| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Designware SPI core controller driver (refer pxa2xx_spi.c) |
| * |
| * Copyright (c) 2009, Intel Corporation. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/preempt.h> |
| #include <linux/highmem.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-mem.h> |
| #include <linux/string.h> |
| #include <linux/of.h> |
| |
| #include "spi-dw.h" |
| |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/debugfs.h> |
| #endif |
| |
| /* Slave spi_device related */ |
| struct dw_spi_chip_data { |
| u32 cr0; |
| u32 rx_sample_dly; /* RX sample delay */ |
| }; |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| #define DW_SPI_DBGFS_REG(_name, _off) \ |
| { \ |
| .name = _name, \ |
| .offset = _off, \ |
| } |
| |
| static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = { |
| DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0), |
| DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1), |
| DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR), |
| DW_SPI_DBGFS_REG("SER", DW_SPI_SER), |
| DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR), |
| DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR), |
| DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR), |
| DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR), |
| DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR), |
| DW_SPI_DBGFS_REG("SR", DW_SPI_SR), |
| DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR), |
| DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR), |
| DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR), |
| DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR), |
| DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR), |
| DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY), |
| }; |
| |
| static int dw_spi_debugfs_init(struct dw_spi *dws) |
| { |
| char name[32]; |
| |
| snprintf(name, 32, "dw_spi%d", dws->master->bus_num); |
| dws->debugfs = debugfs_create_dir(name, NULL); |
| if (!dws->debugfs) |
| return -ENOMEM; |
| |
| dws->regset.regs = dw_spi_dbgfs_regs; |
| dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs); |
| dws->regset.base = dws->regs; |
| debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset); |
| |
| return 0; |
| } |
| |
| static void dw_spi_debugfs_remove(struct dw_spi *dws) |
| { |
| debugfs_remove_recursive(dws->debugfs); |
| } |
| |
| #else |
| static inline int dw_spi_debugfs_init(struct dw_spi *dws) |
| { |
| return 0; |
| } |
| |
| static inline void dw_spi_debugfs_remove(struct dw_spi *dws) |
| { |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| void dw_spi_set_cs(struct spi_device *spi, bool enable) |
| { |
| struct dw_spi *dws = spi_controller_get_devdata(spi->controller); |
| bool cs_high = !!(spi->mode & SPI_CS_HIGH); |
| |
| /* |
| * DW SPI controller demands any native CS being set in order to |
| * proceed with data transfer. So in order to activate the SPI |
| * communications we must set a corresponding bit in the Slave |
| * Enable register no matter whether the SPI core is configured to |
| * support active-high or active-low CS level. |
| */ |
| if (cs_high == enable) |
| dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select)); |
| else |
| dw_writel(dws, DW_SPI_SER, 0); |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE); |
| |
| /* Return the max entries we can fill into tx fifo */ |
| static inline u32 dw_spi_tx_max(struct dw_spi *dws) |
| { |
| u32 tx_room, rxtx_gap; |
| |
| tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR); |
| |
| /* |
| * Another concern is about the tx/rx mismatch, we |
| * though to use (dws->fifo_len - rxflr - txflr) as |
| * one maximum value for tx, but it doesn't cover the |
| * data which is out of tx/rx fifo and inside the |
