| // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB |
| /* |
| * Copyright (c) 2005 Voltaire Inc. All rights reserved. |
| * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. |
| * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. |
| * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. |
| */ |
| |
| #include <linux/completion.h> |
| #include <linux/in.h> |
| #include <linux/in6.h> |
| #include <linux/mutex.h> |
| #include <linux/random.h> |
| #include <linux/rbtree.h> |
| #include <linux/igmp.h> |
| #include <linux/xarray.h> |
| #include <linux/inetdevice.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <net/route.h> |
| |
| #include <net/net_namespace.h> |
| #include <net/netns/generic.h> |
| #include <net/netevent.h> |
| #include <net/tcp.h> |
| #include <net/ipv6.h> |
| #include <net/ip_fib.h> |
| #include <net/ip6_route.h> |
| |
| #include <rdma/rdma_cm.h> |
| #include <rdma/rdma_cm_ib.h> |
| #include <rdma/rdma_netlink.h> |
| #include <rdma/ib.h> |
| #include <rdma/ib_cache.h> |
| #include <rdma/ib_cm.h> |
| #include <rdma/ib_sa.h> |
| #include <rdma/iw_cm.h> |
| |
| #include "core_priv.h" |
| #include "cma_priv.h" |
| #include "cma_trace.h" |
| |
| MODULE_AUTHOR("Sean Hefty"); |
| MODULE_DESCRIPTION("Generic RDMA CM Agent"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| #define CMA_CM_RESPONSE_TIMEOUT 20 |
| #define CMA_MAX_CM_RETRIES 15 |
| #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) |
| #define CMA_IBOE_PACKET_LIFETIME 18 |
| #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP |
| |
| static const char * const cma_events[] = { |
| [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", |
| [RDMA_CM_EVENT_ADDR_ERROR] = "address error", |
| [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", |
| [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", |
| [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", |
| [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", |
| [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", |
| [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", |
| [RDMA_CM_EVENT_REJECTED] = "rejected", |
| [RDMA_CM_EVENT_ESTABLISHED] = "established", |
| [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", |
| [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", |
| [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", |
| [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", |
| [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", |
| [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", |
| }; |
| |
| static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, |
| enum ib_gid_type gid_type); |
| |
| const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) |
| { |
| size_t index = event; |
| |
| return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? |
| cma_events[index] : "unrecognized event"; |
| } |
| EXPORT_SYMBOL(rdma_event_msg); |
| |
| const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, |
| int reason) |
| { |
| if (rdma_ib_or_roce(id->device, id->port_num)) |
| return ibcm_reject_msg(reason); |
| |
| if (rdma_protocol_iwarp(id->device, id->port_num)) |
| return iwcm_reject_msg(reason); |
| |
| WARN_ON_ONCE(1); |
| return "unrecognized transport"; |
| } |
| EXPORT_SYMBOL(rdma_reject_msg); |
| |
| /** |
| * rdma_is_consumer_reject - return true if the consumer rejected the connect |
| * request. |
| * @id: Communication identifier that received the REJECT event. |
| * @reason: Value returned in the REJECT event status field. |
| */ |
| static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) |
| { |
| if (rdma_ib_or_roce(id->device, id->port_num)) |
| return reason == IB_CM_REJ_CONSUMER_DEFINED; |
| |
| if (rdma_protocol_iwarp(id->device, id->port_num)) |
| return reason == -ECONNREFUSED; |
| |
| WARN_ON_ONCE(1); |
| return false; |
| } |
| |
| const void *rdma_consumer_reject_data(struct rdma_cm_id *id, |
| struct rdma_cm_event *ev, u8 *data_len) |
| { |
| const void *p; |
| |
| if (rdma_is_consumer_reject(id, ev->status)) { |
| *data_len = ev->param.conn.private_data_len; |
| p = ev->param.conn.private_data; |
| } else { |
| *data_len = 0; |
| p = NULL; |
| } |
| return p; |
| } |
| EXPORT_SYMBOL(rdma_consumer_reject_data); |
| |
| /** |
| * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. |
| * @id: Communication Identifier |
| */ |
| struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) |
| { |
| struct rdma_id_private *id_priv; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (id->device->node_type == RDMA_NODE_RNIC) |
| return id_priv->cm_id.iw; |
| return NULL; |
| } |
| EXPORT_SYMBOL(rdma_iw_cm_id); |
| |
| /** |
| * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. |
| * @res: rdma resource tracking entry pointer |
| */ |
| struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(res, struct rdma_id_private, res); |
| |
| return &id_priv->id; |
| } |
| EXPORT_SYMBOL(rdma_res_to_id); |
| |
| static int cma_add_one(struct ib_device *device); |
| static void cma_remove_one(struct ib_device *device, void *client_data); |
| |
| static struct ib_client cma_client = { |
| .name = "cma", |
| .add = cma_add_one, |
| .remove = cma_remove_one |
| }; |
| |
| static struct ib_sa_client sa_client; |
| static LIST_HEAD(dev_list); |
| static LIST_HEAD(listen_any_list); |
| static DEFINE_MUTEX(lock); |
| static struct rb_root id_table = RB_ROOT; |
| /* Serialize operations of id_table tree */ |
| static DEFINE_SPINLOCK(id_table_lock); |
| static struct workqueue_struct *cma_wq; |
| static unsigned int cma_pernet_id; |
| |
| struct cma_pernet { |
| struct xarray tcp_ps; |
| struct xarray udp_ps; |
| struct xarray ipoib_ps; |
| struct xarray ib_ps; |
| }; |
| |
| static struct cma_pernet *cma_pernet(struct net *net) |
| { |
| return net_generic(net, cma_pernet_id); |
| } |
| |
| static |
| struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) |
| { |
| struct cma_pernet *pernet = cma_pernet(net); |
| |
| switch (ps) { |
| case RDMA_PS_TCP: |
| return &pernet->tcp_ps; |
| case RDMA_PS_UDP: |
| return &pernet->udp_ps; |
| case RDMA_PS_IPOIB: |
| return &pernet->ipoib_ps; |
| case RDMA_PS_IB: |
| return &pernet->ib_ps; |
| default: |
| return NULL; |
| } |
| } |
| |
| struct id_table_entry { |
| struct list_head id_list; |
| struct rb_node rb_node; |
| }; |
| |
| struct cma_device { |
| struct list_head list; |
| struct ib_device *device; |
| struct completion comp; |
| refcount_t refcount; |
| struct list_head id_list; |
| enum ib_gid_type *default_gid_type; |
| u8 *default_roce_tos; |
| }; |
| |
| struct rdma_bind_list { |
| enum rdma_ucm_port_space ps; |
| struct hlist_head owners; |
| unsigned short port; |
| }; |
| |
| static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, |
| struct rdma_bind_list *bind_list, int snum) |
| { |
| struct xarray *xa = cma_pernet_xa(net, ps); |
| |
| return xa_insert(xa, snum, bind_list, GFP_KERNEL); |
| } |
| |
| static struct rdma_bind_list *cma_ps_find(struct net *net, |
| enum rdma_ucm_port_space ps, int snum) |
| { |
| struct xarray *xa = cma_pernet_xa(net, ps); |
| |
| return xa_load(xa, snum); |
| } |
| |
| static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, |
| int snum) |
| { |
| struct xarray *xa = cma_pernet_xa(net, ps); |
| |
| xa_erase(xa, snum); |
| } |
| |
| enum { |
| CMA_OPTION_AFONLY, |
| }; |
| |
| void cma_dev_get(struct cma_device *cma_dev) |
| { |
| refcount_inc(&cma_dev->refcount); |
| } |
| |
| void cma_dev_put(struct cma_device *cma_dev) |
| { |
| if (refcount_dec_and_test(&cma_dev->refcount)) |
| complete(&cma_dev->comp); |
| } |
| |
| struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, |
| void *cookie) |
| { |
| struct cma_device *cma_dev; |
| struct cma_device *found_cma_dev = NULL; |
| |
| mutex_lock(&lock); |
| |
| list_for_each_entry(cma_dev, &dev_list, list) |
| if (filter(cma_dev->device, cookie)) { |
| found_cma_dev = cma_dev; |
| break; |
| } |
| |
| if (found_cma_dev) |
| cma_dev_get(found_cma_dev); |
| mutex_unlock(&lock); |
| return found_cma_dev; |
| } |
| |
| int cma_get_default_gid_type(struct cma_device *cma_dev, |
| u32 port) |
| { |
| if (!rdma_is_port_valid(cma_dev->device, port)) |
| return -EINVAL; |
| |
| return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; |
| } |
| |
| int cma_set_default_gid_type(struct cma_device *cma_dev, |
| u32 port, |
| enum ib_gid_type default_gid_type) |
| { |
| unsigned long supported_gids; |
| |
| if (!rdma_is_port_valid(cma_dev->device, port)) |
| return -EINVAL; |
| |
| if (default_gid_type == IB_GID_TYPE_IB && |
| rdma_protocol_roce_eth_encap(cma_dev->device, port)) |
| default_gid_type = IB_GID_TYPE_ROCE; |
| |
| supported_gids = roce_gid_type_mask_support(cma_dev->device, port); |
| |
| if (!(supported_gids & 1 << default_gid_type)) |
| return -EINVAL; |
| |
| cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = |
| default_gid_type; |
| |
| return 0; |
| } |
| |
| int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) |
| { |
| if (!rdma_is_port_valid(cma_dev->device, port)) |
| return -EINVAL; |
| |
| return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; |
| } |
| |
| int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, |
| u8 default_roce_tos) |
| { |
| if (!rdma_is_port_valid(cma_dev->device, port)) |
| return -EINVAL; |
| |
| cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = |
| default_roce_tos; |
| |
| return 0; |
| } |
| struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) |
| { |
| return cma_dev->device; |
| } |
| |
| /* |
| * Device removal can occur at anytime, so we need extra handling to |
| * serialize notifying the user of device removal with other callbacks. |
| * We do this by disabling removal notification while a callback is in process, |
| * and reporting it after the callback completes. |
| */ |
| |
| struct cma_multicast { |
| struct rdma_id_private *id_priv; |
| union { |
| struct ib_sa_multicast *sa_mc; |
| struct { |
| struct work_struct work; |
| struct rdma_cm_event event; |
| } iboe_join; |
| }; |
| struct list_head list; |
| void *context; |
| struct sockaddr_storage addr; |
| u8 join_state; |
| }; |
| |
| struct cma_work { |
| struct work_struct work; |
| struct rdma_id_private *id; |
| enum rdma_cm_state old_state; |
| enum rdma_cm_state new_state; |
| struct rdma_cm_event event; |
| }; |
| |
| union cma_ip_addr { |
| struct in6_addr ip6; |
| struct { |
| __be32 pad[3]; |
| __be32 addr; |
| } ip4; |
| }; |
| |
| struct cma_hdr { |
| u8 cma_version; |
| u8 ip_version; /* IP version: 7:4 */ |
| __be16 port; |
| union cma_ip_addr src_addr; |
| union cma_ip_addr dst_addr; |
| }; |
| |
| #define CMA_VERSION 0x00 |
| |
| struct cma_req_info { |
| struct sockaddr_storage listen_addr_storage; |
| struct sockaddr_storage src_addr_storage; |
| struct ib_device *device; |
| union ib_gid local_gid; |
| __be64 service_id; |
| int port; |
| bool has_gid; |
| u16 pkey; |
| }; |
| |
| static int cma_comp_exch(struct rdma_id_private *id_priv, |
| enum rdma_cm_state comp, enum rdma_cm_state exch) |
| { |
| unsigned long flags; |
| int ret; |
| |
| /* |
| * The FSM uses a funny double locking where state is protected by both |
| * the handler_mutex and the spinlock. State is not allowed to change |
| * to/from a handler_mutex protected value without also holding |
| * handler_mutex. |
| */ |
| if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) |
| lockdep_assert_held(&id_priv->handler_mutex); |
| |
| spin_lock_irqsave(&id_priv->lock, flags); |
| if ((ret = (id_priv->state == comp))) |
| id_priv->state = exch; |
| spin_unlock_irqrestore(&id_priv->lock, flags); |
| return ret; |
| } |
| |
| static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) |
| { |
| return hdr->ip_version >> 4; |
| } |
| |
| static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) |
| { |
| hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); |
| } |
| |
| static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) |
| { |
| return (struct sockaddr *)&id_priv->id.route.addr.src_addr; |
| } |
| |
| static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) |
| { |
| return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; |
| } |
| |
| static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) |
| { |
| struct in_device *in_dev = NULL; |
| |
| if (ndev) { |
| rtnl_lock(); |
| in_dev = __in_dev_get_rtnl(ndev); |
| if (in_dev) { |
| if (join) |
| ip_mc_inc_group(in_dev, |
| *(__be32 *)(mgid->raw + 12)); |
| else |
| ip_mc_dec_group(in_dev, |
| *(__be32 *)(mgid->raw + 12)); |
| } |
| rtnl_unlock(); |
| } |
| return (in_dev) ? 0 : -ENODEV; |
| } |
| |
| static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, |
| struct id_table_entry *entry_b) |
| { |
| struct rdma_id_private *id_priv = list_first_entry( |
| &entry_b->id_list, struct rdma_id_private, id_list_entry); |
| int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; |
| struct sockaddr *sb = cma_dst_addr(id_priv); |
| |
| if (ifindex_a != ifindex_b) |
| return (ifindex_a > ifindex_b) ? 1 : -1; |
| |
| if (sa->sa_family != sb->sa_family) |
| return sa->sa_family - sb->sa_family; |
| |
| if (sa->sa_family == AF_INET && |
| __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { |
| return memcmp(&((struct sockaddr_in *)sa)->sin_addr, |
| &((struct sockaddr_in *)sb)->sin_addr, |
| sizeof(((struct sockaddr_in *)sa)->sin_addr)); |
| } |
| |
| if (sa->sa_family == AF_INET6 && |
| __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { |
| return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, |
| &((struct sockaddr_in6 *)sb)->sin6_addr); |
| } |
| |
| return -1; |
| } |
| |
| static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) |
| { |
| struct rb_node **new, *parent = NULL; |
| struct id_table_entry *this, *node; |
| unsigned long flags; |
| int result; |
| |
| node = kzalloc(sizeof(*node), GFP_KERNEL); |
| if (!node) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&id_table_lock, flags); |
| new = &id_table.rb_node; |
| while (*new) { |
| this = container_of(*new, struct id_table_entry, rb_node); |
| result = compare_netdev_and_ip( |
| node_id_priv->id.route.addr.dev_addr.bound_dev_if, |
| cma_dst_addr(node_id_priv), this); |
| |
| parent = *new; |
| if (result < 0) |
| new = &((*new)->rb_left); |
| else if (result > 0) |
| new = &((*new)->rb_right); |
| else { |
| list_add_tail(&node_id_priv->id_list_entry, |
| &this->id_list); |
| kfree(node); |
| goto unlock; |
| } |
| } |
| |
| INIT_LIST_HEAD(&node->id_list); |
| list_add_tail(&node_id_priv->id_list_entry, &node->id_list); |
| |
| rb_link_node(&node->rb_node, parent, new); |
| rb_insert_color(&node->rb_node, &id_table); |
| |
| unlock: |
| spin_unlock_irqrestore(&id_table_lock, flags); |
| return 0; |
| } |
| |
| static struct id_table_entry * |
| node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) |
| { |
| struct rb_node *node = root->rb_node; |
| struct id_table_entry *data; |
| int result; |
| |
| while (node) { |
| data = container_of(node, struct id_table_entry, rb_node); |
| result = compare_netdev_and_ip(ifindex, sa, data); |
| if (result < 0) |
| node = node->rb_left; |
| else if (result > 0) |
| node = node->rb_right; |
| else |
| return data; |
| } |
| |
| return NULL; |
| } |
| |
| static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) |
| { |
| struct id_table_entry *data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&id_table_lock, flags); |
| if (list_empty(&id_priv->id_list_entry)) |
| goto out; |
| |
| data = node_from_ndev_ip(&id_table, |
| id_priv->id.route.addr.dev_addr.bound_dev_if, |
| cma_dst_addr(id_priv)); |
| if (!data) |
| goto out; |
| |
| list_del_init(&id_priv->id_list_entry); |
| if (list_empty(&data->id_list)) { |
| rb_erase(&data->rb_node, &id_table); |
| kfree(data); |
| } |
| out: |
| spin_unlock_irqrestore(&id_table_lock, flags); |
| } |
| |
| static void _cma_attach_to_dev(struct rdma_id_private *id_priv, |
| struct cma_device *cma_dev) |
| { |
| cma_dev_get(cma_dev); |
| id_priv->cma_dev = cma_dev; |
| id_priv->id.device = cma_dev->device; |
| id_priv->id.route.addr.dev_addr.transport = |
| rdma_node_get_transport(cma_dev->device->node_type); |
| list_add_tail(&id_priv->device_item, &cma_dev->id_list); |
| |
| trace_cm_id_attach(id_priv, cma_dev->device); |
| } |
| |
| static void cma_attach_to_dev(struct rdma_id_private *id_priv, |
| struct cma_device *cma_dev) |
| { |
| _cma_attach_to_dev(id_priv, cma_dev); |
| id_priv->gid_type = |
| cma_dev->default_gid_type[id_priv->id.port_num - |
| rdma_start_port(cma_dev->device)]; |
| } |
| |
| static void cma_release_dev(struct rdma_id_private *id_priv) |
| { |
| mutex_lock(&lock); |
| list_del_init(&id_priv->device_item); |
| cma_dev_put(id_priv->cma_dev); |
| id_priv->cma_dev = NULL; |
| id_priv->id.device = NULL; |
| if (id_priv->id.route.addr.dev_addr.sgid_attr) { |
| rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); |
| id_priv->id.route.addr.dev_addr.sgid_attr = NULL; |
| } |
| mutex_unlock(&lock); |
| } |
| |
| static inline unsigned short cma_family(struct rdma_id_private *id_priv) |
| { |
| return id_priv->id.route.addr.src_addr.ss_family; |
| } |
| |
| static int cma_set_default_qkey(struct rdma_id_private *id_priv) |
| { |
| struct ib_sa_mcmember_rec rec; |
| int ret = 0; |
| |
| switch (id_priv->id.ps) { |
| case RDMA_PS_UDP: |
| case RDMA_PS_IB: |
| id_priv->qkey = RDMA_UDP_QKEY; |
| break; |
| case RDMA_PS_IPOIB: |
| ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); |
| ret = ib_sa_get_mcmember_rec(id_priv->id.device, |
| id_priv->id.port_num, &rec.mgid, |
| &rec); |
| if (!ret) |
| id_priv->qkey = be32_to_cpu(rec.qkey); |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) |
| { |
| if (!qkey || |
| (id_priv->qkey && (id_priv->qkey != qkey))) |
| return -EINVAL; |
| |
| id_priv->qkey = qkey; |
| return 0; |
| } |
| |
| static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) |
| { |
| dev_addr->dev_type = ARPHRD_INFINIBAND; |
| rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); |
| ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); |
| } |
| |
| static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) |
| { |
| int ret; |
| |
| if (addr->sa_family != AF_IB) { |
| ret = rdma_translate_ip(addr, dev_addr); |
| } else { |
| cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static const struct ib_gid_attr * |
| cma_validate_port(struct ib_device *device, u32 port, |
| enum ib_gid_type gid_type, |
| union ib_gid *gid, |
| struct rdma_id_private *id_priv) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| int bound_if_index = dev_addr->bound_dev_if; |
| const struct ib_gid_attr *sgid_attr; |
| int dev_type = dev_addr->dev_type; |
| struct net_device *ndev = NULL; |
| |
| if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) |
| return ERR_PTR(-ENODEV); |
| |
| if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) |
| return ERR_PTR(-ENODEV); |
| |
| if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) |
| return ERR_PTR(-ENODEV); |
| |
| if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { |
| ndev = dev_get_by_index(dev_addr->net, bound_if_index); |
| if (!ndev) |
| return ERR_PTR(-ENODEV); |
| } else { |
