blob: c6b16cf6e36755725ab414fd50cbdc6dcda14b9f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Freescale Vybrid vf610 ADC driver
*
* Copyright 2013 Freescale Semiconductor, Inc.
*/
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/regulator/consumer.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/* This will be the driver name the kernel reports */
#define DRIVER_NAME "vf610-adc"
/* Vybrid/IMX ADC registers */
#define VF610_REG_ADC_HC0 0x00
#define VF610_REG_ADC_HC1 0x04
#define VF610_REG_ADC_HS 0x08
#define VF610_REG_ADC_R0 0x0c
#define VF610_REG_ADC_R1 0x10
#define VF610_REG_ADC_CFG 0x14
#define VF610_REG_ADC_GC 0x18
#define VF610_REG_ADC_GS 0x1c
#define VF610_REG_ADC_CV 0x20
#define VF610_REG_ADC_OFS 0x24
#define VF610_REG_ADC_CAL 0x28
#define VF610_REG_ADC_PCTL 0x30
/* Configuration register field define */
#define VF610_ADC_MODE_BIT8 0x00
#define VF610_ADC_MODE_BIT10 0x04
#define VF610_ADC_MODE_BIT12 0x08
#define VF610_ADC_MODE_MASK 0x0c
#define VF610_ADC_BUSCLK2_SEL 0x01
#define VF610_ADC_ALTCLK_SEL 0x02
#define VF610_ADC_ADACK_SEL 0x03
#define VF610_ADC_ADCCLK_MASK 0x03
#define VF610_ADC_CLK_DIV2 0x20
#define VF610_ADC_CLK_DIV4 0x40
#define VF610_ADC_CLK_DIV8 0x60
#define VF610_ADC_CLK_MASK 0x60
#define VF610_ADC_ADLSMP_LONG 0x10
#define VF610_ADC_ADSTS_SHORT 0x100
#define VF610_ADC_ADSTS_NORMAL 0x200
#define VF610_ADC_ADSTS_LONG 0x300
#define VF610_ADC_ADSTS_MASK 0x300
#define VF610_ADC_ADLPC_EN 0x80
#define VF610_ADC_ADHSC_EN 0x400
#define VF610_ADC_REFSEL_VALT 0x800
#define VF610_ADC_REFSEL_VBG 0x1000
#define VF610_ADC_ADTRG_HARD 0x2000
#define VF610_ADC_AVGS_8 0x4000
#define VF610_ADC_AVGS_16 0x8000
#define VF610_ADC_AVGS_32 0xC000
#define VF610_ADC_AVGS_MASK 0xC000
#define VF610_ADC_OVWREN 0x10000
/* General control register field define */
#define VF610_ADC_ADACKEN 0x1
#define VF610_ADC_DMAEN 0x2
#define VF610_ADC_ACREN 0x4
#define VF610_ADC_ACFGT 0x8
#define VF610_ADC_ACFE 0x10
#define VF610_ADC_AVGEN 0x20
#define VF610_ADC_ADCON 0x40
#define VF610_ADC_CAL 0x80
/* Other field define */
#define VF610_ADC_ADCHC(x) ((x) & 0x1F)
#define VF610_ADC_AIEN (0x1 << 7)
#define VF610_ADC_CONV_DISABLE 0x1F
#define VF610_ADC_HS_COCO0 0x1
#define VF610_ADC_CALF 0x2
#define VF610_ADC_TIMEOUT msecs_to_jiffies(100)
#define DEFAULT_SAMPLE_TIME 1000
/* V at 25°C of 696 mV */
#define VF610_VTEMP25_3V0 950
/* V at 25°C of 699 mV */
#define VF610_VTEMP25_3V3 867
/* Typical sensor slope coefficient at all temperatures */
#define VF610_TEMP_SLOPE_COEFF 1840
enum clk_sel {
