful when shrinking the crashkernel region. |
| */ |
| void crash_free_reserved_phys_range(unsigned long begin, unsigned long end) |
| { |
| unsigned long addr; |
| const __be32 *basep, *sizep; |
| unsigned int rtas_start = 0, rtas_end = 0; |
| |
| basep = of_get_property(rtas.dev, "linux,rtas-base", NULL); |
| sizep = of_get_property(rtas.dev, "rtas-size", NULL); |
| |
| if (basep && sizep) { |
| rtas_start = be32_to_cpup(basep); |
| rtas_end = rtas_start + be32_to_cpup(sizep); |
| } |
| |
| for (addr = begin; addr < end; addr += PAGE_SIZE) { |
| /* Does this page overlap with the RTAS region? */ |
| if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start)) |
| continue; |
| |
| free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); |
| } |
| } |
| #endif |