| * shift registers. So a control from sw point of |
| * view is taken. |
| */ |
| rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len); |
| |
| return min3((u32)dws->tx_len, tx_room, rxtx_gap); |
| } |
| |
| /* Return the max entries we should read out of rx fifo */ |
| static inline u32 dw_spi_rx_max(struct dw_spi *dws) |
| { |
| return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR)); |
| } |
| |
| static void dw_writer(struct dw_spi *dws) |
| { |
| u32 max = dw_spi_tx_max(dws); |
| u32 txw = 0; |
| |
| while (max--) { |
| if (dws->tx) { |
| if (dws->n_bytes == 1) |
| txw = *(u8 *)(dws->tx); |
| else if (dws->n_bytes == 2) |
| txw = *(u16 *)(dws->tx); |
| else |
| txw = *(u32 *)(dws->tx); |
| |
| dws->tx += dws->n_bytes; |
| } |
| dw_write_io_reg(dws, DW_SPI_DR, txw); |
| --dws->tx_len; |
| } |
| } |
| |
| static void dw_reader(struct dw_spi *dws) |
| { |
| u32 max = dw_spi_rx_max(dws); |
| u32 rxw; |
| |
| while (max--) { |
| rxw = dw_read_io_reg(dws, DW_SPI_DR); |
| if (dws->rx) { |
| if (dws->n_bytes == 1) |
| *(u8 *)(dws->rx) = rxw; |
| else if (dws->n_bytes == 2) |
| *(u16 *)(dws->rx) = rxw; |
| else |
| *(u32 *)(dws->rx) = rxw; |
| |
| dws->rx += dws->n_bytes; |
| } |
| --dws->rx_len; |
| } |
| } |
| |
| int dw_spi_check_status(struct dw_spi *dws, bool raw) |
| { |
| u32 irq_status; |
| int ret = 0; |
| |
| if (raw) |
| irq_status = dw_readl(dws, DW_SPI_RISR); |
| else |
| irq_status = dw_readl(dws, DW_SPI_ISR); |
| |
| if (irq_status & DW_SPI_INT_RXOI) { |
| dev_err(&dws->master->dev, "RX FIFO overflow detected\n"); |
| ret = -EIO; |
| } |
| |
| if (irq_status & DW_SPI_INT_RXUI) { |
| dev_err(&dws->master->dev, "RX FIFO underflow detected\n"); |
| ret = -EIO; |
| } |
| |
| if (irq_status & DW_SPI_INT_TXOI) { |
| dev_err(&dws->master->dev, "TX FIFO overflow detected\n"); |
| ret = -EIO; |
| } |
| |
| /* Generically handle the erroneous situation */ |
| if (ret) { |
| dw_spi_reset_chip(dws); |
| if (dws->master->cur_msg) |
| dws->master->cur_msg->status = ret; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE); |
| |
| static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws) |
| { |
| u16 irq_status = dw_readl(dws, DW_SPI_ISR); |
| |
| if (dw_spi_check_status(dws, false)) { |
| spi_finalize_current_transfer(dws->master); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Read data from the Rx FIFO every time we've got a chance executing |
| * this method. If there is nothing left to receive, terminate the |
| * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a |
| * final stage of the transfer. By doing so we'll get the next IRQ |
| * right when the leftover incoming data is received. |
| */ |
| dw_reader(dws); |
| if (!dws->rx_len) { |
| dw_spi_mask_intr(dws, 0xff); |
| spi_finalize_current_transfer(dws->master); |
| } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) { |
| dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1); |
| } |
| |
| /* |
| * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be |
| * disabled after the data transmission is finished so not to |
| * have the TXE IRQ flood at the final stage of the transfer. |
| */ |
| if (irq_status & DW_SPI_INT_TXEI) { |
| dw_writer(dws); |
| if (!dws->tx_len) |
| dw_spi_mask_intr(dws, DW_SPI_INT_TXEI); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t dw_spi_irq(int irq, void *dev_id) |
| { |
| struct spi_controller *master = dev_id; |
| struct dw_spi *dws = spi_controller_get_devdata(master); |
| u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK; |
| |
| if (!irq_status) |
| return IRQ_NONE; |
| |
| if (!master->cur_msg) { |
| dw_spi_mask_intr(dws, 0xff); |
| return IRQ_HANDLED; |
| } |
| |
| return dws->transfer_handler(dws); |
| } |
| |