VF610_ADCIOC_BUSCLK_SET,
VF610_ADCIOC_ALTCLK_SET,
VF610_ADCIOC_ADACK_SET,
};
enum vol_ref {
VF610_ADCIOC_VR_VREF_SET,
VF610_ADCIOC_VR_VALT_SET,
VF610_ADCIOC_VR_VBG_SET,
};
enum average_sel {
VF610_ADC_SAMPLE_1,
VF610_ADC_SAMPLE_4,
VF610_ADC_SAMPLE_8,
VF610_ADC_SAMPLE_16,
VF610_ADC_SAMPLE_32,
};
enum conversion_mode_sel {
VF610_ADC_CONV_NORMAL,
VF610_ADC_CONV_HIGH_SPEED,
VF610_ADC_CONV_LOW_POWER,
};
enum lst_adder_sel {
VF610_ADCK_CYCLES_3,
VF610_ADCK_CYCLES_5,
VF610_ADCK_CYCLES_7,
VF610_ADCK_CYCLES_9,
VF610_ADCK_CYCLES_13,
VF610_ADCK_CYCLES_17,
VF610_ADCK_CYCLES_21,
VF610_ADCK_CYCLES_25,
};
struct vf610_adc_feature {
enum clk_sel clk_sel;
enum vol_ref vol_ref;
enum conversion_mode_sel conv_mode;
int clk_div;
int sample_rate;
int res_mode;
u32 lst_adder_index;
u32 default_sample_time;
bool calibration;
bool ovwren;
};
struct vf610_adc {
struct device *dev;
void __iomem *regs;
struct clk *clk;
u32 vref_uv;
u32 value;
struct regulator *vref;
u32 max_adck_rate[3];
struct vf610_adc_feature adc_feature;
u32 sample_freq_avail[5];
struct completion completion;
/* Ensure the timestamp is naturally aligned */
struct {
u16 chan;
s64 timestamp __aligned(8);
} scan;
};
static const u32 vf610_hw_avgs[] = { 1, 4, 8, 16, 32 };
static const u32 vf610_lst_adder[] = { 3, 5, 7, 9, 13, 17, 21, 25 };
static inline void vf610_adc_calculate_rates(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &info->adc_feature;
unsigned long adck_rate, ipg_rate = clk_get_rate(info->clk);
u32 adck_period, lst_addr_min;
int divisor, i;
adck_rate = info->max_adck_rate[adc_feature->conv_mode];
if (adck_rate) {
/* calculate clk divider which is within specification */
divisor = ipg_rate / adck_rate;
adc_feature->clk_div = 1 << fls(divisor + 1);
} else {
/* fall-back value using a safe divisor */
adc_feature->clk_div = 8;
}
adck_rate = ipg_rate / adc_feature->clk_div;
/*
* Determine the long sample time adder value to be used based
* on the default minimum sample time provided.
*/
adck_period = NSEC_PER_SEC / adck_rate;
lst_addr_min = adc_feature->default_sample_time / adck_period;
for (i = 0; i < ARRAY_SIZE(vf610_lst_adder); i++) {
if (vf610_lst_adder[i] > lst_addr_min) {
adc_feature->lst_adder_index = i;
break;
}
}
/*
* Calculate ADC sample frequencies
* Sample time unit is ADCK cycles. ADCK clk source is ipg clock,
* which is the same as bus clock.
*
* ADC conversion time = SFCAdder + AverageNum x (BCT + LSTAdder)
* SFCAdder: fixed to 6 ADCK cycles
* AverageNum: 1, 4, 8, 16, 32 samples for hardware average.