| gid_type = IB_GID_TYPE_IB; |
| } |
| |
| sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); |
| if (ndev) |
| dev_put(ndev); |
| return sgid_attr; |
| } |
| |
| static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, |
| const struct ib_gid_attr *sgid_attr) |
| { |
| WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); |
| id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; |
| } |
| |
| /** |
| * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute |
| * based on source ip address. |
| * @id_priv: cm_id which should be bound to cma device |
| * |
| * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute |
| * based on source IP address. It returns 0 on success or error code otherwise. |
| * It is applicable to active and passive side cm_id. |
| */ |
| static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| const struct ib_gid_attr *sgid_attr; |
| union ib_gid gid, iboe_gid, *gidp; |
| struct cma_device *cma_dev; |
| enum ib_gid_type gid_type; |
| int ret = -ENODEV; |
| u32 port; |
| |
| if (dev_addr->dev_type != ARPHRD_INFINIBAND && |
| id_priv->id.ps == RDMA_PS_IPOIB) |
| return -EINVAL; |
| |
| rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, |
| &iboe_gid); |
| |
| memcpy(&gid, dev_addr->src_dev_addr + |
| rdma_addr_gid_offset(dev_addr), sizeof(gid)); |
| |
| mutex_lock(&lock); |
| list_for_each_entry(cma_dev, &dev_list, list) { |
| rdma_for_each_port (cma_dev->device, port) { |
| gidp = rdma_protocol_roce(cma_dev->device, port) ? |
| &iboe_gid : &gid; |
| gid_type = cma_dev->default_gid_type[port - 1]; |
| sgid_attr = cma_validate_port(cma_dev->device, port, |
| gid_type, gidp, id_priv); |
| if (!IS_ERR(sgid_attr)) { |
| id_priv->id.port_num = port; |
| cma_bind_sgid_attr(id_priv, sgid_attr); |
| cma_attach_to_dev(id_priv, cma_dev); |
| ret = 0; |
| goto out; |
| } |
| } |
| } |
| out: |
| mutex_unlock(&lock); |
| return ret; |
| } |
| |
| /** |
| * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute |
| * @id_priv: cm id to bind to cma device |
| * @listen_id_priv: listener cm id to match against |
| * @req: Pointer to req structure containaining incoming |
| * request information |
| * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when |
| * rdma device matches for listen_id and incoming request. It also verifies |
| * that a GID table entry is present for the source address. |
| * Returns 0 on success, or returns error code otherwise. |
| */ |
| static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, |
| const struct rdma_id_private *listen_id_priv, |
| struct cma_req_info *req) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| const struct ib_gid_attr *sgid_attr; |
| enum ib_gid_type gid_type; |
| union ib_gid gid; |
| |
| if (dev_addr->dev_type != ARPHRD_INFINIBAND && |
| id_priv->id.ps == RDMA_PS_IPOIB) |
| return -EINVAL; |
| |
| if (rdma_protocol_roce(req->device, req->port)) |
| rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, |
| &gid); |
| else |
| memcpy(&gid, dev_addr->src_dev_addr + |
| rdma_addr_gid_offset(dev_addr), sizeof(gid)); |
| |
| gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; |
| sgid_attr = cma_validate_port(req->device, req->port, |
| gid_type, &gid, id_priv); |
| if (IS_ERR(sgid_attr)) |
| return PTR_ERR(sgid_attr); |
| |
| id_priv->id.port_num = req->port; |
| cma_bind_sgid_attr(id_priv, sgid_attr); |
| /* Need to acquire lock to protect against reader |
| * of cma_dev->id_list such as cma_netdev_callback() and |
| * cma_process_remove(). |
| */ |
| mutex_lock(&lock); |
| cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); |
| mutex_unlock(&lock); |
| rdma_restrack_add(&id_priv->res); |
| return 0; |
| } |
| |
| static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, |
| const struct rdma_id_private *listen_id_priv) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| const struct ib_gid_attr *sgid_attr; |
| struct cma_device *cma_dev; |
| enum ib_gid_type gid_type; |
| int ret = -ENODEV; |
| union ib_gid gid; |
| u32 port; |
| |
| if (dev_addr->dev_type != ARPHRD_INFINIBAND && |
| id_priv->id.ps == RDMA_PS_IPOIB) |
| return -EINVAL; |
| |
| memcpy(&gid, dev_addr->src_dev_addr + |
| rdma_addr_gid_offset(dev_addr), sizeof(gid)); |
| |
| mutex_lock(&lock); |
| |
| cma_dev = listen_id_priv->cma_dev; |
| port = listen_id_priv->id.port_num; |
| gid_type = listen_id_priv->gid_type; |
| sgid_attr = cma_validate_port(cma_dev->device, port, |
| gid_type, &gid, id_priv); |
| if (!IS_ERR(sgid_attr)) { |
| id_priv->id.port_num = port; |
| cma_bind_sgid_attr(id_priv, sgid_attr); |
| ret = 0; |
| goto out; |
| } |
| |
| list_for_each_entry(cma_dev, &dev_list, list) { |
| rdma_for_each_port (cma_dev->device, port) { |
| if (listen_id_priv->cma_dev == cma_dev && |
| listen_id_priv->id.port_num == port) |
| continue; |
| |
| gid_type = cma_dev->default_gid_type[port - 1]; |
| sgid_attr = cma_validate_port(cma_dev->device, port, |
| gid_type, &gid, id_priv); |
| if (!IS_ERR(sgid_attr)) { |
| id_priv->id.port_num = port; |
| cma_bind_sgid_attr(id_priv, sgid_attr); |
| ret = 0; |
| goto out; |
| } |
| } |
| } |
| |
| out: |
| if (!ret) { |
| cma_attach_to_dev(id_priv, cma_dev); |
| rdma_restrack_add(&id_priv->res); |
| } |
| |
| mutex_unlock(&lock); |
| return ret; |
| } |
| |
| /* |
| * Select the source IB device and address to reach the destination IB address. |
| */ |
| static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) |
| { |
| struct cma_device *cma_dev, *cur_dev; |
| struct sockaddr_ib *addr; |
| union ib_gid gid, sgid, *dgid; |
| unsigned int p; |
| u16 pkey, index; |
| enum ib_port_state port_state; |
| int ret; |
| int i; |
| |
| cma_dev = NULL; |
| addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); |
| dgid = (union ib_gid *) &addr->sib_addr; |
| pkey = ntohs(addr->sib_pkey); |
| |
| mutex_lock(&lock); |
| list_for_each_entry(cur_dev, &dev_list, list) { |
| rdma_for_each_port (cur_dev->device, p) { |
| if (!rdma_cap_af_ib(cur_dev->device, p)) |
| continue; |
| |
| if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) |
| continue; |
| |
| if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) |
| continue; |
| |
| for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; |
| ++i) { |
| ret = rdma_query_gid(cur_dev->device, p, i, |
| &gid); |
| if (ret) |
| continue; |
| |
| if (!memcmp(&gid, dgid, sizeof(gid))) { |
| cma_dev = cur_dev; |
| sgid = gid; |
| id_priv->id.port_num = p; |
| goto found; |
| } |
| |
| if (!cma_dev && (gid.global.subnet_prefix == |
| dgid->global.subnet_prefix) && |
| port_state == IB_PORT_ACTIVE) { |
| cma_dev = cur_dev; |
| sgid = gid; |
| id_priv->id.port_num = p; |
| goto found; |
| } |
| } |
| } |
| } |
| mutex_unlock(&lock); |
| return -ENODEV; |
| |
| found: |
| cma_attach_to_dev(id_priv, cma_dev); |
| rdma_restrack_add(&id_priv->res); |
| mutex_unlock(&lock); |
| addr = (struct sockaddr_ib *)cma_src_addr(id_priv); |
| memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); |
| cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); |
| return 0; |
| } |
| |
| static void cma_id_get(struct rdma_id_private *id_priv) |
| { |
| refcount_inc(&id_priv->refcount); |
| } |
| |
| static void cma_id_put(struct rdma_id_private *id_priv) |
| { |
| if (refcount_dec_and_test(&id_priv->refcount)) |
| complete(&id_priv->comp); |
| } |
| |
| static struct rdma_id_private * |
| __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, |
| void *context, enum rdma_ucm_port_space ps, |
| enum ib_qp_type qp_type, const struct rdma_id_private *parent) |
| { |
| struct rdma_id_private *id_priv; |
| |
| id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); |
| if (!id_priv) |
| return ERR_PTR(-ENOMEM); |
| |
| id_priv->state = RDMA_CM_IDLE; |
| id_priv->id.context = context; |
| id_priv->id.event_handler = event_handler; |
| id_priv->id.ps = ps; |
| id_priv->id.qp_type = qp_type; |
| id_priv->tos_set = false; |
| id_priv->timeout_set = false; |
| id_priv->min_rnr_timer_set = false; |
| id_priv->gid_type = IB_GID_TYPE_IB; |
| spin_lock_init(&id_priv->lock); |
| mutex_init(&id_priv->qp_mutex); |
| init_completion(&id_priv->comp); |
| refcount_set(&id_priv->refcount, 1); |
| mutex_init(&id_priv->handler_mutex); |
| INIT_LIST_HEAD(&id_priv->device_item); |
| INIT_LIST_HEAD(&id_priv->id_list_entry); |
| INIT_LIST_HEAD(&id_priv->listen_list); |
| INIT_LIST_HEAD(&id_priv->mc_list); |
| get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); |
| id_priv->id.route.addr.dev_addr.net = get_net(net); |
| id_priv->seq_num &= 0x00ffffff; |
| |
| rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); |
| if (parent) |
| rdma_restrack_parent_name(&id_priv->res, &parent->res); |
| |
| return id_priv; |
| } |
| |
| struct rdma_cm_id * |
| __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, |
| void *context, enum rdma_ucm_port_space ps, |
| enum ib_qp_type qp_type, const char *caller) |
| { |
| struct rdma_id_private *ret; |
| |
| ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); |
| if (IS_ERR(ret)) |
| return ERR_CAST(ret); |
| |
| rdma_restrack_set_name(&ret->res, caller); |
| return &ret->id; |
| } |
| EXPORT_SYMBOL(__rdma_create_kernel_id); |
| |
| struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, |
| void *context, |
| enum rdma_ucm_port_space ps, |
| enum ib_qp_type qp_type) |
| { |
| struct rdma_id_private *ret; |
| |
| ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, |
| ps, qp_type, NULL); |
| if (IS_ERR(ret)) |
| return ERR_CAST(ret); |
| |
| rdma_restrack_set_name(&ret->res, NULL); |
| return &ret->id; |
| } |
| EXPORT_SYMBOL(rdma_create_user_id); |
| |
| static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) |
| { |
| struct ib_qp_attr qp_attr; |
| int qp_attr_mask, ret; |
| |
| qp_attr.qp_state = IB_QPS_INIT; |
| ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); |
| if (ret) |
| return ret; |
| |
| ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); |
| if (ret) |
| return ret; |
| |
| qp_attr.qp_state = IB_QPS_RTR; |
| ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); |
| if (ret) |
| return ret; |
| |
| qp_attr.qp_state = IB_QPS_RTS; |
| qp_attr.sq_psn = 0; |
| ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); |
| |
| return ret; |
| } |
| |
| static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) |
| { |
| struct ib_qp_attr qp_attr; |
| int qp_attr_mask, ret; |
| |
| qp_attr.qp_state = IB_QPS_INIT; |
| ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); |
| if (ret) |
| return ret; |
| |
| return ib_modify_qp(qp, &qp_attr, qp_attr_mask); |
| } |
| |
| int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, |
| struct ib_qp_init_attr *qp_init_attr) |
| { |
| struct rdma_id_private *id_priv; |
| struct ib_qp *qp; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (id->device != pd->device) { |
| ret = -EINVAL; |
| goto out_err; |
| } |
| |
| qp_init_attr->port_num = id->port_num; |
| qp = ib_create_qp(pd, qp_init_attr); |
| if (IS_ERR(qp)) { |
| ret = PTR_ERR(qp); |
| goto out_err; |
| } |
| |
| if (id->qp_type == IB_QPT_UD) |
| ret = cma_init_ud_qp(id_priv, qp); |
| else |
| ret = cma_init_conn_qp(id_priv, qp); |
| if (ret) |
| goto out_destroy; |
| |
| id->qp = qp; |
| id_priv->qp_num = qp->qp_num; |
| id_priv->srq = (qp->srq != NULL); |
| trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); |
| return 0; |
| out_destroy: |
| ib_destroy_qp(qp); |
| out_err: |
| trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_create_qp); |
| |
| void rdma_destroy_qp(struct rdma_cm_id *id) |
| { |
| struct rdma_id_private *id_priv; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| trace_cm_qp_destroy(id_priv); |
| mutex_lock(&id_priv->qp_mutex); |
| ib_destroy_qp(id_priv->id.qp); |
| id_priv->id.qp = NULL; |
| mutex_unlock(&id_priv->qp_mutex); |
| } |
| EXPORT_SYMBOL(rdma_destroy_qp); |
| |
| static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct ib_qp_attr qp_attr; |
| int qp_attr_mask, ret; |
| |
| mutex_lock(&id_priv->qp_mutex); |
| if (!id_priv->id.qp) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Need to update QP attributes from default values. */ |
| qp_attr.qp_state = IB_QPS_INIT; |
| ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); |
| if (ret) |
| goto out; |
| |
| ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); |
| if (ret) |
| goto out; |
| |
| qp_attr.qp_state = IB_QPS_RTR; |
| ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); |
| if (ret) |
| goto out; |
| |
| BUG_ON(id_priv->cma_dev->device != id_priv->id.device); |
| |
| if (conn_param) |
| qp_attr.max_dest_rd_atomic = conn_param->responder_resources; |
| ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); |
| out: |
| mutex_unlock(&id_priv->qp_mutex); |
| return ret; |
| } |
| |
| static int cma_modify_qp_rts(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct ib_qp_attr qp_attr; |
| int qp_attr_mask, ret; |
| |
| mutex_lock(&id_priv->qp_mutex); |
| if (!id_priv->id.qp) { |
| ret = 0; |
| goto out; |
| } |
| |
| qp_attr.qp_state = IB_QPS_RTS; |
| ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); |
| if (ret) |
| goto out; |
| |
| if (conn_param) |
| qp_attr.max_rd_atomic = conn_param->initiator_depth; |
| ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); |
| out: |
| mutex_unlock(&id_priv->qp_mutex); |
| return ret; |
| } |
| |
| static int cma_modify_qp_err(struct rdma_id_private *id_priv) |
| { |
| struct ib_qp_attr qp_attr; |
| int ret; |
| |
| mutex_lock(&id_priv->qp_mutex); |
| if (!id_priv->id.qp) { |
| ret = 0; |
| goto out; |
| } |
| |
| qp_attr.qp_state = IB_QPS_ERR; |
| ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); |
| out: |
| mutex_unlock(&id_priv->qp_mutex); |
| return ret; |
| } |
| |
| static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, |
| struct ib_qp_attr *qp_attr, int *qp_attr_mask) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| int ret; |
| u16 pkey; |
| |
| if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) |
| pkey = 0xffff; |
| else |
| pkey = ib_addr_get_pkey(dev_addr); |
| |
| ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, |
| pkey, &qp_attr->pkey_index); |
| if (ret) |
| return ret; |
| |
| qp_attr->port_num = id_priv->id.port_num; |
| *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; |
| |
| if (id_priv->id.qp_type == IB_QPT_UD) { |
| ret = cma_set_default_qkey(id_priv); |
| if (ret) |
| return ret; |
| |
| qp_attr->qkey = id_priv->qkey; |
| *qp_attr_mask |= IB_QP_QKEY; |
| } else { |
| qp_attr->qp_access_flags = 0; |
| *qp_attr_mask |= IB_QP_ACCESS_FLAGS; |
| } |
| return 0; |
| } |
| |
| int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, |
| int *qp_attr_mask) |
| { |
| struct rdma_id_private *id_priv; |
| int ret = 0; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (rdma_cap_ib_cm(id->device, id->port_num)) { |
| if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) |
| ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); |
| else |
| ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, |
| qp_attr_mask); |
| |
| if (qp_attr->qp_state == IB_QPS_RTR) |
| qp_attr->rq_psn = id_priv->seq_num; |
| } else if (rdma_cap_iw_cm(id->device, id->port_num)) { |
| if (!id_priv->cm_id.iw) { |
| qp_attr->qp_access_flags = 0; |
| *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; |
| } else |
| ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, |
| qp_attr_mask); |
| qp_attr->port_num = id_priv->id.port_num; |
| *qp_attr_mask |= IB_QP_PORT; |
| } else { |
| ret = -ENOSYS; |
| } |
| |
| if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) |
| qp_attr->timeout = id_priv->timeout; |
| |
| if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) |
| qp_attr->min_rnr_timer = id_priv->min_rnr_timer; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_init_qp_attr); |
| |
| static inline bool cma_zero_addr(const struct sockaddr *addr) |
| { |
| switch (addr->sa_family) { |
| case AF_INET: |
| return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); |
| case AF_INET6: |
| return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); |
| case AF_IB: |
| return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); |
| default: |
| return false; |
| } |
| } |
| |
| static inline bool cma_loopback_addr(const struct sockaddr *addr) |
| { |
| switch (addr->sa_family) { |
| case AF_INET: |
| return ipv4_is_loopback( |
| ((struct sockaddr_in *)addr)->sin_addr.s_addr); |
| case AF_INET6: |
| return ipv6_addr_loopback( |
| &((struct sockaddr_in6 *)addr)->sin6_addr); |
| case AF_IB: |
| return ib_addr_loopback( |
| &((struct sockaddr_ib *)addr)->sib_addr); |
| default: |
| return false; |
| } |
| } |
| |
| static inline bool cma_any_addr(const struct sockaddr *addr) |
| { |
| return cma_zero_addr(addr) || cma_loopback_addr(addr); |
| } |
| |
| static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) |
| { |
| if (src->sa_family != dst->sa_family) |
| return -1; |
| |
| switch (src->sa_family) { |
| case AF_INET: |
| return ((struct sockaddr_in *)src)->sin_addr.s_addr != |
| ((struct sockaddr_in *)dst)->sin_addr.s_addr; |
| case AF_INET6: { |
| struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; |
| struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; |
| bool link_local; |
| |
| if (ipv6_addr_cmp(&src_addr6->sin6_addr, |
| &dst_addr6->sin6_addr)) |
| return 1; |
| link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & |
| IPV6_ADDR_LINKLOCAL; |
| /* Link local must match their scope_ids */ |
| return link_local ? (src_addr6->sin6_scope_id != |
| dst_addr6->sin6_scope_id) : |
| 0; |
| } |
| |
| default: |
| return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, |
| &((struct sockaddr_ib *) dst)->sib_addr); |
| } |
| } |
| |
| static __be16 cma_port(const struct sockaddr *addr) |
| { |
| struct sockaddr_ib *sib; |
| |
| switch (addr->sa_family) { |
| case AF_INET: |
| return ((struct sockaddr_in *) addr)->sin_port; |
| case AF_INET6: |
| return ((struct sockaddr_in6 *) addr)->sin6_port; |
| case AF_IB: |
| sib = (struct sockaddr_ib *) addr; |
| return htons((u16) (be64_to_cpu(sib->sib_sid) & |
| be64_to_cpu(sib->sib_sid_mask))); |
| default: |
| return 0; |
| } |
| } |
| |
| static inline int cma_any_port(const struct sockaddr *addr) |
| { |
| return !cma_port(addr); |
| } |
| |
| static void cma_save_ib_info(struct sockaddr *src_addr, |
| struct sockaddr *dst_addr, |
| const struct rdma_cm_id *listen_id, |
| const struct sa_path_rec *path) |
| { |
| struct sockaddr_ib *listen_ib, *ib; |
| |
| listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; |
| if (src_addr) { |
| ib = (struct sockaddr_ib *)src_addr; |
| ib->sib_family = AF_IB; |
| if (path) { |
| ib->sib_pkey = path->pkey; |
| ib->sib_flowinfo = path->flow_label; |
| memcpy(&ib->sib_addr, &path->sgid, 16); |
| ib->sib_sid = path->service_id; |
| ib->sib_scope_id = 0; |
| } else { |
| ib->sib_pkey = listen_ib->sib_pkey; |
| ib->sib_flowinfo = listen_ib->sib_flowinfo; |
| ib->sib_addr = listen_ib->sib_addr; |
| ib->sib_sid = listen_ib->sib_sid; |
| ib->sib_scope_id = listen_ib->sib_scope_id; |
| } |
| ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); |
| } |
| if (dst_addr) { |
| ib = (struct sockaddr_ib *)dst_addr; |
| ib->sib_family = AF_IB; |
| if (path) { |