| static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi) |
| { |
| u32 cr0 = 0; |
| |
| if (dw_spi_ip_is(dws, PSSI)) { |
| /* CTRLR0[ 5: 4] Frame Format */ |
| cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); |
| |
| /* |
| * SPI mode (SCPOL|SCPH) |
| * CTRLR0[ 6] Serial Clock Phase |
| * CTRLR0[ 7] Serial Clock Polarity |
| */ |
| if (spi->mode & SPI_CPOL) |
| cr0 |= DW_PSSI_CTRLR0_SCPOL; |
| if (spi->mode & SPI_CPHA) |
| cr0 |= DW_PSSI_CTRLR0_SCPHA; |
| |
| /* CTRLR0[11] Shift Register Loop */ |
| if (spi->mode & SPI_LOOP) |
| cr0 |= DW_PSSI_CTRLR0_SRL; |
| } else { |
| /* CTRLR0[ 7: 6] Frame Format */ |
| cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); |
| |
| /* |
| * SPI mode (SCPOL|SCPH) |
| * CTRLR0[ 8] Serial Clock Phase |
| * CTRLR0[ 9] Serial Clock Polarity |
| */ |
| if (spi->mode & SPI_CPOL) |
| cr0 |= DW_HSSI_CTRLR0_SCPOL; |
| if (spi->mode & SPI_CPHA) |
| cr0 |= DW_HSSI_CTRLR0_SCPHA; |
| |
| /* CTRLR0[13] Shift Register Loop */ |
| if (spi->mode & SPI_LOOP) |
| cr0 |= DW_HSSI_CTRLR0_SRL; |
| |
| /* CTRLR0[31] MST */ |
| if (dw_spi_ver_is_ge(dws, HSSI, 102A)) |
| cr0 |= DW_HSSI_CTRLR0_MST; |
| } |
| |
| return cr0; |
| } |
| |
| void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi, |
| struct dw_spi_cfg *cfg) |
| { |
| struct dw_spi_chip_data *chip = spi_get_ctldata(spi); |
| u32 cr0 = chip->cr0; |
| u32 speed_hz; |
| u16 clk_div; |
| |
| /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */ |
| cr0 |= (cfg->dfs - 1) << dws->dfs_offset; |
| |
| if (dw_spi_ip_is(dws, PSSI)) |
| /* CTRLR0[ 9:8] Transfer Mode */ |
| cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode); |
| else |
| /* CTRLR0[11:10] Transfer Mode */ |
| cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode); |
| |
| dw_writel(dws, DW_SPI_CTRLR0, cr0); |
| |
| if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD || |
| cfg->tmode == DW_SPI_CTRLR0_TMOD_RO) |
| dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0); |
| |
| /* Note DW APB SSI clock divider doesn't support odd numbers */ |
| clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe; |
| speed_hz = dws->max_freq / clk_div; |
| |
| if (dws->current_freq != speed_hz) { |
| dw_spi_set_clk(dws, clk_div); |
| dws->current_freq = speed_hz; |
| } |
| |
| /* Update RX sample delay if required */ |
| if (dws->cur_rx_sample_dly != chip->rx_sample_dly) { |
| dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly); |
| dws->cur_rx_sample_dly = chip->rx_sample_dly; |
| } |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE); |
| |
| static void dw_spi_irq_setup(struct dw_spi *dws) |
| { |
| u16 level; |
| u8 imask; |
| |
| /* |
| * Originally Tx and Rx data lengths match. Rx FIFO Threshold level |
| * will be adjusted at the final stage of the IRQ-based SPI transfer |
| * execution so not to lose the leftover of the incoming data. |
| */ |
| level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len); |
| dw_writel(dws, DW_SPI_TXFTLR, level); |
| dw_writel(dws, DW_SPI_RXFTLR, level - 1); |
| |
| dws->transfer_handler = dw_spi_transfer_handler; |
| |
| imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI | |
| DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI; |
| dw_spi_umask_intr(dws, imask); |
| } |
| |
| /* |
| * The iterative procedure of the poll-based transfer is simple: write as much |
| * as possible to the Tx FIFO, wait until the pending to receive data is ready |
| * to be read, read it from the Rx FIFO and check whether the performed |
| * procedure has been successful. |
| * |
| * Note this method the same way as the IRQ-based transfer won't work well for |
| * the SPI devices connected to the controller with native CS due to the |
| * automatic CS assertion/de-assertion. |
| */ |
| static int dw_spi_poll_transfer(struct dw_spi *dws, |