* BCT (Base Conversion Time): fixed to 25 ADCK cycles for 12 bit mode
* LSTAdder(Long Sample Time): 3, 5, 7, 9, 13, 17, 21, 25 ADCK cycles
*/
for (i = 0; i < ARRAY_SIZE(vf610_hw_avgs); i++)
info->sample_freq_avail[i] =
adck_rate / (6 + vf610_hw_avgs[i] *
(25 + vf610_lst_adder[adc_feature->lst_adder_index]));
}
static inline void vf610_adc_cfg_init(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &info->adc_feature;
/* set default Configuration for ADC controller */
adc_feature->clk_sel = VF610_ADCIOC_BUSCLK_SET;
adc_feature->vol_ref = VF610_ADCIOC_VR_VREF_SET;
adc_feature->calibration = true;
adc_feature->ovwren = true;
adc_feature->res_mode = 12;
adc_feature->sample_rate = 1;
adc_feature->conv_mode = VF610_ADC_CONV_LOW_POWER;
vf610_adc_calculate_rates(info);
}
static void vf610_adc_cfg_post_set(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &info->adc_feature;
int cfg_data = 0;
int gc_data = 0;
switch (adc_feature->clk_sel) {
case VF610_ADCIOC_ALTCLK_SET:
cfg_data |= VF610_ADC_ALTCLK_SEL;
break;
case VF610_ADCIOC_ADACK_SET:
cfg_data |= VF610_ADC_ADACK_SEL;
break;
default:
break;
}
/* low power set for calibration */
cfg_data |= VF610_ADC_ADLPC_EN;
/* enable high speed for calibration */
cfg_data |= VF610_ADC_ADHSC_EN;
/* voltage reference */
switch (adc_feature->vol_ref) {
case VF610_ADCIOC_VR_VREF_SET:
break;
case VF610_ADCIOC_VR_VALT_SET:
cfg_data |= VF610_ADC_REFSEL_VALT;
break;
case VF610_ADCIOC_VR_VBG_SET:
cfg_data |= VF610_ADC_REFSEL_VBG;
break;
default:
dev_err(info->dev, "error voltage reference\n");
}
/* data overwrite enable */
if (adc_feature->ovwren)
cfg_data |= VF610_ADC_OVWREN;
writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
writel(gc_data, info->regs + VF610_REG_ADC_GC);
}
static void vf610_adc_calibration(struct vf610_adc *info)
{
int adc_gc, hc_cfg;
if (!info->adc_feature.calibration)
return;
/* enable calibration interrupt */
hc_cfg = VF610_ADC_AIEN | VF610_ADC_CONV_DISABLE;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
adc_gc = readl(info->regs + VF610_REG_ADC_GC);
writel(adc_gc | VF610_ADC_CAL, info->regs + VF610_REG_ADC_GC);
if (!wait_for_completion_timeout(&info->completion, VF610_ADC_TIMEOUT))
dev_err(info->dev, "Timeout for adc calibration\n");
adc_gc = readl(info->regs + VF610_REG_ADC_GS);
if (adc_gc & VF610_ADC_CALF)
dev_err(info->dev, "ADC calibration failed\n");
info->adc_feature.calibration = false;
}
static void vf610_adc_cfg_set(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &(info->adc_feature);
int cfg_data;
cfg_data = readl(info->regs + VF610_REG_ADC_CFG);
cfg_data &= ~VF610_ADC_ADLPC_EN;
if (adc_feature->conv_mode == VF610_ADC_CONV_LOW_POWER)
cfg_data |= VF610_ADC_ADLPC_EN;
cfg_data &= ~VF610_ADC_ADHSC_EN;
if (adc_feature->conv_mode == VF610_ADC_CONV_HIGH_SPEED)
cfg_data |= VF610_ADC_ADHSC_EN;
writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
}
static void vf610_adc_sample_set(struct vf610_adc *info)
{
struct vf610_adc_feature *adc_feature = &(info->adc_feature);
int cfg_data, gc_data;
cfg_data = readl(info->regs + VF610_REG_ADC_CFG);
gc_data = readl(info->regs + VF610_REG_ADC_GC);
/* resolution mode */
cfg_data &= ~VF610_ADC_MODE_MASK;
switch (adc_feature->res_mode) {
case 8:
cfg_data |= VF610_ADC_MODE_BIT8;
break;
case 10:
cfg_data |= VF610_ADC_MODE_BIT10;
break;
case 12:
cfg_data |= VF610_ADC_MODE_BIT12;
break;
default:
dev_err(info->dev, "error resolution mode\n");
break;
}
/* clock select and clock divider */
cfg_data &= ~(VF610_ADC_CLK_MASK | VF610_ADC_ADCCLK_MASK);
switch (adc_feature->clk_div) {
case 1:
break;
case 2:
cfg_data |= VF610_ADC_CLK_DIV2;
break;
case 4:
cfg_data |= VF610_ADC_CLK_DIV4;
break;
case 8:
cfg_data |= VF610_ADC_CLK_DIV8;
break;
case 16:
switch (adc_feature->clk_sel) {
case VF610_ADCIOC_BUSCLK_SET:
cfg_data |= VF610_ADC_BUSCLK2_SEL | VF610_ADC_CLK_DIV8;
break;
default:
dev_err(info->dev, "error clk divider\n");
break;
}
break;
}
/*
* Set ADLSMP and ADSTS based on the Long Sample Time Adder value
* determined.