| ib->sib_pkey = path->pkey; |
| ib->sib_flowinfo = path->flow_label; |
| memcpy(&ib->sib_addr, &path->dgid, 16); |
| } |
| } |
| } |
| |
| static void cma_save_ip4_info(struct sockaddr_in *src_addr, |
| struct sockaddr_in *dst_addr, |
| struct cma_hdr *hdr, |
| __be16 local_port) |
| { |
| if (src_addr) { |
| *src_addr = (struct sockaddr_in) { |
| .sin_family = AF_INET, |
| .sin_addr.s_addr = hdr->dst_addr.ip4.addr, |
| .sin_port = local_port, |
| }; |
| } |
| |
| if (dst_addr) { |
| *dst_addr = (struct sockaddr_in) { |
| .sin_family = AF_INET, |
| .sin_addr.s_addr = hdr->src_addr.ip4.addr, |
| .sin_port = hdr->port, |
| }; |
| } |
| } |
| |
| static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, |
| struct sockaddr_in6 *dst_addr, |
| struct cma_hdr *hdr, |
| __be16 local_port) |
| { |
| if (src_addr) { |
| *src_addr = (struct sockaddr_in6) { |
| .sin6_family = AF_INET6, |
| .sin6_addr = hdr->dst_addr.ip6, |
| .sin6_port = local_port, |
| }; |
| } |
| |
| if (dst_addr) { |
| *dst_addr = (struct sockaddr_in6) { |
| .sin6_family = AF_INET6, |
| .sin6_addr = hdr->src_addr.ip6, |
| .sin6_port = hdr->port, |
| }; |
| } |
| } |
| |
| static u16 cma_port_from_service_id(__be64 service_id) |
| { |
| return (u16)be64_to_cpu(service_id); |
| } |
| |
| static int cma_save_ip_info(struct sockaddr *src_addr, |
| struct sockaddr *dst_addr, |
| const struct ib_cm_event *ib_event, |
| __be64 service_id) |
| { |
| struct cma_hdr *hdr; |
| __be16 port; |
| |
| hdr = ib_event->private_data; |
| if (hdr->cma_version != CMA_VERSION) |
| return -EINVAL; |
| |
| port = htons(cma_port_from_service_id(service_id)); |
| |
| switch (cma_get_ip_ver(hdr)) { |
| case 4: |
| cma_save_ip4_info((struct sockaddr_in *)src_addr, |
| (struct sockaddr_in *)dst_addr, hdr, port); |
| break; |
| case 6: |
| cma_save_ip6_info((struct sockaddr_in6 *)src_addr, |
| (struct sockaddr_in6 *)dst_addr, hdr, port); |
| break; |
| default: |
| return -EAFNOSUPPORT; |
| } |
| |
| return 0; |
| } |
| |
| static int cma_save_net_info(struct sockaddr *src_addr, |
| struct sockaddr *dst_addr, |
| const struct rdma_cm_id *listen_id, |
| const struct ib_cm_event *ib_event, |
| sa_family_t sa_family, __be64 service_id) |
| { |
| if (sa_family == AF_IB) { |
| if (ib_event->event == IB_CM_REQ_RECEIVED) |
| cma_save_ib_info(src_addr, dst_addr, listen_id, |
| ib_event->param.req_rcvd.primary_path); |
| else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) |
| cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); |
| return 0; |
| } |
| |
| return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); |
| } |
| |
| static int cma_save_req_info(const struct ib_cm_event *ib_event, |
| struct cma_req_info *req) |
| { |
| const struct ib_cm_req_event_param *req_param = |
| &ib_event->param.req_rcvd; |
| const struct ib_cm_sidr_req_event_param *sidr_param = |
| &ib_event->param.sidr_req_rcvd; |
| |
| switch (ib_event->event) { |
| case IB_CM_REQ_RECEIVED: |
| req->device = req_param->listen_id->device; |
| req->port = req_param->port; |
| memcpy(&req->local_gid, &req_param->primary_path->sgid, |
| sizeof(req->local_gid)); |
| req->has_gid = true; |
| req->service_id = req_param->primary_path->service_id; |
| req->pkey = be16_to_cpu(req_param->primary_path->pkey); |
| if (req->pkey != req_param->bth_pkey) |
| pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" |
| "RDMA CMA: in the future this may cause the request to be dropped\n", |
| req_param->bth_pkey, req->pkey); |
| break; |
| case IB_CM_SIDR_REQ_RECEIVED: |
| req->device = sidr_param->listen_id->device; |
| req->port = sidr_param->port; |
| req->has_gid = false; |
| req->service_id = sidr_param->service_id; |
| req->pkey = sidr_param->pkey; |
| if (req->pkey != sidr_param->bth_pkey) |
| pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" |
| "RDMA CMA: in the future this may cause the request to be dropped\n", |
| sidr_param->bth_pkey, req->pkey); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static bool validate_ipv4_net_dev(struct net_device *net_dev, |
| const struct sockaddr_in *dst_addr, |
| const struct sockaddr_in *src_addr) |
| { |
| __be32 daddr = dst_addr->sin_addr.s_addr, |
| saddr = src_addr->sin_addr.s_addr; |
| struct fib_result res; |
| struct flowi4 fl4; |
| int err; |
| bool ret; |
| |
| if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || |
| ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || |
| ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || |
| ipv4_is_loopback(saddr)) |
| return false; |
| |
| memset(&fl4, 0, sizeof(fl4)); |
| fl4.flowi4_oif = net_dev->ifindex; |
| fl4.daddr = daddr; |
| fl4.saddr = saddr; |
| |
| rcu_read_lock(); |
| err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); |
| ret = err == 0 && FIB_RES_DEV(res) == net_dev; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static bool validate_ipv6_net_dev(struct net_device *net_dev, |
| const struct sockaddr_in6 *dst_addr, |
| const struct sockaddr_in6 *src_addr) |
| { |
| #if IS_ENABLED(CONFIG_IPV6) |
| const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & |
| IPV6_ADDR_LINKLOCAL; |
| struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, |
| &src_addr->sin6_addr, net_dev->ifindex, |
| NULL, strict); |
| bool ret; |
| |
| if (!rt) |
| return false; |
| |
| ret = rt->rt6i_idev->dev == net_dev; |
| ip6_rt_put(rt); |
| |
| return ret; |
| #else |
| return false; |
| #endif |
| } |
| |
| static bool validate_net_dev(struct net_device *net_dev, |
| const struct sockaddr *daddr, |
| const struct sockaddr *saddr) |
| { |
| const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; |
| const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; |
| const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; |
| const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; |
| |
| switch (daddr->sa_family) { |
| case AF_INET: |
| return saddr->sa_family == AF_INET && |
| validate_ipv4_net_dev(net_dev, daddr4, saddr4); |
| |
| case AF_INET6: |
| return saddr->sa_family == AF_INET6 && |
| validate_ipv6_net_dev(net_dev, daddr6, saddr6); |
| |
| default: |
| return false; |
| } |
| } |
| |
| static struct net_device * |
| roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) |
| { |
| const struct ib_gid_attr *sgid_attr = NULL; |
| struct net_device *ndev; |
| |
| if (ib_event->event == IB_CM_REQ_RECEIVED) |
| sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; |
| else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) |
| sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; |
| |
| if (!sgid_attr) |
| return NULL; |
| |
| rcu_read_lock(); |
| ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); |
| if (IS_ERR(ndev)) |
| ndev = NULL; |
| else |
| dev_hold(ndev); |
| rcu_read_unlock(); |
| return ndev; |
| } |
| |
| static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, |
| struct cma_req_info *req) |
| { |
| struct sockaddr *listen_addr = |
| (struct sockaddr *)&req->listen_addr_storage; |
| struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; |
| struct net_device *net_dev; |
| const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; |
| int err; |
| |
| err = cma_save_ip_info(listen_addr, src_addr, ib_event, |
| req->service_id); |
| if (err) |
| return ERR_PTR(err); |
| |
| if (rdma_protocol_roce(req->device, req->port)) |
| net_dev = roce_get_net_dev_by_cm_event(ib_event); |
| else |
| net_dev = ib_get_net_dev_by_params(req->device, req->port, |
| req->pkey, |
| gid, listen_addr); |
| if (!net_dev) |
| return ERR_PTR(-ENODEV); |
| |
| return net_dev; |
| } |
| |
| static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) |
| { |
| return (be64_to_cpu(service_id) >> 16) & 0xffff; |
| } |
| |
| static bool cma_match_private_data(struct rdma_id_private *id_priv, |
| const struct cma_hdr *hdr) |
| { |
| struct sockaddr *addr = cma_src_addr(id_priv); |
| __be32 ip4_addr; |
| struct in6_addr ip6_addr; |
| |
| if (cma_any_addr(addr) && !id_priv->afonly) |
| return true; |
| |
| switch (addr->sa_family) { |
| case AF_INET: |
| ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; |
| if (cma_get_ip_ver(hdr) != 4) |
| return false; |
| if (!cma_any_addr(addr) && |
| hdr->dst_addr.ip4.addr != ip4_addr) |
| return false; |
| break; |
| case AF_INET6: |
| ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; |
| if (cma_get_ip_ver(hdr) != 6) |
| return false; |
| if (!cma_any_addr(addr) && |
| memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) |
| return false; |
| break; |
| case AF_IB: |
| return true; |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool cma_protocol_roce(const struct rdma_cm_id *id) |
| { |
| struct ib_device *device = id->device; |
| const u32 port_num = id->port_num ?: rdma_start_port(device); |
| |
| return rdma_protocol_roce(device, port_num); |
| } |
| |
| static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) |
| { |
| const struct sockaddr *daddr = |
| (const struct sockaddr *)&req->listen_addr_storage; |
| const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; |
| |
| /* Returns true if the req is for IPv6 link local */ |
| return (daddr->sa_family == AF_INET6 && |
| (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); |
| } |
| |
| static bool cma_match_net_dev(const struct rdma_cm_id *id, |
| const struct net_device *net_dev, |
| const struct cma_req_info *req) |
| { |
| const struct rdma_addr *addr = &id->route.addr; |
| |
| if (!net_dev) |
| /* This request is an AF_IB request */ |
| return (!id->port_num || id->port_num == req->port) && |
| (addr->src_addr.ss_family == AF_IB); |
| |
| /* |
| * If the request is not for IPv6 link local, allow matching |
| * request to any netdevice of the one or multiport rdma device. |
| */ |
| if (!cma_is_req_ipv6_ll(req)) |
| return true; |
| /* |
| * Net namespaces must match, and if the listner is listening |
| * on a specific netdevice than netdevice must match as well. |
| */ |
| if (net_eq(dev_net(net_dev), addr->dev_addr.net) && |
| (!!addr->dev_addr.bound_dev_if == |
| (addr->dev_addr.bound_dev_if == net_dev->ifindex))) |
| return true; |
| else |
| return false; |
| } |
| |
| static struct rdma_id_private *cma_find_listener( |
| const struct rdma_bind_list *bind_list, |
| const struct ib_cm_id *cm_id, |
| const struct ib_cm_event *ib_event, |
| const struct cma_req_info *req, |
| const struct net_device *net_dev) |
| { |
| struct rdma_id_private *id_priv, *id_priv_dev; |
| |
| lockdep_assert_held(&lock); |
| |
| if (!bind_list) |
| return ERR_PTR(-EINVAL); |
| |
| hlist_for_each_entry(id_priv, &bind_list->owners, node) { |
| if (cma_match_private_data(id_priv, ib_event->private_data)) { |
| if (id_priv->id.device == cm_id->device && |
| cma_match_net_dev(&id_priv->id, net_dev, req)) |
| return id_priv; |
| list_for_each_entry(id_priv_dev, |
| &id_priv->listen_list, |
| listen_item) { |
| if (id_priv_dev->id.device == cm_id->device && |
| cma_match_net_dev(&id_priv_dev->id, |
| net_dev, req)) |
| return id_priv_dev; |
| } |
| } |
| } |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static struct rdma_id_private * |
| cma_ib_id_from_event(struct ib_cm_id *cm_id, |
| const struct ib_cm_event *ib_event, |
| struct cma_req_info *req, |
| struct net_device **net_dev) |
| { |
| struct rdma_bind_list *bind_list; |
| struct rdma_id_private *id_priv; |
| int err; |
| |
| err = cma_save_req_info(ib_event, req); |
| if (err) |
| return ERR_PTR(err); |
| |
| *net_dev = cma_get_net_dev(ib_event, req); |
| if (IS_ERR(*net_dev)) { |
| if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { |
| /* Assuming the protocol is AF_IB */ |
| *net_dev = NULL; |
| } else { |
| return ERR_CAST(*net_dev); |
| } |
| } |
| |
| mutex_lock(&lock); |
| /* |
| * Net namespace might be getting deleted while route lookup, |
| * cm_id lookup is in progress. Therefore, perform netdevice |
| * validation, cm_id lookup under rcu lock. |
| * RCU lock along with netdevice state check, synchronizes with |
| * netdevice migrating to different net namespace and also avoids |
| * case where net namespace doesn't get deleted while lookup is in |
| * progress. |
| * If the device state is not IFF_UP, its properties such as ifindex |
| * and nd_net cannot be trusted to remain valid without rcu lock. |
| * net/core/dev.c change_net_namespace() ensures to synchronize with |
| * ongoing operations on net device after device is closed using |
| * synchronize_net(). |
| */ |
| rcu_read_lock(); |
| if (*net_dev) { |
| /* |
| * If netdevice is down, it is likely that it is administratively |
| * down or it might be migrating to different namespace. |
| * In that case avoid further processing, as the net namespace |
| * or ifindex may change. |
| */ |
| if (((*net_dev)->flags & IFF_UP) == 0) { |
| id_priv = ERR_PTR(-EHOSTUNREACH); |
| goto err; |
| } |
| |
| if (!validate_net_dev(*net_dev, |
| (struct sockaddr *)&req->src_addr_storage, |
| (struct sockaddr *)&req->listen_addr_storage)) { |
| id_priv = ERR_PTR(-EHOSTUNREACH); |
| goto err; |
| } |
| } |
| |
| bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, |
| rdma_ps_from_service_id(req->service_id), |
| cma_port_from_service_id(req->service_id)); |
| id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); |
| err: |
| rcu_read_unlock(); |
| mutex_unlock(&lock); |
| if (IS_ERR(id_priv) && *net_dev) { |
| dev_put(*net_dev); |
| *net_dev = NULL; |
| } |
| return id_priv; |
| } |
| |
| static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) |
| { |
| return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); |
| } |
| |
| static void cma_cancel_route(struct rdma_id_private *id_priv) |
| { |
| if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { |
| if (id_priv->query) |
| ib_sa_cancel_query(id_priv->query_id, id_priv->query); |
| } |
| } |
| |
| static void _cma_cancel_listens(struct rdma_id_private *id_priv) |
| { |
| struct rdma_id_private *dev_id_priv; |
| |
| lockdep_assert_held(&lock); |
| |
| /* |
| * Remove from listen_any_list to prevent added devices from spawning |
| * additional listen requests. |
| */ |
| list_del_init(&id_priv->listen_any_item); |
| |
| while (!list_empty(&id_priv->listen_list)) { |
| dev_id_priv = |
| list_first_entry(&id_priv->listen_list, |
| struct rdma_id_private, listen_item); |
| /* sync with device removal to avoid duplicate destruction */ |
| list_del_init(&dev_id_priv->device_item); |
| list_del_init(&dev_id_priv->listen_item); |
| mutex_unlock(&lock); |
| |
| rdma_destroy_id(&dev_id_priv->id); |
| mutex_lock(&lock); |
| } |
| } |
| |
| static void cma_cancel_listens(struct rdma_id_private *id_priv) |
| { |
| mutex_lock(&lock); |
| _cma_cancel_listens(id_priv); |
| mutex_unlock(&lock); |
| } |
| |
| static void cma_cancel_operation(struct rdma_id_private *id_priv, |
| enum rdma_cm_state state) |
| { |
| switch (state) { |
| case RDMA_CM_ADDR_QUERY: |
| /* |
| * We can avoid doing the rdma_addr_cancel() based on state, |
| * only RDMA_CM_ADDR_QUERY has a work that could still execute. |
| * Notice that the addr_handler work could still be exiting |
| * outside this state, however due to the interaction with the |
| * handler_mutex the work is guaranteed not to touch id_priv |
| * during exit. |
| */ |
| rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); |
| break; |
| case RDMA_CM_ROUTE_QUERY: |
| cma_cancel_route(id_priv); |
| break; |
| case RDMA_CM_LISTEN: |
| if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) |
| cma_cancel_listens(id_priv); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void cma_release_port(struct rdma_id_private *id_priv) |
| { |
| struct rdma_bind_list *bind_list = id_priv->bind_list; |
| struct net *net = id_priv->id.route.addr.dev_addr.net; |
| |
| if (!bind_list) |
| return; |
| |
| mutex_lock(&lock); |
| hlist_del(&id_priv->node); |
| if (hlist_empty(&bind_list->owners)) { |
| cma_ps_remove(net, bind_list->ps, bind_list->port); |
| kfree(bind_list); |
| } |
| mutex_unlock(&lock); |
| } |
| |
| static void destroy_mc(struct rdma_id_private *id_priv, |
| struct cma_multicast *mc) |
| { |
| bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); |
| |
| if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) |
| ib_sa_free_multicast(mc->sa_mc); |
| |
| if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { |
| struct rdma_dev_addr *dev_addr = |
| &id_priv->id.route.addr.dev_addr; |
| struct net_device *ndev = NULL; |
| |
| if (dev_addr->bound_dev_if) |
| ndev = dev_get_by_index(dev_addr->net, |
| dev_addr->bound_dev_if); |
| if (ndev && !send_only) { |
| enum ib_gid_type gid_type; |
| union ib_gid mgid; |
| |
| gid_type = id_priv->cma_dev->default_gid_type |
| [id_priv->id.port_num - |
| rdma_start_port( |
| id_priv->cma_dev->device)]; |
| cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, |
| gid_type); |
| cma_igmp_send(ndev, &mgid, false); |
| } |
| dev_put(ndev); |
| |
| cancel_work_sync(&mc->iboe_join.work); |
| } |
| kfree(mc); |
| } |
| |
| static void cma_leave_mc_groups(struct rdma_id_private *id_priv) |
| { |
| struct cma_multicast *mc; |
| |
| while (!list_empty(&id_priv->mc_list)) { |
| mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, |
| list); |
| list_del(&mc->list); |
| destroy_mc(id_priv, mc); |
| } |
| } |
| |
| static void _destroy_id(struct rdma_id_private *id_priv, |
| enum rdma_cm_state state) |
| { |
| cma_cancel_operation(id_priv, state); |
| |
| rdma_restrack_del(&id_priv->res); |
| cma_remove_id_from_tree(id_priv); |
| if (id_priv->cma_dev) { |
| if (rdma_cap_ib_cm(id_priv->id.device, 1)) { |
| if (id_priv->cm_id.ib) |
| ib_destroy_cm_id(id_priv->cm_id.ib); |
| } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { |
| if (id_priv->cm_id.iw) |
| iw_destroy_cm_id(id_priv->cm_id.iw); |
| } |
| cma_leave_mc_groups(id_priv); |
| cma_release_dev(id_priv); |
| } |
| |
| cma_release_port(id_priv); |
| cma_id_put(id_priv); |
| wait_for_completion(&id_priv->comp); |
| |
| if (id_priv->internal_id) |
| cma_id_put(id_priv->id.context); |
| |
| kfree(id_priv->id.route.path_rec); |
| kfree(id_priv->id.route.path_rec_inbound); |
| kfree(id_priv->id.route.path_rec_outbound); |
| |
| put_net(id_priv->id.route.addr.dev_addr.net); |
| kfree(id_priv); |
| } |
| |
| /* |
| * destroy an ID from within the handler_mutex. This ensures that no other |
| * handlers can start running concurrently. |
| */ |
| static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) |
| __releases(&idprv->handler_mutex) |
| { |
| enum rdma_cm_state state; |
| unsigned long flags; |
| |
| trace_cm_id_destroy(id_priv); |
| |
| /* |
| * Setting the state to destroyed under the handler mutex provides a |
| * fence against calling handler callbacks. If this is invoked due to |
| * the failure of a handler callback then it guarentees that no future |
| * handlers will be called. |
| */ |
| lockdep_assert_held(&id_priv->handler_mutex); |
| spin_lock_irqsave(&id_priv->lock, flags); |
| state = id_priv->state; |
| id_priv->state = RDMA_CM_DESTROYING; |
| spin_unlock_irqrestore(&id_priv->lock, flags); |
| mutex_unlock(&id_priv->handler_mutex); |
| _destroy_id(id_priv, state); |
| } |
| |
| void rdma_destroy_id(struct rdma_cm_id *id) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| |