| struct spi_transfer *transfer) |
| { |
| struct spi_delay delay; |
| u16 nbits; |
| int ret; |
| |
| delay.unit = SPI_DELAY_UNIT_SCK; |
| nbits = dws->n_bytes * BITS_PER_BYTE; |
| |
| do { |
| dw_writer(dws); |
| |
| delay.value = nbits * (dws->rx_len - dws->tx_len); |
| spi_delay_exec(&delay, transfer); |
| |
| dw_reader(dws); |
| |
| ret = dw_spi_check_status(dws, true); |
| if (ret) |
| return ret; |
| } while (dws->rx_len); |
| |
| return 0; |
| } |
| |
| static int dw_spi_transfer_one(struct spi_controller *master, |
| struct spi_device *spi, |
| struct spi_transfer *transfer) |
| { |
| struct dw_spi *dws = spi_controller_get_devdata(master); |
| struct dw_spi_cfg cfg = { |
| .tmode = DW_SPI_CTRLR0_TMOD_TR, |
| .dfs = transfer->bits_per_word, |
| .freq = transfer->speed_hz, |
| }; |
| int ret; |
| |
| dws->dma_mapped = 0; |
| dws->n_bytes = |
| roundup_pow_of_two(DIV_ROUND_UP(transfer->bits_per_word, |
| BITS_PER_BYTE)); |
| |
| dws->tx = (void *)transfer->tx_buf; |
| dws->tx_len = transfer->len / dws->n_bytes; |
| dws->rx = transfer->rx_buf; |
| dws->rx_len = dws->tx_len; |
| |
| /* Ensure the data above is visible for all CPUs */ |
| smp_mb(); |
| |
| dw_spi_enable_chip(dws, 0); |
| |
| dw_spi_update_config(dws, spi, &cfg); |
| |
| transfer->effective_speed_hz = dws->current_freq; |
| |
| /* Check if current transfer is a DMA transaction */ |
| if (master->can_dma && master->can_dma(master, spi, transfer)) |
| dws->dma_mapped = master->cur_msg_mapped; |
| |
| /* For poll mode just disable all interrupts */ |
| dw_spi_mask_intr(dws, 0xff); |
| |
| if (dws->dma_mapped) { |
| ret = dws->dma_ops->dma_setup(dws, transfer); |
| if (ret) |
| return ret; |
| } |
| |
| dw_spi_enable_chip(dws, 1); |
| |
| if (dws->dma_mapped) |
| return dws->dma_ops->dma_transfer(dws, transfer); |
| else if (dws->irq == IRQ_NOTCONNECTED) |
| return dw_spi_poll_transfer(dws, transfer); |
| |
| dw_spi_irq_setup(dws); |
| |
| return 1; |
| } |
| |
| static void dw_spi_handle_err(struct spi_controller *master, |
| struct spi_message *msg) |
| { |
| struct dw_spi *dws = spi_controller_get_devdata(master); |
| |
| if (dws->dma_mapped) |
| dws->dma_ops->dma_stop(dws); |
| |
| dw_spi_reset_chip(dws); |
| } |
| |
| static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| { |
| if (op->data.dir == SPI_MEM_DATA_IN) |
| op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1); |
| |
| return 0; |
| } |
| |
| static bool dw_spi_supports_mem_op(struct spi_mem *mem, |
| const struct spi_mem_op *op) |
| { |
| if (op->data.buswidth > 1 || op->addr.buswidth > 1 || |
| op->dummy.buswidth > 1 || op->cmd.buswidth > 1) |
| return false; |
| |
| return spi_mem_default_supports_op(mem, op); |
| } |
| |
| static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op) |
| { |
| unsigned int i, j, len; |
| u8 *out; |
| |
| /* |
| * Calculate the total length of the EEPROM command transfer and |
| * either use the pre-allocated buffer or create a temporary one. |
| */ |
| len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; |
| if (op->data.dir == SPI_MEM_DATA_OUT) |
| len += op->data.nbytes; |
| |
| if (len <= DW_SPI_BUF_SIZE) { |
| out = dws->buf; |
| } else { |
| out = kzalloc(len, GFP_KERNEL); |
| if (!out) |
| return -ENOMEM; |
| } |
| |
| /* |
| * Collect the operation code, address and dummy bytes into the single |
| * buffer. If it's a transfer with data to be sent, also copy it into the |
| * single buffer in order to speed the data transmission up. |
| */ |
| for (i = 0; i < op->cmd.nbytes; ++i) |
| out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1); |
| for (j = 0; j < op->addr.nbytes; ++i, ++j) |
| out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1); |
| for (j = 0; j < op->dummy.nbytes; ++i, ++j) |