*/
switch (adc_feature->lst_adder_index) {
case VF610_ADCK_CYCLES_3:
break;
case VF610_ADCK_CYCLES_5:
cfg_data |= VF610_ADC_ADSTS_SHORT;
break;
case VF610_ADCK_CYCLES_7:
cfg_data |= VF610_ADC_ADSTS_NORMAL;
break;
case VF610_ADCK_CYCLES_9:
cfg_data |= VF610_ADC_ADSTS_LONG;
break;
case VF610_ADCK_CYCLES_13:
cfg_data |= VF610_ADC_ADLSMP_LONG;
break;
case VF610_ADCK_CYCLES_17:
cfg_data |= VF610_ADC_ADLSMP_LONG;
cfg_data |= VF610_ADC_ADSTS_SHORT;
break;
case VF610_ADCK_CYCLES_21:
cfg_data |= VF610_ADC_ADLSMP_LONG;
cfg_data |= VF610_ADC_ADSTS_NORMAL;
break;
case VF610_ADCK_CYCLES_25:
cfg_data |= VF610_ADC_ADLSMP_LONG;
cfg_data |= VF610_ADC_ADSTS_NORMAL;
break;
default:
dev_err(info->dev, "error in sample time select\n");
}
/* update hardware average selection */
cfg_data &= ~VF610_ADC_AVGS_MASK;
gc_data &= ~VF610_ADC_AVGEN;
switch (adc_feature->sample_rate) {
case VF610_ADC_SAMPLE_1:
break;
case VF610_ADC_SAMPLE_4:
gc_data |= VF610_ADC_AVGEN;
break;
case VF610_ADC_SAMPLE_8:
gc_data |= VF610_ADC_AVGEN;
cfg_data |= VF610_ADC_AVGS_8;
break;
case VF610_ADC_SAMPLE_16:
gc_data |= VF610_ADC_AVGEN;
cfg_data |= VF610_ADC_AVGS_16;
break;
case VF610_ADC_SAMPLE_32:
gc_data |= VF610_ADC_AVGEN;
cfg_data |= VF610_ADC_AVGS_32;
break;
default:
dev_err(info->dev,
"error hardware sample average select\n");
}
writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
writel(gc_data, info->regs + VF610_REG_ADC_GC);
}
static void vf610_adc_hw_init(struct vf610_adc *info)
{
/* CFG: Feature set */
vf610_adc_cfg_post_set(info);
vf610_adc_sample_set(info);
/* adc calibration */
vf610_adc_calibration(info);
/* CFG: power and speed set */
vf610_adc_cfg_set(info);
}
static int vf610_set_conversion_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct vf610_adc *info = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
info->adc_feature.conv_mode = mode;
vf610_adc_calculate_rates(info);
vf610_adc_hw_init(info);
mutex_unlock(&indio_dev->mlock);
return 0;
}
static int vf610_get_conversion_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct vf610_adc *info = iio_priv(indio_dev);
return info->adc_feature.conv_mode;
}
static const char * const vf610_conv_modes[] = { "normal", "high-speed",
"low-power" };
static const struct iio_enum vf610_conversion_mode = {
.items = vf610_conv_modes,
.num_items = ARRAY_SIZE(vf610_conv_modes),
.get = vf610_get_conversion_mode,
.set = vf610_set_conversion_mode,
};
static const struct iio_chan_spec_ext_info vf610_ext_info[] = {
IIO_ENUM("conversion_mode", IIO_SHARED_BY_DIR, &vf610_conversion_mode),
{},
};
#define VF610_ADC_CHAN(_idx, _chan_type) { \
.type = (_chan_type), \
.indexed = 1, \
.channel = (_idx), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.ext_info = vf610_ext_info, \
.scan_index = (_idx), \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
}
#define VF610_ADC_TEMPERATURE_CHAN(_idx, _chan_type) { \
.type = (_chan_type), \
.channel = (_idx), \
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
.scan_index = (_idx), \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