| mutex_lock(&id_priv->handler_mutex); |
| destroy_id_handler_unlock(id_priv); |
| } |
| EXPORT_SYMBOL(rdma_destroy_id); |
| |
| static int cma_rep_recv(struct rdma_id_private *id_priv) |
| { |
| int ret; |
| |
| ret = cma_modify_qp_rtr(id_priv, NULL); |
| if (ret) |
| goto reject; |
| |
| ret = cma_modify_qp_rts(id_priv, NULL); |
| if (ret) |
| goto reject; |
| |
| trace_cm_send_rtu(id_priv); |
| ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); |
| if (ret) |
| goto reject; |
| |
| return 0; |
| reject: |
| pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); |
| cma_modify_qp_err(id_priv); |
| trace_cm_send_rej(id_priv); |
| ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, |
| NULL, 0, NULL, 0); |
| return ret; |
| } |
| |
| static void cma_set_rep_event_data(struct rdma_cm_event *event, |
| const struct ib_cm_rep_event_param *rep_data, |
| void *private_data) |
| { |
| event->param.conn.private_data = private_data; |
| event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; |
| event->param.conn.responder_resources = rep_data->responder_resources; |
| event->param.conn.initiator_depth = rep_data->initiator_depth; |
| event->param.conn.flow_control = rep_data->flow_control; |
| event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; |
| event->param.conn.srq = rep_data->srq; |
| event->param.conn.qp_num = rep_data->remote_qpn; |
| |
| event->ece.vendor_id = rep_data->ece.vendor_id; |
| event->ece.attr_mod = rep_data->ece.attr_mod; |
| } |
| |
| static int cma_cm_event_handler(struct rdma_id_private *id_priv, |
| struct rdma_cm_event *event) |
| { |
| int ret; |
| |
| lockdep_assert_held(&id_priv->handler_mutex); |
| |
| trace_cm_event_handler(id_priv, event); |
| ret = id_priv->id.event_handler(&id_priv->id, event); |
| trace_cm_event_done(id_priv, event, ret); |
| return ret; |
| } |
| |
| static int cma_ib_handler(struct ib_cm_id *cm_id, |
| const struct ib_cm_event *ib_event) |
| { |
| struct rdma_id_private *id_priv = cm_id->context; |
| struct rdma_cm_event event = {}; |
| enum rdma_cm_state state; |
| int ret; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| state = READ_ONCE(id_priv->state); |
| if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && |
| state != RDMA_CM_CONNECT) || |
| (ib_event->event == IB_CM_TIMEWAIT_EXIT && |
| state != RDMA_CM_DISCONNECT)) |
| goto out; |
| |
| switch (ib_event->event) { |
| case IB_CM_REQ_ERROR: |
| case IB_CM_REP_ERROR: |
| event.event = RDMA_CM_EVENT_UNREACHABLE; |
| event.status = -ETIMEDOUT; |
| break; |
| case IB_CM_REP_RECEIVED: |
| if (state == RDMA_CM_CONNECT && |
| (id_priv->id.qp_type != IB_QPT_UD)) { |
| trace_cm_send_mra(id_priv); |
| ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); |
| } |
| if (id_priv->id.qp) { |
| event.status = cma_rep_recv(id_priv); |
| event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : |
| RDMA_CM_EVENT_ESTABLISHED; |
| } else { |
| event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; |
| } |
| cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, |
| ib_event->private_data); |
| break; |
| case IB_CM_RTU_RECEIVED: |
| case IB_CM_USER_ESTABLISHED: |
| event.event = RDMA_CM_EVENT_ESTABLISHED; |
| break; |
| case IB_CM_DREQ_ERROR: |
| event.status = -ETIMEDOUT; |
| fallthrough; |
| case IB_CM_DREQ_RECEIVED: |
| case IB_CM_DREP_RECEIVED: |
| if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, |
| RDMA_CM_DISCONNECT)) |
| goto out; |
| event.event = RDMA_CM_EVENT_DISCONNECTED; |
| break; |
| case IB_CM_TIMEWAIT_EXIT: |
| event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; |
| break; |
| case IB_CM_MRA_RECEIVED: |
| /* ignore event */ |
| goto out; |
| case IB_CM_REJ_RECEIVED: |
| pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, |
| ib_event->param.rej_rcvd.reason)); |
| cma_modify_qp_err(id_priv); |
| event.status = ib_event->param.rej_rcvd.reason; |
| event.event = RDMA_CM_EVENT_REJECTED; |
| event.param.conn.private_data = ib_event->private_data; |
| event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; |
| break; |
| default: |
| pr_err("RDMA CMA: unexpected IB CM event: %d\n", |
| ib_event->event); |
| goto out; |
| } |
| |
| ret = cma_cm_event_handler(id_priv, &event); |
| if (ret) { |
| /* Destroy the CM ID by returning a non-zero value. */ |
| id_priv->cm_id.ib = NULL; |
| destroy_id_handler_unlock(id_priv); |
| return ret; |
| } |
| out: |
| mutex_unlock(&id_priv->handler_mutex); |
| return 0; |
| } |
| |
| static struct rdma_id_private * |
| cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, |
| const struct ib_cm_event *ib_event, |
| struct net_device *net_dev) |
| { |
| struct rdma_id_private *listen_id_priv; |
| struct rdma_id_private *id_priv; |
| struct rdma_cm_id *id; |
| struct rdma_route *rt; |
| const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; |
| struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; |
| const __be64 service_id = |
| ib_event->param.req_rcvd.primary_path->service_id; |
| int ret; |
| |
| listen_id_priv = container_of(listen_id, struct rdma_id_private, id); |
| id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, |
| listen_id->event_handler, listen_id->context, |
| listen_id->ps, |
| ib_event->param.req_rcvd.qp_type, |
| listen_id_priv); |
| if (IS_ERR(id_priv)) |
| return NULL; |
| |
| id = &id_priv->id; |
| if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, |
| (struct sockaddr *)&id->route.addr.dst_addr, |
| listen_id, ib_event, ss_family, service_id)) |
| goto err; |
| |
| rt = &id->route; |
| rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; |
| rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, |
| sizeof(*rt->path_rec), GFP_KERNEL); |
| if (!rt->path_rec) |
| goto err; |
| |
| rt->path_rec[0] = *path; |
| if (rt->num_pri_alt_paths == 2) |
| rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; |
| |
| if (net_dev) { |
| rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); |
| } else { |
| if (!cma_protocol_roce(listen_id) && |
| cma_any_addr(cma_src_addr(id_priv))) { |
| rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; |
| rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); |
| ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); |
| } else if (!cma_any_addr(cma_src_addr(id_priv))) { |
| ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); |
| if (ret) |
| goto err; |
| } |
| } |
| rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); |
| |
| id_priv->state = RDMA_CM_CONNECT; |
| return id_priv; |
| |
| err: |
| rdma_destroy_id(id); |
| return NULL; |
| } |
| |
| static struct rdma_id_private * |
| cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, |
| const struct ib_cm_event *ib_event, |
| struct net_device *net_dev) |
| { |
| const struct rdma_id_private *listen_id_priv; |
| struct rdma_id_private *id_priv; |
| struct rdma_cm_id *id; |
| const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; |
| struct net *net = listen_id->route.addr.dev_addr.net; |
| int ret; |
| |
| listen_id_priv = container_of(listen_id, struct rdma_id_private, id); |
| id_priv = __rdma_create_id(net, listen_id->event_handler, |
| listen_id->context, listen_id->ps, IB_QPT_UD, |
| listen_id_priv); |
| if (IS_ERR(id_priv)) |
| return NULL; |
| |
| id = &id_priv->id; |
| if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, |
| (struct sockaddr *)&id->route.addr.dst_addr, |
| listen_id, ib_event, ss_family, |
| ib_event->param.sidr_req_rcvd.service_id)) |
| goto err; |
| |
| if (net_dev) { |
| rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); |
| } else { |
| if (!cma_any_addr(cma_src_addr(id_priv))) { |
| ret = cma_translate_addr(cma_src_addr(id_priv), |
| &id->route.addr.dev_addr); |
| if (ret) |
| goto err; |
| } |
| } |
| |
| id_priv->state = RDMA_CM_CONNECT; |
| return id_priv; |
| err: |
| rdma_destroy_id(id); |
| return NULL; |
| } |
| |
| static void cma_set_req_event_data(struct rdma_cm_event *event, |
| const struct ib_cm_req_event_param *req_data, |
| void *private_data, int offset) |
| { |
| event->param.conn.private_data = private_data + offset; |
| event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; |
| event->param.conn.responder_resources = req_data->responder_resources; |
| event->param.conn.initiator_depth = req_data->initiator_depth; |
| event->param.conn.flow_control = req_data->flow_control; |
| event->param.conn.retry_count = req_data->retry_count; |
| event->param.conn.rnr_retry_count = req_data->rnr_retry_count; |
| event->param.conn.srq = req_data->srq; |
| event->param.conn.qp_num = req_data->remote_qpn; |
| |
| event->ece.vendor_id = req_data->ece.vendor_id; |
| event->ece.attr_mod = req_data->ece.attr_mod; |
| } |
| |
| static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, |
| const struct ib_cm_event *ib_event) |
| { |
| return (((ib_event->event == IB_CM_REQ_RECEIVED) && |
| (ib_event->param.req_rcvd.qp_type == id->qp_type)) || |
| ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && |
| (id->qp_type == IB_QPT_UD)) || |
| (!id->qp_type)); |
| } |
| |
| static int cma_ib_req_handler(struct ib_cm_id *cm_id, |
| const struct ib_cm_event *ib_event) |
| { |
| struct rdma_id_private *listen_id, *conn_id = NULL; |
| struct rdma_cm_event event = {}; |
| struct cma_req_info req = {}; |
| struct net_device *net_dev; |
| u8 offset; |
| int ret; |
| |
| listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); |
| if (IS_ERR(listen_id)) |
| return PTR_ERR(listen_id); |
| |
| trace_cm_req_handler(listen_id, ib_event->event); |
| if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { |
| ret = -EINVAL; |
| goto net_dev_put; |
| } |
| |
| mutex_lock(&listen_id->handler_mutex); |
| if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { |
| ret = -ECONNABORTED; |
| goto err_unlock; |
| } |
| |
| offset = cma_user_data_offset(listen_id); |
| event.event = RDMA_CM_EVENT_CONNECT_REQUEST; |
| if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { |
| conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); |
| event.param.ud.private_data = ib_event->private_data + offset; |
| event.param.ud.private_data_len = |
| IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; |
| } else { |
| conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); |
| cma_set_req_event_data(&event, &ib_event->param.req_rcvd, |
| ib_event->private_data, offset); |
| } |
| if (!conn_id) { |
| ret = -ENOMEM; |
| goto err_unlock; |
| } |
| |
| mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); |
| ret = cma_ib_acquire_dev(conn_id, listen_id, &req); |
| if (ret) { |
| destroy_id_handler_unlock(conn_id); |
| goto err_unlock; |
| } |
| |
| conn_id->cm_id.ib = cm_id; |
| cm_id->context = conn_id; |
| cm_id->cm_handler = cma_ib_handler; |
| |
| ret = cma_cm_event_handler(conn_id, &event); |
| if (ret) { |
| /* Destroy the CM ID by returning a non-zero value. */ |
| conn_id->cm_id.ib = NULL; |
| mutex_unlock(&listen_id->handler_mutex); |
| destroy_id_handler_unlock(conn_id); |
| goto net_dev_put; |
| } |
| |
| if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && |
| conn_id->id.qp_type != IB_QPT_UD) { |
| trace_cm_send_mra(cm_id->context); |
| ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); |
| } |
| mutex_unlock(&conn_id->handler_mutex); |
| |
| err_unlock: |
| mutex_unlock(&listen_id->handler_mutex); |
| |
| net_dev_put: |
| if (net_dev) |
| dev_put(net_dev); |
| |
| return ret; |
| } |
| |
| __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) |
| { |
| if (addr->sa_family == AF_IB) |
| return ((struct sockaddr_ib *) addr)->sib_sid; |
| |
| return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); |
| } |
| EXPORT_SYMBOL(rdma_get_service_id); |
| |
| void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, |
| union ib_gid *dgid) |
| { |
| struct rdma_addr *addr = &cm_id->route.addr; |
| |
| if (!cm_id->device) { |
| if (sgid) |
| memset(sgid, 0, sizeof(*sgid)); |
| if (dgid) |
| memset(dgid, 0, sizeof(*dgid)); |
| return; |
| } |
| |
| if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { |
| if (sgid) |
| rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); |
| if (dgid) |
| rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); |
| } else { |
| if (sgid) |
| rdma_addr_get_sgid(&addr->dev_addr, sgid); |
| if (dgid) |
| rdma_addr_get_dgid(&addr->dev_addr, dgid); |
| } |
| } |
| EXPORT_SYMBOL(rdma_read_gids); |
| |
| static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) |
| { |
| struct rdma_id_private *id_priv = iw_id->context; |
| struct rdma_cm_event event = {}; |
| int ret = 0; |
| struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; |
| struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) |
| goto out; |
| |
| switch (iw_event->event) { |
| case IW_CM_EVENT_CLOSE: |
| event.event = RDMA_CM_EVENT_DISCONNECTED; |
| break; |
| case IW_CM_EVENT_CONNECT_REPLY: |
| memcpy(cma_src_addr(id_priv), laddr, |
| rdma_addr_size(laddr)); |
| memcpy(cma_dst_addr(id_priv), raddr, |
| rdma_addr_size(raddr)); |
| switch (iw_event->status) { |
| case 0: |
| event.event = RDMA_CM_EVENT_ESTABLISHED; |
| event.param.conn.initiator_depth = iw_event->ird; |
| event.param.conn.responder_resources = iw_event->ord; |
| break; |
| case -ECONNRESET: |
| case -ECONNREFUSED: |
| event.event = RDMA_CM_EVENT_REJECTED; |
| break; |
| case -ETIMEDOUT: |
| event.event = RDMA_CM_EVENT_UNREACHABLE; |
| break; |
| default: |
| event.event = RDMA_CM_EVENT_CONNECT_ERROR; |
| break; |
| } |
| break; |
| case IW_CM_EVENT_ESTABLISHED: |
| event.event = RDMA_CM_EVENT_ESTABLISHED; |
| event.param.conn.initiator_depth = iw_event->ird; |
| event.param.conn.responder_resources = iw_event->ord; |
| break; |
| default: |
| goto out; |
| } |
| |
| event.status = iw_event->status; |
| event.param.conn.private_data = iw_event->private_data; |
| event.param.conn.private_data_len = iw_event->private_data_len; |
| ret = cma_cm_event_handler(id_priv, &event); |
| if (ret) { |
| /* Destroy the CM ID by returning a non-zero value. */ |
| id_priv->cm_id.iw = NULL; |
| destroy_id_handler_unlock(id_priv); |
| return ret; |
| } |
| |
| out: |
| mutex_unlock(&id_priv->handler_mutex); |
| return ret; |
| } |
| |
| static int iw_conn_req_handler(struct iw_cm_id *cm_id, |
| struct iw_cm_event *iw_event) |
| { |
| struct rdma_id_private *listen_id, *conn_id; |
| struct rdma_cm_event event = {}; |
| int ret = -ECONNABORTED; |
| struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; |
| struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; |
| |
| event.event = RDMA_CM_EVENT_CONNECT_REQUEST; |
| event.param.conn.private_data = iw_event->private_data; |
| event.param.conn.private_data_len = iw_event->private_data_len; |
| event.param.conn.initiator_depth = iw_event->ird; |
| event.param.conn.responder_resources = iw_event->ord; |
| |
| listen_id = cm_id->context; |
| |
| mutex_lock(&listen_id->handler_mutex); |
| if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) |
| goto out; |
| |
| /* Create a new RDMA id for the new IW CM ID */ |
| conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, |
| listen_id->id.event_handler, |
| listen_id->id.context, RDMA_PS_TCP, |
| IB_QPT_RC, listen_id); |
| if (IS_ERR(conn_id)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); |
| conn_id->state = RDMA_CM_CONNECT; |
| |
| ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); |
| if (ret) { |
| mutex_unlock(&listen_id->handler_mutex); |
| destroy_id_handler_unlock(conn_id); |
| return ret; |
| } |
| |
| ret = cma_iw_acquire_dev(conn_id, listen_id); |
| if (ret) { |
| mutex_unlock(&listen_id->handler_mutex); |
| destroy_id_handler_unlock(conn_id); |
| return ret; |
| } |
| |
| conn_id->cm_id.iw = cm_id; |
| cm_id->context = conn_id; |
| cm_id->cm_handler = cma_iw_handler; |
| |
| memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); |
| memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); |
| |
| ret = cma_cm_event_handler(conn_id, &event); |
| if (ret) { |
| /* User wants to destroy the CM ID */ |
| conn_id->cm_id.iw = NULL; |
| mutex_unlock(&listen_id->handler_mutex); |
| destroy_id_handler_unlock(conn_id); |
| return ret; |
| } |
| |
| mutex_unlock(&conn_id->handler_mutex); |
| |
| out: |
| mutex_unlock(&listen_id->handler_mutex); |
| return ret; |
| } |
| |
| static int cma_ib_listen(struct rdma_id_private *id_priv) |
| { |
| struct sockaddr *addr; |
| struct ib_cm_id *id; |
| __be64 svc_id; |
| |
| addr = cma_src_addr(id_priv); |
| svc_id = rdma_get_service_id(&id_priv->id, addr); |
| id = ib_cm_insert_listen(id_priv->id.device, |
| cma_ib_req_handler, svc_id); |
| if (IS_ERR(id)) |
| return PTR_ERR(id); |
| id_priv->cm_id.ib = id; |
| |
| return 0; |
| } |
| |
| static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) |
| { |
| int ret; |
| struct iw_cm_id *id; |
| |
| id = iw_create_cm_id(id_priv->id.device, |
| iw_conn_req_handler, |
| id_priv); |
| if (IS_ERR(id)) |
| return PTR_ERR(id); |
| |
| mutex_lock(&id_priv->qp_mutex); |
| id->tos = id_priv->tos; |
| id->tos_set = id_priv->tos_set; |
| mutex_unlock(&id_priv->qp_mutex); |
| id->afonly = id_priv->afonly; |
| id_priv->cm_id.iw = id; |
| |
| memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), |
| rdma_addr_size(cma_src_addr(id_priv))); |
| |
| ret = iw_cm_listen(id_priv->cm_id.iw, backlog); |
| |
| if (ret) { |
| iw_destroy_cm_id(id_priv->cm_id.iw); |
| id_priv->cm_id.iw = NULL; |
| } |
| |
| return ret; |
| } |
| |
| static int cma_listen_handler(struct rdma_cm_id *id, |
| struct rdma_cm_event *event) |
| { |
| struct rdma_id_private *id_priv = id->context; |
| |
| /* Listening IDs are always destroyed on removal */ |
| if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) |
| return -1; |
| |
| id->context = id_priv->id.context; |
| id->event_handler = id_priv->id.event_handler; |
| trace_cm_event_handler(id_priv, event); |
| return id_priv->id.event_handler(id, event); |
| } |
| |
| static int cma_listen_on_dev(struct rdma_id_private *id_priv, |
| struct cma_device *cma_dev, |
| struct rdma_id_private **to_destroy) |
| { |
| struct rdma_id_private *dev_id_priv; |
| struct net *net = id_priv->id.route.addr.dev_addr.net; |
| int ret; |
| |
| lockdep_assert_held(&lock); |
| |
| *to_destroy = NULL; |
| if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) |
| return 0; |
| |
| dev_id_priv = |
| __rdma_create_id(net, cma_listen_handler, id_priv, |
| id_priv->id.ps, id_priv->id.qp_type, id_priv); |
| if (IS_ERR(dev_id_priv)) |
| return PTR_ERR(dev_id_priv); |
| |
| dev_id_priv->state = RDMA_CM_ADDR_BOUND; |
| memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), |
| rdma_addr_size(cma_src_addr(id_priv))); |
| |
| _cma_attach_to_dev(dev_id_priv, cma_dev); |
| rdma_restrack_add(&dev_id_priv->res); |
| cma_id_get(id_priv); |
| dev_id_priv->internal_id = 1; |
| dev_id_priv->afonly = id_priv->afonly; |
| mutex_lock(&id_priv->qp_mutex); |
| dev_id_priv->tos_set = id_priv->tos_set; |
| dev_id_priv->tos = id_priv->tos; |
| mutex_unlock(&id_priv->qp_mutex); |
| |
| ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); |
| if (ret) |
| goto err_listen; |
| list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); |
| return 0; |
| err_listen: |
| /* Caller must destroy this after releasing lock */ |