| out[i] = 0x0; |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT) |
| memcpy(&out[i], op->data.buf.out, op->data.nbytes); |
| |
| dws->n_bytes = 1; |
| dws->tx = out; |
| dws->tx_len = len; |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| dws->rx = op->data.buf.in; |
| dws->rx_len = op->data.nbytes; |
| } else { |
| dws->rx = NULL; |
| dws->rx_len = 0; |
| } |
| |
| return 0; |
| } |
| |
| static void dw_spi_free_mem_buf(struct dw_spi *dws) |
| { |
| if (dws->tx != dws->buf) |
| kfree(dws->tx); |
| } |
| |
| static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi) |
| { |
| u32 room, entries, sts; |
| unsigned int len; |
| u8 *buf; |
| |
| /* |
| * At initial stage we just pre-fill the Tx FIFO in with no rush, |
| * since native CS hasn't been enabled yet and the automatic data |
| * transmission won't start til we do that. |
| */ |
| len = min(dws->fifo_len, dws->tx_len); |
| buf = dws->tx; |
| while (len--) |
| dw_write_io_reg(dws, DW_SPI_DR, *buf++); |
| |
| /* |
| * After setting any bit in the SER register the transmission will |
| * start automatically. We have to keep up with that procedure |
| * otherwise the CS de-assertion will happen whereupon the memory |
| * operation will be pre-terminated. |
| */ |
| len = dws->tx_len - ((void *)buf - dws->tx); |
| dw_spi_set_cs(spi, false); |
| while (len) { |
| entries = readl_relaxed(dws->regs + DW_SPI_TXFLR); |
| if (!entries) { |
| dev_err(&dws->master->dev, "CS de-assertion on Tx\n"); |
| return -EIO; |
| } |
| room = min(dws->fifo_len - entries, len); |
| for (; room; --room, --len) |
| dw_write_io_reg(dws, DW_SPI_DR, *buf++); |
| } |
| |
| /* |
| * Data fetching will start automatically if the EEPROM-read mode is |
| * activated. We have to keep up with the incoming data pace to |
| * prevent the Rx FIFO overflow causing the inbound data loss. |
| */ |
| len = dws->rx_len; |
| buf = dws->rx; |
| while (len) { |
| entries = readl_relaxed(dws->regs + DW_SPI_RXFLR); |
| if (!entries) { |
| sts = readl_relaxed(dws->regs + DW_SPI_RISR); |
| if (sts & DW_SPI_INT_RXOI) { |
| dev_err(&dws->master->dev, "FIFO overflow on Rx\n"); |
| return -EIO; |
| } |
| continue; |
| } |
| entries = min(entries, len); |
| for (; entries; --entries, --len) |
| *buf++ = dw_read_io_reg(dws, DW_SPI_DR); |
| } |
| |
| return 0; |
| } |
| |
| static inline bool dw_spi_ctlr_busy(struct dw_spi *dws) |
| { |
| return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY; |
| } |
| |
| static int dw_spi_wait_mem_op_done(struct dw_spi *dws) |
| { |
| int retry = DW_SPI_WAIT_RETRIES; |
| struct spi_delay delay; |
| unsigned long ns, us; |
| u32 nents; |
| |
| nents = dw_readl(dws, DW_SPI_TXFLR); |
| ns = NSEC_PER_SEC / dws->current_freq * nents; |
| ns *= dws->n_bytes * BITS_PER_BYTE; |
| if (ns <= NSEC_PER_USEC) { |
| delay.unit = SPI_DELAY_UNIT_NSECS; |
| delay.value = ns; |
| } else { |
| us = DIV_ROUND_UP(ns, NSEC_PER_USEC); |
| delay.unit = SPI_DELAY_UNIT_USECS; |
| delay.value = clamp_val(us, 0, USHRT_MAX); |
| } |
| |
| while (dw_spi_ctlr_busy(dws) && retry--) |
| spi_delay_exec(&delay, NULL); |
| |
| if (retry < 0) { |
| dev_err(&dws->master->dev, "Mem op hanged up\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi) |
| { |
| dw_spi_enable_chip(dws, 0); |
| dw_spi_set_cs(spi, true); |
| dw_spi_enable_chip(dws, 1); |
| } |
| |
| /* |
| * The SPI memory operation implementation below is the best choice for the |
| * devices, which are selected by the native chip-select lane. It's |
| * specifically developed to workaround the problem with automatic chip-select |
| * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current |
| * SPI-mem core calls exec_op() callback only if the GPIO-based CS is |
| * unavailable. |
| */ |