}
static const struct iio_chan_spec vf610_adc_iio_channels[] = {
VF610_ADC_CHAN(0, IIO_VOLTAGE),
VF610_ADC_CHAN(1, IIO_VOLTAGE),
VF610_ADC_CHAN(2, IIO_VOLTAGE),
VF610_ADC_CHAN(3, IIO_VOLTAGE),
VF610_ADC_CHAN(4, IIO_VOLTAGE),
VF610_ADC_CHAN(5, IIO_VOLTAGE),
VF610_ADC_CHAN(6, IIO_VOLTAGE),
VF610_ADC_CHAN(7, IIO_VOLTAGE),
VF610_ADC_CHAN(8, IIO_VOLTAGE),
VF610_ADC_CHAN(9, IIO_VOLTAGE),
VF610_ADC_CHAN(10, IIO_VOLTAGE),
VF610_ADC_CHAN(11, IIO_VOLTAGE),
VF610_ADC_CHAN(12, IIO_VOLTAGE),
VF610_ADC_CHAN(13, IIO_VOLTAGE),
VF610_ADC_CHAN(14, IIO_VOLTAGE),
VF610_ADC_CHAN(15, IIO_VOLTAGE),
VF610_ADC_TEMPERATURE_CHAN(26, IIO_TEMP),
IIO_CHAN_SOFT_TIMESTAMP(32),
/* sentinel */
};
static int vf610_adc_read_data(struct vf610_adc *info)
{
int result;
result = readl(info->regs + VF610_REG_ADC_R0);
switch (info->adc_feature.res_mode) {
case 8:
result &= 0xFF;
break;
case 10:
result &= 0x3FF;
break;
case 12:
result &= 0xFFF;
break;
default:
break;
}
return result;
}
static irqreturn_t vf610_adc_isr(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct vf610_adc *info = iio_priv(indio_dev);
int coco;
coco = readl(info->regs + VF610_REG_ADC_HS);
if (coco & VF610_ADC_HS_COCO0) {
info->value = vf610_adc_read_data(info);
if (iio_buffer_enabled(indio_dev)) {
info->scan.chan = info->value;
iio_push_to_buffers_with_timestamp(indio_dev,
&info->scan,
iio_get_time_ns(indio_dev));
iio_trigger_notify_done(indio_dev->trig);
} else
complete(&info->completion);
}
return IRQ_HANDLED;
}
static ssize_t vf610_show_samp_freq_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct vf610_adc *info = iio_priv(dev_to_iio_dev(dev));
size_t len = 0;
int i;
for (i = 0; i < ARRAY_SIZE(info->sample_freq_avail); i++)
len += scnprintf(buf + len, PAGE_SIZE - len,
"%u ", info->sample_freq_avail[i]);
/* replace trailing space by newline */
buf[len - 1] = '\n';
return len;
}
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(vf610_show_samp_freq_avail);
static struct attribute *vf610_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL
};
static const struct attribute_group vf610_attribute_group = {
.attrs = vf610_attributes,
};
static int vf610_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct vf610_adc *info = iio_priv(indio_dev);
unsigned int hc_cfg;
long ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
mutex_lock(&indio_dev->mlock);
if (iio_buffer_enabled(indio_dev)) {
mutex_unlock(&indio_dev->mlock);
return -EBUSY;
}
reinit_completion(&info->completion);
hc_cfg = VF610_ADC_ADCHC(chan->channel);
hc_cfg |= VF610_ADC_AIEN;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
ret = wait_for_completion_interruptible_timeout
(&info->completion, VF610_ADC_TIMEOUT);
if (ret == 0) {
mutex_unlock(&indio_dev->mlock);
return -ETIMEDOUT;
}
if (ret < 0) {
mutex_unlock(&indio_dev->mlock);
return ret;
}
switch (chan->type) {
case IIO_VOLTAGE:
*val = info->value;
break;
case IIO_TEMP:
/*
* Calculate in degree Celsius times 1000
* Using the typical sensor slope of 1.84 mV/°C
* and VREFH_ADC at 3.3V, V at 25°C of 699 mV
*/