| *to_destroy = dev_id_priv; |
| dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); |
| return ret; |
| } |
| |
| static int cma_listen_on_all(struct rdma_id_private *id_priv) |
| { |
| struct rdma_id_private *to_destroy; |
| struct cma_device *cma_dev; |
| int ret; |
| |
| mutex_lock(&lock); |
| list_add_tail(&id_priv->listen_any_item, &listen_any_list); |
| list_for_each_entry(cma_dev, &dev_list, list) { |
| ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); |
| if (ret) { |
| /* Prevent racing with cma_process_remove() */ |
| if (to_destroy) |
| list_del_init(&to_destroy->device_item); |
| goto err_listen; |
| } |
| } |
| mutex_unlock(&lock); |
| return 0; |
| |
| err_listen: |
| _cma_cancel_listens(id_priv); |
| mutex_unlock(&lock); |
| if (to_destroy) |
| rdma_destroy_id(&to_destroy->id); |
| return ret; |
| } |
| |
| void rdma_set_service_type(struct rdma_cm_id *id, int tos) |
| { |
| struct rdma_id_private *id_priv; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| mutex_lock(&id_priv->qp_mutex); |
| id_priv->tos = (u8) tos; |
| id_priv->tos_set = true; |
| mutex_unlock(&id_priv->qp_mutex); |
| } |
| EXPORT_SYMBOL(rdma_set_service_type); |
| |
| /** |
| * rdma_set_ack_timeout() - Set the ack timeout of QP associated |
| * with a connection identifier. |
| * @id: Communication identifier to associated with service type. |
| * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. |
| * |
| * This function should be called before rdma_connect() on active side, |
| * and on passive side before rdma_accept(). It is applicable to primary |
| * path only. The timeout will affect the local side of the QP, it is not |
| * negotiated with remote side and zero disables the timer. In case it is |
| * set before rdma_resolve_route, the value will also be used to determine |
| * PacketLifeTime for RoCE. |
| * |
| * Return: 0 for success |
| */ |
| int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) |
| { |
| struct rdma_id_private *id_priv; |
| |
| if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) |
| return -EINVAL; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| mutex_lock(&id_priv->qp_mutex); |
| id_priv->timeout = timeout; |
| id_priv->timeout_set = true; |
| mutex_unlock(&id_priv->qp_mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rdma_set_ack_timeout); |
| |
| /** |
| * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the |
| * QP associated with a connection identifier. |
| * @id: Communication identifier to associated with service type. |
| * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK |
| * Timer Field" in the IBTA specification. |
| * |
| * This function should be called before rdma_connect() on active |
| * side, and on passive side before rdma_accept(). The timer value |
| * will be associated with the local QP. When it receives a send it is |
| * not read to handle, typically if the receive queue is empty, an RNR |
| * Retry NAK is returned to the requester with the min_rnr_timer |
| * encoded. The requester will then wait at least the time specified |
| * in the NAK before retrying. The default is zero, which translates |
| * to a minimum RNR Timer value of 655 ms. |
| * |
| * Return: 0 for success |
| */ |
| int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) |
| { |
| struct rdma_id_private *id_priv; |
| |
| /* It is a five-bit value */ |
| if (min_rnr_timer & 0xe0) |
| return -EINVAL; |
| |
| if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) |
| return -EINVAL; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| mutex_lock(&id_priv->qp_mutex); |
| id_priv->min_rnr_timer = min_rnr_timer; |
| id_priv->min_rnr_timer_set = true; |
| mutex_unlock(&id_priv->qp_mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rdma_set_min_rnr_timer); |
| |
| static void route_set_path_rec_inbound(struct cma_work *work, |
| struct sa_path_rec *path_rec) |
| { |
| struct rdma_route *route = &work->id->id.route; |
| |
| if (!route->path_rec_inbound) { |
| route->path_rec_inbound = |
| kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); |
| if (!route->path_rec_inbound) |
| return; |
| } |
| |
| *route->path_rec_inbound = *path_rec; |
| } |
| |
| static void route_set_path_rec_outbound(struct cma_work *work, |
| struct sa_path_rec *path_rec) |
| { |
| struct rdma_route *route = &work->id->id.route; |
| |
| if (!route->path_rec_outbound) { |
| route->path_rec_outbound = |
| kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); |
| if (!route->path_rec_outbound) |
| return; |
| } |
| |
| *route->path_rec_outbound = *path_rec; |
| } |
| |
| static void cma_query_handler(int status, struct sa_path_rec *path_rec, |
| int num_prs, void *context) |
| { |
| struct cma_work *work = context; |
| struct rdma_route *route; |
| int i; |
| |
| route = &work->id->id.route; |
| |
| if (status) |
| goto fail; |
| |
| for (i = 0; i < num_prs; i++) { |
| if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) |
| *route->path_rec = path_rec[i]; |
| else if (path_rec[i].flags & IB_PATH_INBOUND) |
| route_set_path_rec_inbound(work, &path_rec[i]); |
| else if (path_rec[i].flags & IB_PATH_OUTBOUND) |
| route_set_path_rec_outbound(work, &path_rec[i]); |
| } |
| if (!route->path_rec) { |
| status = -EINVAL; |
| goto fail; |
| } |
| |
| route->num_pri_alt_paths = 1; |
| queue_work(cma_wq, &work->work); |
| return; |
| |
| fail: |
| work->old_state = RDMA_CM_ROUTE_QUERY; |
| work->new_state = RDMA_CM_ADDR_RESOLVED; |
| work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; |
| work->event.status = status; |
| pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", |
| status); |
| queue_work(cma_wq, &work->work); |
| } |
| |
| static int cma_query_ib_route(struct rdma_id_private *id_priv, |
| unsigned long timeout_ms, struct cma_work *work) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| struct sa_path_rec path_rec; |
| ib_sa_comp_mask comp_mask; |
| struct sockaddr_in6 *sin6; |
| struct sockaddr_ib *sib; |
| |
| memset(&path_rec, 0, sizeof path_rec); |
| |
| if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) |
| path_rec.rec_type = SA_PATH_REC_TYPE_OPA; |
| else |
| path_rec.rec_type = SA_PATH_REC_TYPE_IB; |
| rdma_addr_get_sgid(dev_addr, &path_rec.sgid); |
| rdma_addr_get_dgid(dev_addr, &path_rec.dgid); |
| path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); |
| path_rec.numb_path = 1; |
| path_rec.reversible = 1; |
| path_rec.service_id = rdma_get_service_id(&id_priv->id, |
| cma_dst_addr(id_priv)); |
| |
| comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | |
| IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | |
| IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; |
| |
| switch (cma_family(id_priv)) { |
| case AF_INET: |
| path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); |
| comp_mask |= IB_SA_PATH_REC_QOS_CLASS; |
| break; |
| case AF_INET6: |
| sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); |
| path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); |
| comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; |
| break; |
| case AF_IB: |
| sib = (struct sockaddr_ib *) cma_src_addr(id_priv); |
| path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); |
| comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; |
| break; |
| } |
| |
| id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, |
| id_priv->id.port_num, &path_rec, |
| comp_mask, timeout_ms, |
| GFP_KERNEL, cma_query_handler, |
| work, &id_priv->query); |
| |
| return (id_priv->query_id < 0) ? id_priv->query_id : 0; |
| } |
| |
| static void cma_iboe_join_work_handler(struct work_struct *work) |
| { |
| struct cma_multicast *mc = |
| container_of(work, struct cma_multicast, iboe_join.work); |
| struct rdma_cm_event *event = &mc->iboe_join.event; |
| struct rdma_id_private *id_priv = mc->id_priv; |
| int ret; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || |
| READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) |
| goto out_unlock; |
| |
| ret = cma_cm_event_handler(id_priv, event); |
| WARN_ON(ret); |
| |
| out_unlock: |
| mutex_unlock(&id_priv->handler_mutex); |
| if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) |
| rdma_destroy_ah_attr(&event->param.ud.ah_attr); |
| } |
| |
| static void cma_work_handler(struct work_struct *_work) |
| { |
| struct cma_work *work = container_of(_work, struct cma_work, work); |
| struct rdma_id_private *id_priv = work->id; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || |
| READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) |
| goto out_unlock; |
| if (work->old_state != 0 || work->new_state != 0) { |
| if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) |
| goto out_unlock; |
| } |
| |
| if (cma_cm_event_handler(id_priv, &work->event)) { |
| cma_id_put(id_priv); |
| destroy_id_handler_unlock(id_priv); |
| goto out_free; |
| } |
| |
| out_unlock: |
| mutex_unlock(&id_priv->handler_mutex); |
| cma_id_put(id_priv); |
| out_free: |
| if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) |
| rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); |
| kfree(work); |
| } |
| |
| static void cma_init_resolve_route_work(struct cma_work *work, |
| struct rdma_id_private *id_priv) |
| { |
| work->id = id_priv; |
| INIT_WORK(&work->work, cma_work_handler); |
| work->old_state = RDMA_CM_ROUTE_QUERY; |
| work->new_state = RDMA_CM_ROUTE_RESOLVED; |
| work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; |
| } |
| |
| static void enqueue_resolve_addr_work(struct cma_work *work, |
| struct rdma_id_private *id_priv) |
| { |
| /* Balances with cma_id_put() in cma_work_handler */ |
| cma_id_get(id_priv); |
| |
| work->id = id_priv; |
| INIT_WORK(&work->work, cma_work_handler); |
| work->old_state = RDMA_CM_ADDR_QUERY; |
| work->new_state = RDMA_CM_ADDR_RESOLVED; |
| work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; |
| |
| queue_work(cma_wq, &work->work); |
| } |
| |
| static int cma_resolve_ib_route(struct rdma_id_private *id_priv, |
| unsigned long timeout_ms) |
| { |
| struct rdma_route *route = &id_priv->id.route; |
| struct cma_work *work; |
| int ret; |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| cma_init_resolve_route_work(work, id_priv); |
| |
| if (!route->path_rec) |
| route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); |
| if (!route->path_rec) { |
| ret = -ENOMEM; |
| goto err1; |
| } |
| |
| ret = cma_query_ib_route(id_priv, timeout_ms, work); |
| if (ret) |
| goto err2; |
| |
| return 0; |
| err2: |
| kfree(route->path_rec); |
| route->path_rec = NULL; |
| err1: |
| kfree(work); |
| return ret; |
| } |
| |
| static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, |
| unsigned long supported_gids, |
| enum ib_gid_type default_gid) |
| { |
| if ((network_type == RDMA_NETWORK_IPV4 || |
| network_type == RDMA_NETWORK_IPV6) && |
| test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) |
| return IB_GID_TYPE_ROCE_UDP_ENCAP; |
| |
| return default_gid; |
| } |
| |
| /* |
| * cma_iboe_set_path_rec_l2_fields() is helper function which sets |
| * path record type based on GID type. |
| * It also sets up other L2 fields which includes destination mac address |
| * netdev ifindex, of the path record. |
| * It returns the netdev of the bound interface for this path record entry. |
| */ |
| static struct net_device * |
| cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) |
| { |
| struct rdma_route *route = &id_priv->id.route; |
| enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; |
| struct rdma_addr *addr = &route->addr; |
| unsigned long supported_gids; |
| struct net_device *ndev; |
| |
| if (!addr->dev_addr.bound_dev_if) |
| return NULL; |
| |
| ndev = dev_get_by_index(addr->dev_addr.net, |
| addr->dev_addr.bound_dev_if); |
| if (!ndev) |
| return NULL; |
| |
| supported_gids = roce_gid_type_mask_support(id_priv->id.device, |
| id_priv->id.port_num); |
| gid_type = cma_route_gid_type(addr->dev_addr.network, |
| supported_gids, |
| id_priv->gid_type); |
| /* Use the hint from IP Stack to select GID Type */ |
| if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) |
| gid_type = ib_network_to_gid_type(addr->dev_addr.network); |
| route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); |
| |
| route->path_rec->roce.route_resolved = true; |
| sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); |
| return ndev; |
| } |
| |
| int rdma_set_ib_path(struct rdma_cm_id *id, |
| struct sa_path_rec *path_rec) |
| { |
| struct rdma_id_private *id_priv; |
| struct net_device *ndev; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, |
| RDMA_CM_ROUTE_RESOLVED)) |
| return -EINVAL; |
| |
| id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), |
| GFP_KERNEL); |
| if (!id->route.path_rec) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| if (rdma_protocol_roce(id->device, id->port_num)) { |
| ndev = cma_iboe_set_path_rec_l2_fields(id_priv); |
| if (!ndev) { |
| ret = -ENODEV; |
| goto err_free; |
| } |
| dev_put(ndev); |
| } |
| |
| id->route.num_pri_alt_paths = 1; |
| return 0; |
| |
| err_free: |
| kfree(id->route.path_rec); |
| id->route.path_rec = NULL; |
| err: |
| cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_set_ib_path); |
| |
| static int cma_resolve_iw_route(struct rdma_id_private *id_priv) |
| { |
| struct cma_work *work; |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| cma_init_resolve_route_work(work, id_priv); |
| queue_work(cma_wq, &work->work); |
| return 0; |
| } |
| |
| static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) |
| { |
| struct net_device *dev; |
| |
| dev = vlan_dev_real_dev(vlan_ndev); |
| if (dev->num_tc) |
| return netdev_get_prio_tc_map(dev, prio); |
| |
| return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & |
| VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; |
| } |
| |
| struct iboe_prio_tc_map { |
| int input_prio; |
| int output_tc; |
| bool found; |
| }; |
| |
| static int get_lower_vlan_dev_tc(struct net_device *dev, |
| struct netdev_nested_priv *priv) |
| { |
| struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; |
| |
| if (is_vlan_dev(dev)) |
| map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); |
| else if (dev->num_tc) |
| map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); |
| else |
| map->output_tc = 0; |
| /* We are interested only in first level VLAN device, so always |
| * return 1 to stop iterating over next level devices. |
| */ |
| map->found = true; |
| return 1; |
| } |
| |
| static int iboe_tos_to_sl(struct net_device *ndev, int tos) |
| { |
| struct iboe_prio_tc_map prio_tc_map = {}; |
| int prio = rt_tos2priority(tos); |
| struct netdev_nested_priv priv; |
| |
| /* If VLAN device, get it directly from the VLAN netdev */ |
| if (is_vlan_dev(ndev)) |
| return get_vlan_ndev_tc(ndev, prio); |
| |
| prio_tc_map.input_prio = prio; |
| priv.data = (void *)&prio_tc_map; |
| rcu_read_lock(); |
| netdev_walk_all_lower_dev_rcu(ndev, |
| get_lower_vlan_dev_tc, |
| &priv); |
| rcu_read_unlock(); |
| /* If map is found from lower device, use it; Otherwise |
| * continue with the current netdevice to get priority to tc map. |
| */ |
| if (prio_tc_map.found) |
| return prio_tc_map.output_tc; |
| else if (ndev->num_tc) |
| return netdev_get_prio_tc_map(ndev, prio); |
| else |
| return 0; |
| } |
| |
| static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) |
| { |
| struct sockaddr_in6 *addr6; |
| u16 dport, sport; |
| u32 hash, fl; |
| |
| addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); |
| fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; |
| if ((cma_family(id_priv) != AF_INET6) || !fl) { |
| dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); |
| sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); |
| hash = (u32)sport * 31 + dport; |
| fl = hash & IB_GRH_FLOWLABEL_MASK; |
| } |
| |
| return cpu_to_be32(fl); |
| } |
| |
| static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) |
| { |
| struct rdma_route *route = &id_priv->id.route; |
| struct rdma_addr *addr = &route->addr; |
| struct cma_work *work; |
| int ret; |
| struct net_device *ndev; |
| |
| u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - |
| rdma_start_port(id_priv->cma_dev->device)]; |
| u8 tos; |
| |
| mutex_lock(&id_priv->qp_mutex); |
| tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; |
| mutex_unlock(&id_priv->qp_mutex); |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); |
| if (!route->path_rec) { |
| ret = -ENOMEM; |
| goto err1; |
| } |
| |
| route->num_pri_alt_paths = 1; |
| |
| ndev = cma_iboe_set_path_rec_l2_fields(id_priv); |
| if (!ndev) { |
| ret = -ENODEV; |
| goto err2; |
| } |
| |
| rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, |
| &route->path_rec->sgid); |
| rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, |
| &route->path_rec->dgid); |
| |
| if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) |
| /* TODO: get the hoplimit from the inet/inet6 device */ |
| route->path_rec->hop_limit = addr->dev_addr.hoplimit; |
| else |
| route->path_rec->hop_limit = 1; |
| route->path_rec->reversible = 1; |
| route->path_rec->pkey = cpu_to_be16(0xffff); |
| route->path_rec->mtu_selector = IB_SA_EQ; |
| route->path_rec->sl = iboe_tos_to_sl(ndev, tos); |
| route->path_rec->traffic_class = tos; |
| route->path_rec->mtu = iboe_get_mtu(ndev->mtu); |
| route->path_rec->rate_selector = IB_SA_EQ; |
| route->path_rec->rate = IB_RATE_PORT_CURRENT; |
| dev_put(ndev); |
| route->path_rec->packet_life_time_selector = IB_SA_EQ; |
| /* In case ACK timeout is set, use this value to calculate |
| * PacketLifeTime. As per IBTA 12.7.34, |
| * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). |
| * Assuming a negligible local ACK delay, we can use |
| * PacketLifeTime = local ACK timeout/2 |
| * as a reasonable approximation for RoCE networks. |
| */ |
| mutex_lock(&id_priv->qp_mutex); |
| if (id_priv->timeout_set && id_priv->timeout) |
| route->path_rec->packet_life_time = id_priv->timeout - 1; |
| else |
| route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; |
| mutex_unlock(&id_priv->qp_mutex); |
| |
| if (!route->path_rec->mtu) { |
| ret = -EINVAL; |
| goto err2; |
| } |
| |
| if (rdma_protocol_roce_udp_encap(id_priv->id.device, |
| id_priv->id.port_num)) |
| route->path_rec->flow_label = |
| cma_get_roce_udp_flow_label(id_priv); |
| |
| cma_init_resolve_route_work(work, id_priv); |
| queue_work(cma_wq, &work->work); |
| |
| return 0; |
| |
| err2: |
| kfree(route->path_rec); |
| route->path_rec = NULL; |
| route->num_pri_alt_paths = 0; |
| err1: |
| kfree(work); |
| return ret; |
| } |
| |
| int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) |
| { |
| struct rdma_id_private *id_priv; |
| int ret; |
| |
| if (!timeout_ms) |
| return -EINVAL; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) |
| return -EINVAL; |
| |
| cma_id_get(id_priv); |
| if (rdma_cap_ib_sa(id->device, id->port_num)) |
| ret = cma_resolve_ib_route(id_priv, timeout_ms); |
| else if (rdma_protocol_roce(id->device, id->port_num)) { |
| ret = cma_resolve_iboe_route(id_priv); |
| if (!ret) |
| cma_add_id_to_tree(id_priv); |
| } |
| else if (rdma_protocol_iwarp(id->device, id->port_num)) |
| ret = cma_resolve_iw_route(id_priv); |