| static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller); |
| struct dw_spi_cfg cfg; |
| unsigned long flags; |
| int ret; |
| |
| /* |
| * Collect the outbound data into a single buffer to speed the |
| * transmission up at least on the initial stage. |
| */ |
| ret = dw_spi_init_mem_buf(dws, op); |
| if (ret) |
| return ret; |
| |
| /* |
| * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN |
| * operation. Transmit-only mode is suitable for the rest of them. |
| */ |
| cfg.dfs = 8; |
| cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq); |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD; |
| cfg.ndf = op->data.nbytes; |
| } else { |
| cfg.tmode = DW_SPI_CTRLR0_TMOD_TO; |
| } |
| |
| dw_spi_enable_chip(dws, 0); |
| |
| dw_spi_update_config(dws, mem->spi, &cfg); |
| |
| dw_spi_mask_intr(dws, 0xff); |
| |
| dw_spi_enable_chip(dws, 1); |
| |
| /* |
| * DW APB SSI controller has very nasty peculiarities. First originally |
| * (without any vendor-specific modifications) it doesn't provide a |
| * direct way to set and clear the native chip-select signal. Instead |
| * the controller asserts the CS lane if Tx FIFO isn't empty and a |
| * transmission is going on, and automatically de-asserts it back to |
| * the high level if the Tx FIFO doesn't have anything to be pushed |
| * out. Due to that a multi-tasking or heavy IRQs activity might be |
| * fatal, since the transfer procedure preemption may cause the Tx FIFO |
| * getting empty and sudden CS de-assertion, which in the middle of the |
| * transfer will most likely cause the data loss. Secondly the |
| * EEPROM-read or Read-only DW SPI transfer modes imply the incoming |
| * data being automatically pulled in into the Rx FIFO. So if the |
| * driver software is late in fetching the data from the FIFO before |
| * it's overflown, new incoming data will be lost. In order to make |
| * sure the executed memory operations are CS-atomic and to prevent the |
| * Rx FIFO overflow we have to disable the local interrupts so to block |
| * any preemption during the subsequent IO operations. |
| * |
| * Note. At some circumstances disabling IRQs may not help to prevent |
| * the problems described above. The CS de-assertion and Rx FIFO |
| * overflow may still happen due to the relatively slow system bus or |
| * CPU not working fast enough, so the write-then-read algo implemented |
| * here just won't keep up with the SPI bus data transfer. Such |
| * situation is highly platform specific and is supposed to be fixed by |
| * manually restricting the SPI bus frequency using the |
| * dws->max_mem_freq parameter. |
| */ |
| local_irq_save(flags); |
| preempt_disable(); |
| |
| ret = dw_spi_write_then_read(dws, mem->spi); |
| |
| local_irq_restore(flags); |
| preempt_enable(); |
| |
| /* |
| * Wait for the operation being finished and check the controller |
| * status only if there hasn't been any run-time error detected. In the |
| * former case it's just pointless. In the later one to prevent an |
| * additional error message printing since any hw error flag being set |
| * would be due to an error detected on the data transfer. |
| */ |
| if (!ret) { |
| ret = dw_spi_wait_mem_op_done(dws); |
| if (!ret) |
| ret = dw_spi_check_status(dws, true); |
| } |
| |
| dw_spi_stop_mem_op(dws, mem->spi); |
| |
| dw_spi_free_mem_buf(dws); |
| |
| return ret; |
| } |
| |
| /* |
| * Initialize the default memory operations if a glue layer hasn't specified |
| * custom ones. Direct mapping operations will be preserved anyway since DW SPI |
| * controller doesn't have an embedded dirmap interface. Note the memory |
| * operations implemented in this driver is the best choice only for the DW APB |
| * SSI controller with standard native CS functionality. If a hardware vendor |