*val = 25000 - ((int)info->value - VF610_VTEMP25_3V3) *
1000000 / VF610_TEMP_SLOPE_COEFF;
break;
default:
mutex_unlock(&indio_dev->mlock);
return -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = info->vref_uv / 1000;
*val2 = info->adc_feature.res_mode;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = info->sample_freq_avail[info->adc_feature.sample_rate];
*val2 = 0;
return IIO_VAL_INT;
default:
break;
}
return -EINVAL;
}
static int vf610_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct vf610_adc *info = iio_priv(indio_dev);
int i;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
for (i = 0;
i < ARRAY_SIZE(info->sample_freq_avail);
i++)
if (val == info->sample_freq_avail[i]) {
info->adc_feature.sample_rate = i;
vf610_adc_sample_set(info);
return 0;
}
break;
default:
break;
}
return -EINVAL;
}
static int vf610_adc_buffer_postenable(struct iio_dev *indio_dev)
{
struct vf610_adc *info = iio_priv(indio_dev);
unsigned int channel;
int val;
val = readl(info->regs + VF610_REG_ADC_GC);
val |= VF610_ADC_ADCON;
writel(val, info->regs + VF610_REG_ADC_GC);
channel = find_first_bit(indio_dev->active_scan_mask,
indio_dev->masklength);
val = VF610_ADC_ADCHC(channel);
val |= VF610_ADC_AIEN;
writel(val, info->regs + VF610_REG_ADC_HC0);
return 0;
}
static int vf610_adc_buffer_predisable(struct iio_dev *indio_dev)
{
struct vf610_adc *info = iio_priv(indio_dev);
unsigned int hc_cfg = 0;
int val;
val = readl(info->regs + VF610_REG_ADC_GC);
val &= ~VF610_ADC_ADCON;
writel(val, info->regs + VF610_REG_ADC_GC);
hc_cfg |= VF610_ADC_CONV_DISABLE;
hc_cfg &= ~VF610_ADC_AIEN;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
return 0;
}
static const struct iio_buffer_setup_ops iio_triggered_buffer_setup_ops = {
.postenable = &vf610_adc_buffer_postenable,
.predisable = &vf610_adc_buffer_predisable,
.validate_scan_mask = &iio_validate_scan_mask_onehot,
};
static int vf610_adc_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct vf610_adc *info = iio_priv(indio_dev);
if ((readval == NULL) ||
((reg % 4) || (reg > VF610_REG_ADC_PCTL)))
return -EINVAL;
*readval = readl(info->regs + reg);
return 0;
}
static const struct iio_info vf610_adc_iio_info = {
.read_raw = &vf610_read_raw,
.write_raw = &vf610_write_raw,
.debugfs_reg_access = &vf610_adc_reg_access,
.attrs = &vf610_attribute_group,
};
static const struct of_device_id vf610_adc_match[] = {
{ .compatible = "fsl,vf610-adc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vf610_adc_match);
static int vf610_adc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vf610_adc *info;
struct iio_dev *indio_dev;
int irq;
int ret;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct vf610_adc));
if (!indio_dev) {
dev_err(&pdev->dev, "Failed allocating iio device\n");
return -ENOMEM;
}
info = iio_priv(indio_dev);
info->dev = &pdev->dev;
info->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->regs))
return PTR_ERR(info->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(info->dev, irq,
vf610_adc_isr, 0,
dev_name(&pdev->dev), indio_dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed requesting irq, irq = %d\n", irq);