| else |
| ret = -ENOSYS; |
| |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); |
| cma_id_put(id_priv); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_resolve_route); |
| |
| static void cma_set_loopback(struct sockaddr *addr) |
| { |
| switch (addr->sa_family) { |
| case AF_INET: |
| ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); |
| break; |
| case AF_INET6: |
| ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, |
| 0, 0, 0, htonl(1)); |
| break; |
| default: |
| ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, |
| 0, 0, 0, htonl(1)); |
| break; |
| } |
| } |
| |
| static int cma_bind_loopback(struct rdma_id_private *id_priv) |
| { |
| struct cma_device *cma_dev, *cur_dev; |
| union ib_gid gid; |
| enum ib_port_state port_state; |
| unsigned int p; |
| u16 pkey; |
| int ret; |
| |
| cma_dev = NULL; |
| mutex_lock(&lock); |
| list_for_each_entry(cur_dev, &dev_list, list) { |
| if (cma_family(id_priv) == AF_IB && |
| !rdma_cap_ib_cm(cur_dev->device, 1)) |
| continue; |
| |
| if (!cma_dev) |
| cma_dev = cur_dev; |
| |
| rdma_for_each_port (cur_dev->device, p) { |
| if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && |
| port_state == IB_PORT_ACTIVE) { |
| cma_dev = cur_dev; |
| goto port_found; |
| } |
| } |
| } |
| |
| if (!cma_dev) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| p = 1; |
| |
| port_found: |
| ret = rdma_query_gid(cma_dev->device, p, 0, &gid); |
| if (ret) |
| goto out; |
| |
| ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); |
| if (ret) |
| goto out; |
| |
| id_priv->id.route.addr.dev_addr.dev_type = |
| (rdma_protocol_ib(cma_dev->device, p)) ? |
| ARPHRD_INFINIBAND : ARPHRD_ETHER; |
| |
| rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); |
| ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); |
| id_priv->id.port_num = p; |
| cma_attach_to_dev(id_priv, cma_dev); |
| rdma_restrack_add(&id_priv->res); |
| cma_set_loopback(cma_src_addr(id_priv)); |
| out: |
| mutex_unlock(&lock); |
| return ret; |
| } |
| |
| static void addr_handler(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *dev_addr, void *context) |
| { |
| struct rdma_id_private *id_priv = context; |
| struct rdma_cm_event event = {}; |
| struct sockaddr *addr; |
| struct sockaddr_storage old_addr; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, |
| RDMA_CM_ADDR_RESOLVED)) |
| goto out; |
| |
| /* |
| * Store the previous src address, so that if we fail to acquire |
| * matching rdma device, old address can be restored back, which helps |
| * to cancel the cma listen operation correctly. |
| */ |
| addr = cma_src_addr(id_priv); |
| memcpy(&old_addr, addr, rdma_addr_size(addr)); |
| memcpy(addr, src_addr, rdma_addr_size(src_addr)); |
| if (!status && !id_priv->cma_dev) { |
| status = cma_acquire_dev_by_src_ip(id_priv); |
| if (status) |
| pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", |
| status); |
| rdma_restrack_add(&id_priv->res); |
| } else if (status) { |
| pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); |
| } |
| |
| if (status) { |
| memcpy(addr, &old_addr, |
| rdma_addr_size((struct sockaddr *)&old_addr)); |
| if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, |
| RDMA_CM_ADDR_BOUND)) |
| goto out; |
| event.event = RDMA_CM_EVENT_ADDR_ERROR; |
| event.status = status; |
| } else |
| event.event = RDMA_CM_EVENT_ADDR_RESOLVED; |
| |
| if (cma_cm_event_handler(id_priv, &event)) { |
| destroy_id_handler_unlock(id_priv); |
| return; |
| } |
| out: |
| mutex_unlock(&id_priv->handler_mutex); |
| } |
| |
| static int cma_resolve_loopback(struct rdma_id_private *id_priv) |
| { |
| struct cma_work *work; |
| union ib_gid gid; |
| int ret; |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| if (!id_priv->cma_dev) { |
| ret = cma_bind_loopback(id_priv); |
| if (ret) |
| goto err; |
| } |
| |
| rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); |
| rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); |
| |
| enqueue_resolve_addr_work(work, id_priv); |
| return 0; |
| err: |
| kfree(work); |
| return ret; |
| } |
| |
| static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) |
| { |
| struct cma_work *work; |
| int ret; |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| if (!id_priv->cma_dev) { |
| ret = cma_resolve_ib_dev(id_priv); |
| if (ret) |
| goto err; |
| } |
| |
| rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) |
| &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); |
| |
| enqueue_resolve_addr_work(work, id_priv); |
| return 0; |
| err: |
| kfree(work); |
| return ret; |
| } |
| |
| static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, |
| const struct sockaddr *dst_addr) |
| { |
| struct sockaddr_storage zero_sock = {}; |
| |
| if (src_addr && src_addr->sa_family) |
| return rdma_bind_addr(id, src_addr); |
| |
| /* |
| * When the src_addr is not specified, automatically supply an any addr |
| */ |
| zero_sock.ss_family = dst_addr->sa_family; |
| if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { |
| struct sockaddr_in6 *src_addr6 = |
| (struct sockaddr_in6 *)&zero_sock; |
| struct sockaddr_in6 *dst_addr6 = |
| (struct sockaddr_in6 *)dst_addr; |
| |
| src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; |
| if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) |
| id->route.addr.dev_addr.bound_dev_if = |
| dst_addr6->sin6_scope_id; |
| } else if (dst_addr->sa_family == AF_IB) { |
| ((struct sockaddr_ib *)&zero_sock)->sib_pkey = |
| ((struct sockaddr_ib *)dst_addr)->sib_pkey; |
| } |
| return rdma_bind_addr(id, (struct sockaddr *)&zero_sock); |
| } |
| |
| /* |
| * If required, resolve the source address for bind and leave the id_priv in |
| * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior |
| * calls made by ULP, a previously bound ID will not be re-bound and src_addr is |
| * ignored. |
| */ |
| static int resolve_prepare_src(struct rdma_id_private *id_priv, |
| struct sockaddr *src_addr, |
| const struct sockaddr *dst_addr) |
| { |
| int ret; |
| |
| memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); |
| if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { |
| /* For a well behaved ULP state will be RDMA_CM_IDLE */ |
| ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); |
| if (ret) |
| goto err_dst; |
| if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, |
| RDMA_CM_ADDR_QUERY))) { |
| ret = -EINVAL; |
| goto err_dst; |
| } |
| } |
| |
| if (cma_family(id_priv) != dst_addr->sa_family) { |
| ret = -EINVAL; |
| goto err_state; |
| } |
| return 0; |
| |
| err_state: |
| cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); |
| err_dst: |
| memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); |
| return ret; |
| } |
| |
| int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, |
| const struct sockaddr *dst_addr, unsigned long timeout_ms) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| int ret; |
| |
| ret = resolve_prepare_src(id_priv, src_addr, dst_addr); |
| if (ret) |
| return ret; |
| |
| if (cma_any_addr(dst_addr)) { |
| ret = cma_resolve_loopback(id_priv); |
| } else { |
| if (dst_addr->sa_family == AF_IB) { |
| ret = cma_resolve_ib_addr(id_priv); |
| } else { |
| /* |
| * The FSM can return back to RDMA_CM_ADDR_BOUND after |
| * rdma_resolve_ip() is called, eg through the error |
| * path in addr_handler(). If this happens the existing |
| * request must be canceled before issuing a new one. |
| * Since canceling a request is a bit slow and this |
| * oddball path is rare, keep track once a request has |
| * been issued. The track turns out to be a permanent |
| * state since this is the only cancel as it is |
| * immediately before rdma_resolve_ip(). |
| */ |
| if (id_priv->used_resolve_ip) |
| rdma_addr_cancel(&id->route.addr.dev_addr); |
| else |
| id_priv->used_resolve_ip = 1; |
| ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, |
| &id->route.addr.dev_addr, |
| timeout_ms, addr_handler, |
| false, id_priv); |
| } |
| } |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_resolve_addr); |
| |
| int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) |
| { |
| struct rdma_id_private *id_priv; |
| unsigned long flags; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| spin_lock_irqsave(&id_priv->lock, flags); |
| if ((reuse && id_priv->state != RDMA_CM_LISTEN) || |
| id_priv->state == RDMA_CM_IDLE) { |
| id_priv->reuseaddr = reuse; |
| ret = 0; |
| } else { |
| ret = -EINVAL; |
| } |
| spin_unlock_irqrestore(&id_priv->lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_set_reuseaddr); |
| |
| int rdma_set_afonly(struct rdma_cm_id *id, int afonly) |
| { |
| struct rdma_id_private *id_priv; |
| unsigned long flags; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| spin_lock_irqsave(&id_priv->lock, flags); |
| if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { |
| id_priv->options |= (1 << CMA_OPTION_AFONLY); |
| id_priv->afonly = afonly; |
| ret = 0; |
| } else { |
| ret = -EINVAL; |
| } |
| spin_unlock_irqrestore(&id_priv->lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_set_afonly); |
| |
| static void cma_bind_port(struct rdma_bind_list *bind_list, |
| struct rdma_id_private *id_priv) |
| { |
| struct sockaddr *addr; |
| struct sockaddr_ib *sib; |
| u64 sid, mask; |
| __be16 port; |
| |
| lockdep_assert_held(&lock); |
| |
| addr = cma_src_addr(id_priv); |
| port = htons(bind_list->port); |
| |
| switch (addr->sa_family) { |
| case AF_INET: |
| ((struct sockaddr_in *) addr)->sin_port = port; |
| break; |
| case AF_INET6: |
| ((struct sockaddr_in6 *) addr)->sin6_port = port; |
| break; |
| case AF_IB: |
| sib = (struct sockaddr_ib *) addr; |
| sid = be64_to_cpu(sib->sib_sid); |
| mask = be64_to_cpu(sib->sib_sid_mask); |
| sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); |
| sib->sib_sid_mask = cpu_to_be64(~0ULL); |
| break; |
| } |
| id_priv->bind_list = bind_list; |
| hlist_add_head(&id_priv->node, &bind_list->owners); |
| } |
| |
| static int cma_alloc_port(enum rdma_ucm_port_space ps, |
| struct rdma_id_private *id_priv, unsigned short snum) |
| { |
| struct rdma_bind_list *bind_list; |
| int ret; |
| |
| lockdep_assert_held(&lock); |
| |
| bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); |
| if (!bind_list) |
| return -ENOMEM; |
| |
| ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, |
| snum); |
| if (ret < 0) |
| goto err; |
| |
| bind_list->ps = ps; |
| bind_list->port = snum; |
| cma_bind_port(bind_list, id_priv); |
| return 0; |
| err: |
| kfree(bind_list); |
| return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; |
| } |
| |
| static int cma_port_is_unique(struct rdma_bind_list *bind_list, |
| struct rdma_id_private *id_priv) |
| { |
| struct rdma_id_private *cur_id; |
| struct sockaddr *daddr = cma_dst_addr(id_priv); |
| struct sockaddr *saddr = cma_src_addr(id_priv); |
| __be16 dport = cma_port(daddr); |
| |
| lockdep_assert_held(&lock); |
| |
| hlist_for_each_entry(cur_id, &bind_list->owners, node) { |
| struct sockaddr *cur_daddr = cma_dst_addr(cur_id); |
| struct sockaddr *cur_saddr = cma_src_addr(cur_id); |
| __be16 cur_dport = cma_port(cur_daddr); |
| |
| if (id_priv == cur_id) |
| continue; |
| |
| /* different dest port -> unique */ |
| if (!cma_any_port(daddr) && |
| !cma_any_port(cur_daddr) && |
| (dport != cur_dport)) |
| continue; |
| |
| /* different src address -> unique */ |
| if (!cma_any_addr(saddr) && |
| !cma_any_addr(cur_saddr) && |
| cma_addr_cmp(saddr, cur_saddr)) |
| continue; |
| |
| /* different dst address -> unique */ |
| if (!cma_any_addr(daddr) && |
| !cma_any_addr(cur_daddr) && |
| cma_addr_cmp(daddr, cur_daddr)) |
| continue; |
| |
| return -EADDRNOTAVAIL; |
| } |
| return 0; |
| } |
| |
| static int cma_alloc_any_port(enum rdma_ucm_port_space ps, |
| struct rdma_id_private *id_priv) |
| { |
| static unsigned int last_used_port; |
| int low, high, remaining; |
| unsigned int rover; |
| struct net *net = id_priv->id.route.addr.dev_addr.net; |
| |
| lockdep_assert_held(&lock); |
| |
| inet_get_local_port_range(net, &low, &high); |
| remaining = (high - low) + 1; |
| rover = prandom_u32_max(remaining) + low; |
| retry: |
| if (last_used_port != rover) { |
| struct rdma_bind_list *bind_list; |
| int ret; |
| |
| bind_list = cma_ps_find(net, ps, (unsigned short)rover); |
| |
| if (!bind_list) { |
| ret = cma_alloc_port(ps, id_priv, rover); |
| } else { |
| ret = cma_port_is_unique(bind_list, id_priv); |
| if (!ret) |
| cma_bind_port(bind_list, id_priv); |
| } |
| /* |
| * Remember previously used port number in order to avoid |
| * re-using same port immediately after it is closed. |
| */ |
| if (!ret) |
| last_used_port = rover; |
| if (ret != -EADDRNOTAVAIL) |
| return ret; |
| } |
| if (--remaining) { |
| rover++; |
| if ((rover < low) || (rover > high)) |
| rover = low; |
| goto retry; |
| } |
| return -EADDRNOTAVAIL; |
| } |
| |
| /* |
| * Check that the requested port is available. This is called when trying to |
| * bind to a specific port, or when trying to listen on a bound port. In |
| * the latter case, the provided id_priv may already be on the bind_list, but |
| * we still need to check that it's okay to start listening. |
| */ |
| static int cma_check_port(struct rdma_bind_list *bind_list, |
| struct rdma_id_private *id_priv, uint8_t reuseaddr) |
| { |
| struct rdma_id_private *cur_id; |
| struct sockaddr *addr, *cur_addr; |
| |
| lockdep_assert_held(&lock); |
| |
| addr = cma_src_addr(id_priv); |
| hlist_for_each_entry(cur_id, &bind_list->owners, node) { |
| if (id_priv == cur_id) |
| continue; |
| |
| if (reuseaddr && cur_id->reuseaddr) |
| continue; |
| |
| cur_addr = cma_src_addr(cur_id); |
| if (id_priv->afonly && cur_id->afonly && |
| (addr->sa_family != cur_addr->sa_family)) |
| continue; |
| |
| if (cma_any_addr(addr) || cma_any_addr(cur_addr)) |
| return -EADDRNOTAVAIL; |
| |
| if (!cma_addr_cmp(addr, cur_addr)) |
| return -EADDRINUSE; |
| } |
| return 0; |
| } |
| |
| static int cma_use_port(enum rdma_ucm_port_space ps, |
| struct rdma_id_private *id_priv) |
| { |
| struct rdma_bind_list *bind_list; |
| unsigned short snum; |
| int ret; |
| |
| lockdep_assert_held(&lock); |
| |
| snum = ntohs(cma_port(cma_src_addr(id_priv))); |
| if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) |
| return -EACCES; |
| |
| bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); |
| if (!bind_list) { |
| ret = cma_alloc_port(ps, id_priv, snum); |
| } else { |
| ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); |
| if (!ret) |
| cma_bind_port(bind_list, id_priv); |
| } |
| return ret; |
| } |
| |
| static enum rdma_ucm_port_space |
| cma_select_inet_ps(struct rdma_id_private *id_priv) |
| { |
| switch (id_priv->id.ps) { |
| case RDMA_PS_TCP: |
| case RDMA_PS_UDP: |
| case RDMA_PS_IPOIB: |
| case RDMA_PS_IB: |
| return id_priv->id.ps; |
| default: |
| |
| return 0; |
| } |
| } |
| |
| static enum rdma_ucm_port_space |
| cma_select_ib_ps(struct rdma_id_private *id_priv) |
| { |
| enum rdma_ucm_port_space ps = 0; |
| struct sockaddr_ib *sib; |
| u64 sid_ps, mask, sid; |
| |
| sib = (struct sockaddr_ib *) cma_src_addr(id_priv); |
| mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; |
| sid = be64_to_cpu(sib->sib_sid) & mask; |
| |
| if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { |
| sid_ps = RDMA_IB_IP_PS_IB; |
| ps = RDMA_PS_IB; |
| } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && |
| (sid == (RDMA_IB_IP_PS_TCP & mask))) { |
| sid_ps = RDMA_IB_IP_PS_TCP; |
| ps = RDMA_PS_TCP; |
| } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && |
| (sid == (RDMA_IB_IP_PS_UDP & mask))) { |
| sid_ps = RDMA_IB_IP_PS_UDP; |
| ps = RDMA_PS_UDP; |
| } |
| |
| if (ps) { |
| sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); |
| sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | |
| be64_to_cpu(sib->sib_sid_mask)); |
| } |
| return ps; |
| } |
| |
| static int cma_get_port(struct rdma_id_private *id_priv) |
| { |
| enum rdma_ucm_port_space ps; |
| int ret; |
| |
| if (cma_family(id_priv) != AF_IB) |
| ps = cma_select_inet_ps(id_priv); |
| else |
| ps = cma_select_ib_ps(id_priv); |
| if (!ps) |
| return -EPROTONOSUPPORT; |
| |
| mutex_lock(&lock); |
| if (cma_any_port(cma_src_addr(id_priv))) |
| ret = cma_alloc_any_port(ps, id_priv); |
| else |
| ret = cma_use_port(ps, id_priv); |
| mutex_unlock(&lock); |
| |
| return ret; |
| } |
| |
| static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, |
| struct sockaddr *addr) |
| { |
| #if IS_ENABLED(CONFIG_IPV6) |
| struct sockaddr_in6 *sin6; |
| |
| if (addr->sa_family != AF_INET6) |
| return 0; |
| |
| sin6 = (struct sockaddr_in6 *) addr; |
| |
| if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) |
| return 0; |
| |
| if (!sin6->sin6_scope_id) |
| return -EINVAL; |
| |
| dev_addr->bound_dev_if = sin6->sin6_scope_id; |
| #endif |
| return 0; |
| } |
| |
| int rdma_listen(struct rdma_cm_id *id, int backlog) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| int ret; |
| |
| if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { |
| struct sockaddr_in any_in = { |
| .sin_family = AF_INET, |
| .sin_addr.s_addr = htonl(INADDR_ANY), |
| }; |
| |
| /* For a well behaved ULP state will be RDMA_CM_IDLE */ |
| ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); |
| if (ret) |
| return ret; |
| if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, |
| RDMA_CM_LISTEN))) |
| return -EINVAL; |
| } |
| |
| /* |
| * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable |
| * any more, and has to be unique in the bind list. |
| */ |
| if (id_priv->reuseaddr) { |
| mutex_lock(&lock); |
| ret = cma_check_port(id_priv->bind_list, id_priv, 0); |
| if (!ret) |
| id_priv->reuseaddr = 0; |
| mutex_unlock(&lock); |
| if (ret) |
| goto err; |
| } |
| |
| id_priv->backlog = backlog; |
| if (id_priv->cma_dev) { |
| if (rdma_cap_ib_cm(id->device, 1)) { |
| ret = cma_ib_listen(id_priv); |
| if (ret) |
| goto err; |
| } else if (rdma_cap_iw_cm(id->device, 1)) { |
| ret = cma_iw_listen(id_priv, backlog); |
| if (ret) |
| goto err; |
| } else { |
| ret = -ENOSYS; |
| goto err; |
| } |
| } else { |
| ret = cma_listen_on_all(id_priv); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| err: |
| id_priv->backlog = 0; |
| /* |
| * All the failure paths that lead here will not allow the req_handler's |
| * to have run. |
| */ |
| cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_listen); |
| |
| int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) |
| { |
| struct rdma_id_private *id_priv; |
| int ret; |
| struct sockaddr *daddr; |
| |
| if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && |
| addr->sa_family != AF_IB) |
| return -EAFNOSUPPORT; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) |
| return -EINVAL; |
| |
| ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); |
| if (ret) |
| goto err1; |
| |
| memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); |
| if (!cma_any_addr(addr)) { |
| ret = cma_translate_addr(addr, &id->route.addr.dev_addr); |
| if (ret) |
| goto err1; |
| |
| ret = cma_acquire_dev_by_src_ip(id_priv); |
| if (ret) |
| goto err1; |
| } |
| |
| if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { |
| if (addr->sa_family == AF_INET) |