| * has fixed the automatic CS assertion/de-assertion peculiarity, then it will |
| * be safer to use the normal SPI-messages-based transfers implementation. |
| */ |
| static void dw_spi_init_mem_ops(struct dw_spi *dws) |
| { |
| if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) && |
| !dws->set_cs) { |
| dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size; |
| dws->mem_ops.supports_op = dw_spi_supports_mem_op; |
| dws->mem_ops.exec_op = dw_spi_exec_mem_op; |
| if (!dws->max_mem_freq) |
| dws->max_mem_freq = dws->max_freq; |
| } |
| } |
| |
| /* This may be called twice for each spi dev */ |
| static int dw_spi_setup(struct spi_device *spi) |
| { |
| struct dw_spi *dws = spi_controller_get_devdata(spi->controller); |
| struct dw_spi_chip_data *chip; |
| |
| /* Only alloc on first setup */ |
| chip = spi_get_ctldata(spi); |
| if (!chip) { |
| struct dw_spi *dws = spi_controller_get_devdata(spi->controller); |
| u32 rx_sample_dly_ns; |
| |
| chip = kzalloc(sizeof(*chip), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| spi_set_ctldata(spi, chip); |
| /* Get specific / default rx-sample-delay */ |
| if (device_property_read_u32(&spi->dev, |
| "rx-sample-delay-ns", |
| &rx_sample_dly_ns) != 0) |
| /* Use default controller value */ |
| rx_sample_dly_ns = dws->def_rx_sample_dly_ns; |
| chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns, |
| NSEC_PER_SEC / |
| dws->max_freq); |
| } |
| |
| /* |
| * Update CR0 data each time the setup callback is invoked since |
| * the device parameters could have been changed, for instance, by |
| * the MMC SPI driver or something else. |
| */ |
| chip->cr0 = dw_spi_prepare_cr0(dws, spi); |
| |
| return 0; |
| } |
| |
| static void dw_spi_cleanup(struct spi_device *spi) |
| { |
| struct dw_spi_chip_data *chip = spi_get_ctldata(spi); |
| |
| kfree(chip); |
| spi_set_ctldata(spi, NULL); |
| } |
| |
| /* Restart the controller, disable all interrupts, clean rx fifo */ |
| static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws) |
| { |
| dw_spi_reset_chip(dws); |
| |
| /* |
| * Retrieve the Synopsys component version if it hasn't been specified |
| * by the platform. CoreKit version ID is encoded as a 3-chars ASCII |
| * code enclosed with '*' (typical for the most of Synopsys IP-cores). |
| */ |
| if (!dws->ver) { |
| dws->ver = dw_readl(dws, DW_SPI_VERSION); |
| |
| dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n", |
| dw_spi_ip_is(dws, PSSI) ? " APB " : " ", |
| DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2), |
| DW_SPI_GET_BYTE(dws->ver, 1)); |
| } |
| |
| /* |
| * Try to detect the FIFO depth if not set by interface driver, |
| * the depth could be from 2 to 256 from HW spec |
| */ |
| if (!dws->fifo_len) { |
| u32 fifo; |
| |
| for (fifo = 1; fifo < 256; fifo++) { |
| dw_writel(dws, DW_SPI_TXFTLR, fifo); |
| if (fifo != dw_readl(dws, DW_SPI_TXFTLR)) |
| break; |
| } |
| dw_writel(dws, DW_SPI_TXFTLR, 0); |
| |
| dws->fifo_len = (fifo == 1) ? 0 : fifo; |
| dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); |
| } |
| |
| /* |
| * Detect CTRLR0.DFS field size and offset by testing the lowest bits |
| * writability. Note DWC SSI controller also has the extended DFS, but |
| * with zero offset. |
| */ |
| if (dw_spi_ip_is(dws, PSSI)) { |
| u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0); |
| |
| dw_spi_enable_chip(dws, 0); |
| dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff); |
| cr0 = dw_readl(dws, DW_SPI_CTRLR0); |
| dw_writel(dws, DW_SPI_CTRLR0, tmp); |
| dw_spi_enable_chip(dws, 1); |
| |
| if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) { |
| dws->caps |= DW_SPI_CAP_DFS32; |
| dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK); |