return ret;
}
info->clk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
PTR_ERR(info->clk));
return PTR_ERR(info->clk);
}
info->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(info->vref))
return PTR_ERR(info->vref);
ret = regulator_enable(info->vref);
if (ret)
return ret;
info->vref_uv = regulator_get_voltage(info->vref);
device_property_read_u32_array(dev, "fsl,adck-max-frequency", info->max_adck_rate, 3);
info->adc_feature.default_sample_time = DEFAULT_SAMPLE_TIME;
device_property_read_u32(dev, "min-sample-time", &info->adc_feature.default_sample_time);
platform_set_drvdata(pdev, indio_dev);
init_completion(&info->completion);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->info = &vf610_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = vf610_adc_iio_channels;
indio_dev->num_channels = ARRAY_SIZE(vf610_adc_iio_channels);
ret = clk_prepare_enable(info->clk);
if (ret) {
dev_err(&pdev->dev,
"Could not prepare or enable the clock.\n");
goto error_adc_clk_enable;
}
vf610_adc_cfg_init(info);
vf610_adc_hw_init(info);
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
NULL, &iio_triggered_buffer_setup_ops);
if (ret < 0) {
dev_err(&pdev->dev, "Couldn't initialise the buffer\n");
goto error_iio_device_register;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't register the device.\n");
goto error_adc_buffer_init;
}
return 0;
error_adc_buffer_init:
iio_triggered_buffer_cleanup(indio_dev);
error_iio_device_register:
clk_disable_unprepare(info->clk);
error_adc_clk_enable:
regulator_disable(info->vref);
return ret;
}
static int vf610_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct vf610_adc *info = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
regulator_disable(info->vref);
clk_disable_unprepare(info->clk);
return 0;
}
static int vf610_adc_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct vf610_adc *info = iio_priv(indio_dev);
int hc_cfg;
/* ADC controller enters to stop mode */
hc_cfg = readl(info->regs + VF610_REG_ADC_HC0);
hc_cfg |= VF610_ADC_CONV_DISABLE;
writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
clk_disable_unprepare(info->clk);
regulator_disable(info->vref);
return 0;
}
static int vf610_adc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct vf610_adc *info = iio_priv(indio_dev);
int ret;
ret = regulator_enable(info->vref);
if (ret)
return ret;
ret = clk_prepare_enable(info->clk);
if (ret)
goto disable_reg;
vf610_adc_hw_init(info);
return 0;
disable_reg:
regulator_disable(info->vref);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(vf610_adc_pm_ops, vf610_adc_suspend,
vf610_adc_resume);
static struct platform_driver vf610_adc_driver = {
.probe = vf610_adc_probe,
.remove = vf610_adc_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = vf610_adc_match,
.pm = pm_sleep_ptr(&vf610_adc_pm_ops),
},
};
module_platform_driver(vf610_adc_driver);
MODULE_AUTHOR("Fugang Duan <B38611@freescale.com>");
MODULE_DESCRIPTION("Freescale VF610 ADC driver");
MODULE_LICENSE("GPL v2");