| id_priv->afonly = 1; |
| #if IS_ENABLED(CONFIG_IPV6) |
| else if (addr->sa_family == AF_INET6) { |
| struct net *net = id_priv->id.route.addr.dev_addr.net; |
| |
| id_priv->afonly = net->ipv6.sysctl.bindv6only; |
| } |
| #endif |
| } |
| daddr = cma_dst_addr(id_priv); |
| daddr->sa_family = addr->sa_family; |
| |
| ret = cma_get_port(id_priv); |
| if (ret) |
| goto err2; |
| |
| if (!cma_any_addr(addr)) |
| rdma_restrack_add(&id_priv->res); |
| return 0; |
| err2: |
| if (id_priv->cma_dev) |
| cma_release_dev(id_priv); |
| err1: |
| cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_bind_addr); |
| |
| static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) |
| { |
| struct cma_hdr *cma_hdr; |
| |
| cma_hdr = hdr; |
| cma_hdr->cma_version = CMA_VERSION; |
| if (cma_family(id_priv) == AF_INET) { |
| struct sockaddr_in *src4, *dst4; |
| |
| src4 = (struct sockaddr_in *) cma_src_addr(id_priv); |
| dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); |
| |
| cma_set_ip_ver(cma_hdr, 4); |
| cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; |
| cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; |
| cma_hdr->port = src4->sin_port; |
| } else if (cma_family(id_priv) == AF_INET6) { |
| struct sockaddr_in6 *src6, *dst6; |
| |
| src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); |
| dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); |
| |
| cma_set_ip_ver(cma_hdr, 6); |
| cma_hdr->src_addr.ip6 = src6->sin6_addr; |
| cma_hdr->dst_addr.ip6 = dst6->sin6_addr; |
| cma_hdr->port = src6->sin6_port; |
| } |
| return 0; |
| } |
| |
| static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, |
| const struct ib_cm_event *ib_event) |
| { |
| struct rdma_id_private *id_priv = cm_id->context; |
| struct rdma_cm_event event = {}; |
| const struct ib_cm_sidr_rep_event_param *rep = |
| &ib_event->param.sidr_rep_rcvd; |
| int ret; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) |
| goto out; |
| |
| switch (ib_event->event) { |
| case IB_CM_SIDR_REQ_ERROR: |
| event.event = RDMA_CM_EVENT_UNREACHABLE; |
| event.status = -ETIMEDOUT; |
| break; |
| case IB_CM_SIDR_REP_RECEIVED: |
| event.param.ud.private_data = ib_event->private_data; |
| event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; |
| if (rep->status != IB_SIDR_SUCCESS) { |
| event.event = RDMA_CM_EVENT_UNREACHABLE; |
| event.status = ib_event->param.sidr_rep_rcvd.status; |
| pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", |
| event.status); |
| break; |
| } |
| ret = cma_set_qkey(id_priv, rep->qkey); |
| if (ret) { |
| pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); |
| event.event = RDMA_CM_EVENT_ADDR_ERROR; |
| event.status = ret; |
| break; |
| } |
| ib_init_ah_attr_from_path(id_priv->id.device, |
| id_priv->id.port_num, |
| id_priv->id.route.path_rec, |
| &event.param.ud.ah_attr, |
| rep->sgid_attr); |
| event.param.ud.qp_num = rep->qpn; |
| event.param.ud.qkey = rep->qkey; |
| event.event = RDMA_CM_EVENT_ESTABLISHED; |
| event.status = 0; |
| break; |
| default: |
| pr_err("RDMA CMA: unexpected IB CM event: %d\n", |
| ib_event->event); |
| goto out; |
| } |
| |
| ret = cma_cm_event_handler(id_priv, &event); |
| |
| rdma_destroy_ah_attr(&event.param.ud.ah_attr); |
| if (ret) { |
| /* Destroy the CM ID by returning a non-zero value. */ |
| id_priv->cm_id.ib = NULL; |
| destroy_id_handler_unlock(id_priv); |
| return ret; |
| } |
| out: |
| mutex_unlock(&id_priv->handler_mutex); |
| return 0; |
| } |
| |
| static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct ib_cm_sidr_req_param req; |
| struct ib_cm_id *id; |
| void *private_data; |
| u8 offset; |
| int ret; |
| |
| memset(&req, 0, sizeof req); |
| offset = cma_user_data_offset(id_priv); |
| if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) |
| return -EINVAL; |
| |
| if (req.private_data_len) { |
| private_data = kzalloc(req.private_data_len, GFP_ATOMIC); |
| if (!private_data) |
| return -ENOMEM; |
| } else { |
| private_data = NULL; |
| } |
| |
| if (conn_param->private_data && conn_param->private_data_len) |
| memcpy(private_data + offset, conn_param->private_data, |
| conn_param->private_data_len); |
| |
| if (private_data) { |
| ret = cma_format_hdr(private_data, id_priv); |
| if (ret) |
| goto out; |
| req.private_data = private_data; |
| } |
| |
| id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, |
| id_priv); |
| if (IS_ERR(id)) { |
| ret = PTR_ERR(id); |
| goto out; |
| } |
| id_priv->cm_id.ib = id; |
| |
| req.path = id_priv->id.route.path_rec; |
| req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; |
| req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); |
| req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); |
| req.max_cm_retries = CMA_MAX_CM_RETRIES; |
| |
| trace_cm_send_sidr_req(id_priv); |
| ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); |
| if (ret) { |
| ib_destroy_cm_id(id_priv->cm_id.ib); |
| id_priv->cm_id.ib = NULL; |
| } |
| out: |
| kfree(private_data); |
| return ret; |
| } |
| |
| static int cma_connect_ib(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct ib_cm_req_param req; |
| struct rdma_route *route; |
| void *private_data; |
| struct ib_cm_id *id; |
| u8 offset; |
| int ret; |
| |
| memset(&req, 0, sizeof req); |
| offset = cma_user_data_offset(id_priv); |
| if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) |
| return -EINVAL; |
| |
| if (req.private_data_len) { |
| private_data = kzalloc(req.private_data_len, GFP_ATOMIC); |
| if (!private_data) |
| return -ENOMEM; |
| } else { |
| private_data = NULL; |
| } |
| |
| if (conn_param->private_data && conn_param->private_data_len) |
| memcpy(private_data + offset, conn_param->private_data, |
| conn_param->private_data_len); |
| |
| id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); |
| if (IS_ERR(id)) { |
| ret = PTR_ERR(id); |
| goto out; |
| } |
| id_priv->cm_id.ib = id; |
| |
| route = &id_priv->id.route; |
| if (private_data) { |
| ret = cma_format_hdr(private_data, id_priv); |
| if (ret) |
| goto out; |
| req.private_data = private_data; |
| } |
| |
| req.primary_path = &route->path_rec[0]; |
| req.primary_path_inbound = route->path_rec_inbound; |
| req.primary_path_outbound = route->path_rec_outbound; |
| if (route->num_pri_alt_paths == 2) |
| req.alternate_path = &route->path_rec[1]; |
| |
| req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; |
| /* Alternate path SGID attribute currently unsupported */ |
| req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); |
| req.qp_num = id_priv->qp_num; |
| req.qp_type = id_priv->id.qp_type; |
| req.starting_psn = id_priv->seq_num; |
| req.responder_resources = conn_param->responder_resources; |
| req.initiator_depth = conn_param->initiator_depth; |
| req.flow_control = conn_param->flow_control; |
| req.retry_count = min_t(u8, 7, conn_param->retry_count); |
| req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); |
| req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; |
| req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; |
| req.max_cm_retries = CMA_MAX_CM_RETRIES; |
| req.srq = id_priv->srq ? 1 : 0; |
| req.ece.vendor_id = id_priv->ece.vendor_id; |
| req.ece.attr_mod = id_priv->ece.attr_mod; |
| |
| trace_cm_send_req(id_priv); |
| ret = ib_send_cm_req(id_priv->cm_id.ib, &req); |
| out: |
| if (ret && !IS_ERR(id)) { |
| ib_destroy_cm_id(id); |
| id_priv->cm_id.ib = NULL; |
| } |
| |
| kfree(private_data); |
| return ret; |
| } |
| |
| static int cma_connect_iw(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct iw_cm_id *cm_id; |
| int ret; |
| struct iw_cm_conn_param iw_param; |
| |
| cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); |
| if (IS_ERR(cm_id)) |
| return PTR_ERR(cm_id); |
| |
| mutex_lock(&id_priv->qp_mutex); |
| cm_id->tos = id_priv->tos; |
| cm_id->tos_set = id_priv->tos_set; |
| mutex_unlock(&id_priv->qp_mutex); |
| |
| id_priv->cm_id.iw = cm_id; |
| |
| memcpy(&cm_id->local_addr, cma_src_addr(id_priv), |
| rdma_addr_size(cma_src_addr(id_priv))); |
| memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), |
| rdma_addr_size(cma_dst_addr(id_priv))); |
| |
| ret = cma_modify_qp_rtr(id_priv, conn_param); |
| if (ret) |
| goto out; |
| |
| if (conn_param) { |
| iw_param.ord = conn_param->initiator_depth; |
| iw_param.ird = conn_param->responder_resources; |
| iw_param.private_data = conn_param->private_data; |
| iw_param.private_data_len = conn_param->private_data_len; |
| iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; |
| } else { |
| memset(&iw_param, 0, sizeof iw_param); |
| iw_param.qpn = id_priv->qp_num; |
| } |
| ret = iw_cm_connect(cm_id, &iw_param); |
| out: |
| if (ret) { |
| iw_destroy_cm_id(cm_id); |
| id_priv->cm_id.iw = NULL; |
| } |
| return ret; |
| } |
| |
| /** |
| * rdma_connect_locked - Initiate an active connection request. |
| * @id: Connection identifier to connect. |
| * @conn_param: Connection information used for connected QPs. |
| * |
| * Same as rdma_connect() but can only be called from the |
| * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. |
| */ |
| int rdma_connect_locked(struct rdma_cm_id *id, |
| struct rdma_conn_param *conn_param) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| int ret; |
| |
| if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) |
| return -EINVAL; |
| |
| if (!id->qp) { |
| id_priv->qp_num = conn_param->qp_num; |
| id_priv->srq = conn_param->srq; |
| } |
| |
| if (rdma_cap_ib_cm(id->device, id->port_num)) { |
| if (id->qp_type == IB_QPT_UD) |
| ret = cma_resolve_ib_udp(id_priv, conn_param); |
| else |
| ret = cma_connect_ib(id_priv, conn_param); |
| } else if (rdma_cap_iw_cm(id->device, id->port_num)) { |
| ret = cma_connect_iw(id_priv, conn_param); |
| } else { |
| ret = -ENOSYS; |
| } |
| if (ret) |
| goto err_state; |
| return 0; |
| err_state: |
| cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_connect_locked); |
| |
| /** |
| * rdma_connect - Initiate an active connection request. |
| * @id: Connection identifier to connect. |
| * @conn_param: Connection information used for connected QPs. |
| * |
| * Users must have resolved a route for the rdma_cm_id to connect with by having |
| * called rdma_resolve_route before calling this routine. |
| * |
| * This call will either connect to a remote QP or obtain remote QP information |
| * for unconnected rdma_cm_id's. The actual operation is based on the |
| * rdma_cm_id's port space. |
| */ |
| int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| int ret; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| ret = rdma_connect_locked(id, conn_param); |
| mutex_unlock(&id_priv->handler_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_connect); |
| |
| /** |
| * rdma_connect_ece - Initiate an active connection request with ECE data. |
| * @id: Connection identifier to connect. |
| * @conn_param: Connection information used for connected QPs. |
| * @ece: ECE parameters |
| * |
| * See rdma_connect() explanation. |
| */ |
| int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, |
| struct rdma_ucm_ece *ece) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| |
| id_priv->ece.vendor_id = ece->vendor_id; |
| id_priv->ece.attr_mod = ece->attr_mod; |
| |
| return rdma_connect(id, conn_param); |
| } |
| EXPORT_SYMBOL(rdma_connect_ece); |
| |
| static int cma_accept_ib(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct ib_cm_rep_param rep; |
| int ret; |
| |
| ret = cma_modify_qp_rtr(id_priv, conn_param); |
| if (ret) |
| goto out; |
| |
| ret = cma_modify_qp_rts(id_priv, conn_param); |
| if (ret) |
| goto out; |
| |
| memset(&rep, 0, sizeof rep); |
| rep.qp_num = id_priv->qp_num; |
| rep.starting_psn = id_priv->seq_num; |
| rep.private_data = conn_param->private_data; |
| rep.private_data_len = conn_param->private_data_len; |
| rep.responder_resources = conn_param->responder_resources; |
| rep.initiator_depth = conn_param->initiator_depth; |
| rep.failover_accepted = 0; |
| rep.flow_control = conn_param->flow_control; |
| rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); |
| rep.srq = id_priv->srq ? 1 : 0; |
| rep.ece.vendor_id = id_priv->ece.vendor_id; |
| rep.ece.attr_mod = id_priv->ece.attr_mod; |
| |
| trace_cm_send_rep(id_priv); |
| ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); |
| out: |
| return ret; |
| } |
| |
| static int cma_accept_iw(struct rdma_id_private *id_priv, |
| struct rdma_conn_param *conn_param) |
| { |
| struct iw_cm_conn_param iw_param; |
| int ret; |
| |
| if (!conn_param) |
| return -EINVAL; |
| |
| ret = cma_modify_qp_rtr(id_priv, conn_param); |
| if (ret) |
| return ret; |
| |
| iw_param.ord = conn_param->initiator_depth; |
| iw_param.ird = conn_param->responder_resources; |
| iw_param.private_data = conn_param->private_data; |
| iw_param.private_data_len = conn_param->private_data_len; |
| if (id_priv->id.qp) |
| iw_param.qpn = id_priv->qp_num; |
| else |
| iw_param.qpn = conn_param->qp_num; |
| |
| return iw_cm_accept(id_priv->cm_id.iw, &iw_param); |
| } |
| |
| static int cma_send_sidr_rep(struct rdma_id_private *id_priv, |
| enum ib_cm_sidr_status status, u32 qkey, |
| const void *private_data, int private_data_len) |
| { |
| struct ib_cm_sidr_rep_param rep; |
| int ret; |
| |
| memset(&rep, 0, sizeof rep); |
| rep.status = status; |
| if (status == IB_SIDR_SUCCESS) { |
| if (qkey) |
| ret = cma_set_qkey(id_priv, qkey); |
| else |
| ret = cma_set_default_qkey(id_priv); |
| if (ret) |
| return ret; |
| rep.qp_num = id_priv->qp_num; |
| rep.qkey = id_priv->qkey; |
| |
| rep.ece.vendor_id = id_priv->ece.vendor_id; |
| rep.ece.attr_mod = id_priv->ece.attr_mod; |
| } |
| |
| rep.private_data = private_data; |
| rep.private_data_len = private_data_len; |
| |
| trace_cm_send_sidr_rep(id_priv); |
| return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); |
| } |
| |
| /** |
| * rdma_accept - Called to accept a connection request or response. |
| * @id: Connection identifier associated with the request. |
| * @conn_param: Information needed to establish the connection. This must be |
| * provided if accepting a connection request. If accepting a connection |
| * response, this parameter must be NULL. |
| * |
| * Typically, this routine is only called by the listener to accept a connection |
| * request. It must also be called on the active side of a connection if the |
| * user is performing their own QP transitions. |
| * |
| * In the case of error, a reject message is sent to the remote side and the |
| * state of the qp associated with the id is modified to error, such that any |
| * previously posted receive buffers would be flushed. |
| * |
| * This function is for use by kernel ULPs and must be called from under the |
| * handler callback. |
| */ |
| int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| int ret; |
| |
| lockdep_assert_held(&id_priv->handler_mutex); |
| |
| if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) |
| return -EINVAL; |
| |
| if (!id->qp && conn_param) { |
| id_priv->qp_num = conn_param->qp_num; |
| id_priv->srq = conn_param->srq; |
| } |
| |
| if (rdma_cap_ib_cm(id->device, id->port_num)) { |
| if (id->qp_type == IB_QPT_UD) { |
| if (conn_param) |
| ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, |
| conn_param->qkey, |
| conn_param->private_data, |
| conn_param->private_data_len); |
| else |
| ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, |
| 0, NULL, 0); |
| } else { |
| if (conn_param) |
| ret = cma_accept_ib(id_priv, conn_param); |
| else |
| ret = cma_rep_recv(id_priv); |
| } |
| } else if (rdma_cap_iw_cm(id->device, id->port_num)) { |
| ret = cma_accept_iw(id_priv, conn_param); |
| } else { |
| ret = -ENOSYS; |
| } |
| if (ret) |
| goto reject; |
| |
| return 0; |
| reject: |
| cma_modify_qp_err(id_priv); |
| rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_accept); |
| |
| int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, |
| struct rdma_ucm_ece *ece) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| |
| id_priv->ece.vendor_id = ece->vendor_id; |
| id_priv->ece.attr_mod = ece->attr_mod; |
| |
| return rdma_accept(id, conn_param); |
| } |
| EXPORT_SYMBOL(rdma_accept_ece); |
| |
| void rdma_lock_handler(struct rdma_cm_id *id) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| |
| mutex_lock(&id_priv->handler_mutex); |
| } |
| EXPORT_SYMBOL(rdma_lock_handler); |
| |
| void rdma_unlock_handler(struct rdma_cm_id *id) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| |
| mutex_unlock(&id_priv->handler_mutex); |
| } |
| EXPORT_SYMBOL(rdma_unlock_handler); |
| |
| int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) |
| { |
| struct rdma_id_private *id_priv; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (!id_priv->cm_id.ib) |
| return -EINVAL; |
| |
| switch (id->device->node_type) { |
| case RDMA_NODE_IB_CA: |
| ret = ib_cm_notify(id_priv->cm_id.ib, event); |
| break; |
| default: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_notify); |
| |
| int rdma_reject(struct rdma_cm_id *id, const void *private_data, |
| u8 private_data_len, u8 reason) |
| { |
| struct rdma_id_private *id_priv; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (!id_priv->cm_id.ib) |
| return -EINVAL; |
| |
| if (rdma_cap_ib_cm(id->device, id->port_num)) { |
| if (id->qp_type == IB_QPT_UD) { |
| ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, |
| private_data, private_data_len); |
| } else { |
| trace_cm_send_rej(id_priv); |
| ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, |
| private_data, private_data_len); |
| } |
| } else if (rdma_cap_iw_cm(id->device, id->port_num)) { |
| ret = iw_cm_reject(id_priv->cm_id.iw, |
| private_data, private_data_len); |
| } else { |
| ret = -ENOSYS; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_reject); |
| |
| int rdma_disconnect(struct rdma_cm_id *id) |
| { |
| struct rdma_id_private *id_priv; |
| int ret; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| if (!id_priv->cm_id.ib) |
| return -EINVAL; |
| |
| if (rdma_cap_ib_cm(id->device, id->port_num)) { |
| ret = cma_modify_qp_err(id_priv); |
| if (ret) |
| goto out; |
| /* Initiate or respond to a disconnect. */ |
| trace_cm_disconnect(id_priv); |
| if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { |
| if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) |
| trace_cm_sent_drep(id_priv); |
| } else { |
| trace_cm_sent_dreq(id_priv); |
| } |
| } else if (rdma_cap_iw_cm(id->device, id->port_num)) { |
| ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); |
| } else |
| ret = -EINVAL; |
| |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_disconnect); |
| |
| static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, |
| struct ib_sa_multicast *multicast, |
| struct rdma_cm_event *event, |
| struct cma_multicast *mc) |
| { |
| struct rdma_dev_addr *dev_addr; |
| enum ib_gid_type gid_type; |
| struct net_device *ndev; |
| |
| if (status) |
| pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", |
| status); |
| |
| event->status = status; |
| event->param.ud.private_data = mc->context; |
| if (status) { |
| event->event = RDMA_CM_EVENT_MULTICAST_ERROR; |
| return; |
| } |
| |
| dev_addr = &id_priv->id.route.addr.dev_addr; |
| ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); |
| gid_type = |
| id_priv->cma_dev |
| ->default_gid_type[id_priv->id.port_num - |
| rdma_start_port( |
| id_priv->cma_dev->device)]; |
| |
| event->event = RDMA_CM_EVENT_MULTICAST_JOIN; |
| if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, |
| &multicast->rec, ndev, gid_type, |
| &event->param.ud.ah_attr)) { |
| event->event = RDMA_CM_EVENT_MULTICAST_ERROR; |
| goto out; |
| } |
| |
| event->param.ud.qp_num = 0xFFFFFF; |
| event->param.ud.qkey = id_priv->qkey; |
| |
| out: |
| if (ndev) |
| dev_put(ndev); |
| } |
| |
| static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) |
| { |
| struct cma_multicast *mc = multicast->context; |
| struct rdma_id_private *id_priv = mc->id_priv; |
| struct rdma_cm_event event = {}; |
| int ret = 0; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || |
| READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) |
| goto out; |
| |
| ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); |
| if (!ret) { |
| cma_make_mc_event(status, id_priv, multicast, &event, mc); |
| ret = cma_cm_event_handler(id_priv, &event); |
| } |
| rdma_destroy_ah_attr(&event.param.ud.ah_attr); |
| WARN_ON(ret); |
| |
| out: |
| mutex_unlock(&id_priv->handler_mutex); |
| return 0; |
| } |
| |
| static void cma_set_mgid(struct rdma_id_private *id_priv, |
| struct sockaddr *addr, union ib_gid *mgid) |
| { |
| unsigned char mc_map[MAX_ADDR_LEN]; |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| struct sockaddr_in *sin = (struct sockaddr_in *) addr; |
| struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; |
| |
| if (cma_any_addr(addr)) { |
| memset(mgid, 0, sizeof *mgid); |
| } else if ((addr->sa_family == AF_INET6) && |
| ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == |
| 0xFF10A01B)) { |
| /* IPv6 address is an SA assigned MGID. */ |
| memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); |
| } else if (addr->sa_family == AF_IB) { |
| memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); |
| } else if (addr->sa_family == AF_INET6) { |
| ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); |
| if (id_priv->id.ps == RDMA_PS_UDP) |
| mc_map[7] = 0x01; /* Use RDMA CM signature */ |
| *mgid = *(union ib_gid *) (mc_map + 4); |
| } else { |
| ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); |
| if (id_priv->id.ps == RDMA_PS_UDP) |
| mc_map[7] = 0x01; /* Use RDMA CM signature */ |
| *mgid = *(union ib_gid *) (mc_map + 4); |
| } |
| } |
| |
| static int cma_join_ib_multicast(struct rdma_id_private *id_priv, |
| struct cma_multicast *mc) |
| { |
| struct ib_sa_mcmember_rec rec; |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| ib_sa_comp_mask comp_mask; |
| int ret; |
| |
| ib_addr_get_mgid(dev_addr, &rec.mgid); |
| ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, |
| &rec.mgid, &rec); |
| if (ret) |
| return ret; |
| |
| if (!id_priv->qkey) { |
| ret = cma_set_default_qkey(id_priv); |
| if (ret) |
| return ret; |
| } |
| |
| cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); |
| rec.qkey = cpu_to_be32(id_priv->qkey); |
| rdma_addr_get_sgid(dev_addr, &rec.port_gid); |
| rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); |
| rec.join_state = mc->join_state; |
| |
| comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | |
| IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | |
| IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | |
| IB_SA_MCMEMBER_REC_FLOW_LABEL | |
| IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; |
| |
| if (id_priv->id.ps == RDMA_PS_IPOIB) |
| comp_mask |= IB_SA_MCMEMBER_REC_RATE | |
| IB_SA_MCMEMBER_REC_RATE_SELECTOR | |
| IB_SA_MCMEMBER_REC_MTU_SELECTOR | |
| IB_SA_MCMEMBER_REC_MTU | |
| IB_SA_MCMEMBER_REC_HOP_LIMIT; |
| |
| mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, |
| id_priv->id.port_num, &rec, comp_mask, |
| GFP_KERNEL, cma_ib_mc_handler, mc); |
| return PTR_ERR_OR_ZERO(mc->sa_mc); |
| } |
| |
| static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, |
| enum ib_gid_type gid_type) |
| { |
| struct sockaddr_in *sin = (struct sockaddr_in *)addr; |
| struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; |
| |
| if (cma_any_addr(addr)) { |
| memset(mgid, 0, sizeof *mgid); |
| } else if (addr->sa_family == AF_INET6) { |
| memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); |
| } else { |
| mgid->raw[0] = |
| (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; |
| mgid->raw[1] = |
| (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; |
| mgid->raw[2] = 0; |
| mgid->raw[3] = 0; |
| mgid->raw[4] = 0; |
| mgid->raw[5] = 0; |
| mgid->raw[6] = 0; |
| mgid->raw[7] = 0; |
| mgid->raw[8] = 0; |
| mgid->raw[9] = 0; |
| mgid->raw[10] = 0xff; |
| mgid->raw[11] = 0xff; |
| *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; |
| } |
| } |
| |
| static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, |
| struct cma_multicast *mc) |
| { |
| struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; |
| int err = 0; |
| struct sockaddr *addr = (struct sockaddr *)&mc->addr; |
| struct net_device *ndev = NULL; |
| struct ib_sa_multicast ib = {}; |
| enum ib_gid_type gid_type; |
| bool send_only; |
| |
| send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); |
| |
| if (cma_zero_addr(addr)) |
| return -EINVAL; |
| |
| gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - |
| rdma_start_port(id_priv->cma_dev->device)]; |
| cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); |
| |
| ib.rec.pkey = cpu_to_be16(0xffff); |
| if (dev_addr->bound_dev_if) |
| ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); |
| if (!ndev) |
| return -ENODEV; |
| |
| ib.rec.rate = IB_RATE_PORT_CURRENT; |
| ib.rec.hop_limit = 1; |
| ib.rec.mtu = iboe_get_mtu(ndev->mtu); |
| |
| if (addr->sa_family == AF_INET) { |
| if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { |
| ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; |
| if (!send_only) { |
| err = cma_igmp_send(ndev, &ib.rec.mgid, |
| true); |
| } |
| } |
| } else { |
| if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) |
| err = -ENOTSUPP; |
| } |
| dev_put(ndev); |
| if (err || !ib.rec.mtu) |
| return err ?: -EINVAL; |
| |
| if (!id_priv->qkey) |
| cma_set_default_qkey(id_priv); |
| |
| rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, |
| &ib.rec.port_gid); |
| INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); |
| cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); |
| queue_work(cma_wq, &mc->iboe_join.work); |
| return 0; |
| } |
| |
| int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, |
| u8 join_state, void *context) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(id, struct rdma_id_private, id); |
| struct cma_multicast *mc; |
| int ret; |
| |
| /* Not supported for kernel QPs */ |
| if (WARN_ON(id->qp)) |
| return -EINVAL; |
| |
| /* ULP is calling this wrong. */ |
| if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && |
| READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) |
| return -EINVAL; |
| |
| if (id_priv->id.qp_type != IB_QPT_UD) |
| return -EINVAL; |
| |
| mc = kzalloc(sizeof(*mc), GFP_KERNEL); |
| if (!mc) |
| return -ENOMEM; |
| |
| memcpy(&mc->addr, addr, rdma_addr_size(addr)); |
| mc->context = context; |
| mc->id_priv = id_priv; |
| mc->join_state = join_state; |
| |
| if (rdma_protocol_roce(id->device, id->port_num)) { |
| ret = cma_iboe_join_multicast(id_priv, mc); |
| if (ret) |
| goto out_err; |
| } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { |
| ret = cma_join_ib_multicast(id_priv, mc); |
| if (ret) |
| goto out_err; |
| } else { |
| ret = -ENOSYS; |
| goto out_err; |
| } |
| |
| spin_lock(&id_priv->lock); |
| list_add(&mc->list, &id_priv->mc_list); |
| spin_unlock(&id_priv->lock); |
| |
| return 0; |
| out_err: |
| kfree(mc); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_join_multicast); |
| |
| void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) |
| { |
| struct rdma_id_private *id_priv; |
| struct cma_multicast *mc; |
| |
| id_priv = container_of(id, struct rdma_id_private, id); |
| spin_lock_irq(&id_priv->lock); |
| list_for_each_entry(mc, &id_priv->mc_list, list) { |
| if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) |
| continue; |
| list_del(&mc->list); |
| spin_unlock_irq(&id_priv->lock); |
| |
| WARN_ON(id_priv->cma_dev->device != id->device); |
| destroy_mc(id_priv, mc); |
| return; |
| } |
| spin_unlock_irq(&id_priv->lock); |
| } |
| EXPORT_SYMBOL(rdma_leave_multicast); |
| |
| static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) |
| { |
| struct rdma_dev_addr *dev_addr; |
| struct cma_work *work; |
| |
| dev_addr = &id_priv->id.route.addr.dev_addr; |
| |
| if ((dev_addr->bound_dev_if == ndev->ifindex) && |
| (net_eq(dev_net(ndev), dev_addr->net)) && |
| memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { |
| pr_info("RDMA CM addr change for ndev %s used by id %p\n", |
| ndev->name, &id_priv->id); |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| INIT_WORK(&work->work, cma_work_handler); |
| work->id = id_priv; |
| work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; |
| cma_id_get(id_priv); |
| queue_work(cma_wq, &work->work); |
| } |
| |
| return 0; |
| } |
| |
| static int cma_netdev_callback(struct notifier_block *self, unsigned long event, |
| void *ptr) |
| { |
| struct net_device *ndev = netdev_notifier_info_to_dev(ptr); |
| struct cma_device *cma_dev; |
| struct rdma_id_private *id_priv; |
| int ret = NOTIFY_DONE; |
| |
| if (event != NETDEV_BONDING_FAILOVER) |
| return NOTIFY_DONE; |
| |
| if (!netif_is_bond_master(ndev)) |
| return NOTIFY_DONE; |
| |
| mutex_lock(&lock); |
| list_for_each_entry(cma_dev, &dev_list, list) |
| list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { |
| ret = cma_netdev_change(ndev, id_priv); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| mutex_unlock(&lock); |
| return ret; |
| } |
| |
| static void cma_netevent_work_handler(struct work_struct *_work) |
| { |
| struct rdma_id_private *id_priv = |
| container_of(_work, struct rdma_id_private, id.net_work); |
| struct rdma_cm_event event = {}; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| |
| if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || |
| READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) |
| goto out_unlock; |
| |
| event.event = RDMA_CM_EVENT_UNREACHABLE; |
| event.status = -ETIMEDOUT; |
| |
| if (cma_cm_event_handler(id_priv, &event)) { |
| __acquire(&id_priv->handler_mutex); |
| id_priv->cm_id.ib = NULL; |
| cma_id_put(id_priv); |
| destroy_id_handler_unlock(id_priv); |
| return; |
| } |
| |
| out_unlock: |
| mutex_unlock(&id_priv->handler_mutex); |
| cma_id_put(id_priv); |
| } |
| |
| static int cma_netevent_callback(struct notifier_block *self, |
| unsigned long event, void *ctx) |
| { |
| struct id_table_entry *ips_node = NULL; |
| struct rdma_id_private *current_id; |
| struct neighbour *neigh = ctx; |
| unsigned long flags; |
| |
| if (event != NETEVENT_NEIGH_UPDATE) |
| return NOTIFY_DONE; |
| |
| spin_lock_irqsave(&id_table_lock, flags); |
| if (neigh->tbl->family == AF_INET6) { |
| struct sockaddr_in6 neigh_sock_6; |
| |
| neigh_sock_6.sin6_family = AF_INET6; |
| neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; |
| ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, |
| (struct sockaddr *)&neigh_sock_6); |
| } else if (neigh->tbl->family == AF_INET) { |
| struct sockaddr_in neigh_sock_4; |
| |
| neigh_sock_4.sin_family = AF_INET; |
| neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); |
| ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, |
| (struct sockaddr *)&neigh_sock_4); |
| } else |
| goto out; |
| |
| if (!ips_node) |
| goto out; |
| |
| list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { |
| if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, |
| neigh->ha, ETH_ALEN)) |
| continue; |
| INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); |
| cma_id_get(current_id); |
| queue_work(cma_wq, ¤t_id->id.net_work); |
| } |
| out: |
| spin_unlock_irqrestore(&id_table_lock, flags); |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block cma_nb = { |
| .notifier_call = cma_netdev_callback |
| }; |
| |
| static struct notifier_block cma_netevent_cb = { |
| .notifier_call = cma_netevent_callback |
| }; |
| |
| static void cma_send_device_removal_put(struct rdma_id_private *id_priv) |
| { |
| struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; |
| enum rdma_cm_state state; |
| unsigned long flags; |
| |
| mutex_lock(&id_priv->handler_mutex); |
| /* Record that we want to remove the device */ |
| spin_lock_irqsave(&id_priv->lock, flags); |
| state = id_priv->state; |
| if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { |
| spin_unlock_irqrestore(&id_priv->lock, flags); |
| mutex_unlock(&id_priv->handler_mutex); |
| cma_id_put(id_priv); |
| return; |
| } |
| id_priv->state = RDMA_CM_DEVICE_REMOVAL; |
| spin_unlock_irqrestore(&id_priv->lock, flags); |
| |
| if (cma_cm_event_handler(id_priv, &event)) { |
| /* |
| * At this point the ULP promises it won't call |
| * rdma_destroy_id() concurrently |
| */ |
| cma_id_put(id_priv); |
| mutex_unlock(&id_priv->handler_mutex); |
| trace_cm_id_destroy(id_priv); |
| _destroy_id(id_priv, state); |
| return; |
| } |
| mutex_unlock(&id_priv->handler_mutex); |
| |
| /* |
| * If this races with destroy then the thread that first assigns state |
| * to a destroying does the cancel. |
| */ |
| cma_cancel_operation(id_priv, state); |
| cma_id_put(id_priv); |
| } |
| |
| static void cma_process_remove(struct cma_device *cma_dev) |
| { |
| mutex_lock(&lock); |
| while (!list_empty(&cma_dev->id_list)) { |
| struct rdma_id_private *id_priv = list_first_entry( |
| &cma_dev->id_list, struct rdma_id_private, device_item); |
| |
| list_del_init(&id_priv->listen_item); |
| list_del_init(&id_priv->device_item); |
| cma_id_get(id_priv); |
| mutex_unlock(&lock); |
| |
| cma_send_device_removal_put(id_priv); |
| |
| mutex_lock(&lock); |
| } |
| mutex_unlock(&lock); |
| |
| cma_dev_put(cma_dev); |
| wait_for_completion(&cma_dev->comp); |
| } |
| |
| static bool cma_supported(struct ib_device *device) |
| { |
| u32 i; |
| |
| rdma_for_each_port(device, i) { |
| if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) |
| return true; |
| } |
| return false; |
| } |
| |
| static int cma_add_one(struct ib_device *device) |
| { |
| struct rdma_id_private *to_destroy; |
| struct cma_device *cma_dev; |
| struct rdma_id_private *id_priv; |
| unsigned long supported_gids = 0; |
| int ret; |
| u32 i; |
| |
| if (!cma_supported(device)) |
| return -EOPNOTSUPP; |
| |
| cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); |
| if (!cma_dev) |
| return -ENOMEM; |
| |
| cma_dev->device = device; |
| cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, |
| sizeof(*cma_dev->default_gid_type), |
| GFP_KERNEL); |
| if (!cma_dev->default_gid_type) { |
| ret = -ENOMEM; |
| goto free_cma_dev; |
| } |
| |
| cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, |
| sizeof(*cma_dev->default_roce_tos), |
| GFP_KERNEL); |
| if (!cma_dev->default_roce_tos) { |
| ret = -ENOMEM; |
| goto free_gid_type; |
| } |
| |
| rdma_for_each_port (device, i) { |
| supported_gids = roce_gid_type_mask_support(device, i); |
| WARN_ON(!supported_gids); |
| if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) |
| cma_dev->default_gid_type[i - rdma_start_port(device)] = |
| CMA_PREFERRED_ROCE_GID_TYPE; |
| else |
| cma_dev->default_gid_type[i - rdma_start_port(device)] = |
| find_first_bit(&supported_gids, BITS_PER_LONG); |
| cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; |
| } |
| |
| init_completion(&cma_dev->comp); |
| refcount_set(&cma_dev->refcount, 1); |
| INIT_LIST_HEAD(&cma_dev->id_list); |
| ib_set_client_data(device, &cma_client, cma_dev); |
| |
| mutex_lock(&lock); |
| list_add_tail(&cma_dev->list, &dev_list); |
| list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { |
| ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); |
| if (ret) |
| goto free_listen; |
| } |
| mutex_unlock(&lock); |
| |
| trace_cm_add_one(device); |
| return 0; |
| |
| free_listen: |
| list_del(&cma_dev->list); |
| mutex_unlock(&lock); |
| |
| /* cma_process_remove() will delete to_destroy */ |
| cma_process_remove(cma_dev); |
| kfree(cma_dev->default_roce_tos); |
| free_gid_type: |
| kfree(cma_dev->default_gid_type); |
| |
| free_cma_dev: |
| kfree(cma_dev); |
| return ret; |
| } |
| |
| static void cma_remove_one(struct ib_device *device, void *client_data) |
| { |
| struct cma_device *cma_dev = client_data; |
| |
| trace_cm_remove_one(device); |
| |
| mutex_lock(&lock); |
| list_del(&cma_dev->list); |
| mutex_unlock(&lock); |
| |
| cma_process_remove(cma_dev); |
| kfree(cma_dev->default_roce_tos); |
| kfree(cma_dev->default_gid_type); |
| kfree(cma_dev); |
| } |
| |
| static int cma_init_net(struct net *net) |
| { |
| struct cma_pernet *pernet = cma_pernet(net); |
| |
| xa_init(&pernet->tcp_ps); |
| xa_init(&pernet->udp_ps); |
| xa_init(&pernet->ipoib_ps); |
| xa_init(&pernet->ib_ps); |
| |
| return 0; |
| } |
| |
| static void cma_exit_net(struct net *net) |
| { |
| struct cma_pernet *pernet = cma_pernet(net); |
| |
| WARN_ON(!xa_empty(&pernet->tcp_ps)); |
| WARN_ON(!xa_empty(&pernet->udp_ps)); |
| WARN_ON(!xa_empty(&pernet->ipoib_ps)); |
| WARN_ON(!xa_empty(&pernet->ib_ps)); |
| } |
| |
| static struct pernet_operations cma_pernet_operations = { |
| .init = cma_init_net, |
| .exit = cma_exit_net, |
| .id = &cma_pernet_id, |
| .size = sizeof(struct cma_pernet), |
| }; |
| |
| static int __init cma_init(void) |
| { |
| int ret; |
| |
| /* |
| * There is a rare lock ordering dependency in cma_netdev_callback() |
| * that only happens when bonding is enabled. Teach lockdep that rtnl |
| * must never be nested under lock so it can find these without having |
| * to test with bonding. |
| */ |
| if (IS_ENABLED(CONFIG_LOCKDEP)) { |
| rtnl_lock(); |
| mutex_lock(&lock); |
| mutex_unlock(&lock); |
| rtnl_unlock(); |
| } |
| |
| cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); |
| if (!cma_wq) |
| return -ENOMEM; |
| |
| ret = register_pernet_subsys(&cma_pernet_operations); |
| if (ret) |
| goto err_wq; |
| |
| ib_sa_register_client(&sa_client); |
| register_netdevice_notifier(&cma_nb); |
| register_netevent_notifier(&cma_netevent_cb); |
| |
| ret = ib_register_client(&cma_client); |
| if (ret) |
| goto err; |
| |
| ret = cma_configfs_init(); |
| if (ret) |
| goto err_ib; |
| |
| return 0; |
| |
| err_ib: |
| ib_unregister_client(&cma_client); |
| err: |
| unregister_netevent_notifier(&cma_netevent_cb); |
| unregister_netdevice_notifier(&cma_nb); |
| ib_sa_unregister_client(&sa_client); |
| unregister_pernet_subsys(&cma_pernet_operations); |
| err_wq: |
| destroy_workqueue(cma_wq); |
| return ret; |
| } |
| |
| static void __exit cma_cleanup(void) |
| { |
| cma_configfs_exit(); |
| ib_unregister_client(&cma_client); |
| unregister_netevent_notifier(&cma_netevent_cb); |
| unregister_netdevice_notifier(&cma_nb); |
| ib_sa_unregister_client(&sa_client); |
| unregister_pernet_subsys(&cma_pernet_operations); |
| destroy_workqueue(cma_wq); |
| } |
| |
| module_init(cma_init); |
| module_exit(cma_cleanup); |