| dev_dbg(dev, "Detected 32-bits max data frame size\n"); |
| } |
| } else { |
| dws->caps |= DW_SPI_CAP_DFS32; |
| } |
| |
| /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */ |
| if (dws->caps & DW_SPI_CAP_CS_OVERRIDE) |
| dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF); |
| } |
| |
| int dw_spi_add_host(struct device *dev, struct dw_spi *dws) |
| { |
| struct spi_controller *master; |
| int ret; |
| |
| if (!dws) |
| return -EINVAL; |
| |
| master = spi_alloc_master(dev, 0); |
| if (!master) |
| return -ENOMEM; |
| |
| device_set_node(&master->dev, dev_fwnode(dev)); |
| |
| dws->master = master; |
| dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); |
| |
| spi_controller_set_devdata(master, dws); |
| |
| /* Basic HW init */ |
| dw_spi_hw_init(dev, dws); |
| |
| ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev), |
| master); |
| if (ret < 0 && ret != -ENOTCONN) { |
| dev_err(dev, "can not get IRQ\n"); |
| goto err_free_master; |
| } |
| |
| dw_spi_init_mem_ops(dws); |
| |
| master->use_gpio_descriptors = true; |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP; |
| if (dws->caps & DW_SPI_CAP_DFS32) |
| master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| else |
| master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); |
| master->bus_num = dws->bus_num; |
| master->num_chipselect = dws->num_cs; |
| master->setup = dw_spi_setup; |
| master->cleanup = dw_spi_cleanup; |
| if (dws->set_cs) |
| master->set_cs = dws->set_cs; |
| else |
| master->set_cs = dw_spi_set_cs; |
| master->transfer_one = dw_spi_transfer_one; |
| master->handle_err = dw_spi_handle_err; |
| if (dws->mem_ops.exec_op) |
| master->mem_ops = &dws->mem_ops; |
| master->max_speed_hz = dws->max_freq; |
| master->flags = SPI_MASTER_GPIO_SS; |
| master->auto_runtime_pm = true; |
| |
| /* Get default rx sample delay */ |
| device_property_read_u32(dev, "rx-sample-delay-ns", |
| &dws->def_rx_sample_dly_ns); |
| |
| if (dws->dma_ops && dws->dma_ops->dma_init) { |
| ret = dws->dma_ops->dma_init(dev, dws); |
| if (ret == -EPROBE_DEFER) { |
| goto err_free_irq; |
| } else if (ret) { |
| dev_warn(dev, "DMA init failed\n"); |
| } else { |
| master->can_dma = dws->dma_ops->can_dma; |
| master->flags |= SPI_CONTROLLER_MUST_TX; |
| } |
| } |
| |
| ret = spi_register_controller(master); |
| if (ret) { |
| dev_err_probe(dev, ret, "problem registering spi master\n"); |
| goto err_dma_exit; |
| } |
| |
| dw_spi_debugfs_init(dws); |
| return 0; |
| |
| err_dma_exit: |
| if (dws->dma_ops && dws->dma_ops->dma_exit) |
| dws->dma_ops->dma_exit(dws); |
| dw_spi_enable_chip(dws, 0); |
| err_free_irq: |
| free_irq(dws->irq, master); |
| err_free_master: |
| spi_controller_put(master); |
| return ret; |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE); |
| |
| void dw_spi_remove_host(struct dw_spi *dws) |
| { |
| dw_spi_debugfs_remove(dws); |
| |
| spi_unregister_controller(dws->master); |
| |
| if (dws->dma_ops && dws->dma_ops->dma_exit) |
| dws->dma_ops->dma_exit(dws); |
| |
| dw_spi_shutdown_chip(dws); |
| |
| free_irq(dws->irq, dws->master); |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE); |
| |
| int dw_spi_suspend_host(struct dw_spi *dws) |
| { |
| int ret; |
| |
| ret = spi_controller_suspend(dws->master); |
| if (ret) |
| return ret; |
| |
| dw_spi_shutdown_chip(dws); |
| return 0; |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE); |
| |
| int dw_spi_resume_host(struct dw_spi *dws) |
| { |
| dw_spi_hw_init(&dws->master->dev, dws); |
| return spi_controller_resume(dws->master); |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE); |
| |
| MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>"); |
| MODULE_DESCRIPTION("Driver for DesignWare SPI controller core"); |
| MODULE_LICENSE("GPL v2"); |