| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2018-2020 Christoph Hellwig. |
| * |
| * DMA operations that map physical memory directly without using an IOMMU. |
| */ |
| #include <linux/memblock.h> /* for max_pfn */ |
| #include <linux/export.h> |
| #include <linux/mm.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/scatterlist.h> |
| #include <linux/pfn.h> |
| #include <linux/vmalloc.h> |
| #include <linux/set_memory.h> |
| #include <linux/slab.h> |
| #include "direct.h" |
| |
| /* |
| * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use |
| * it for entirely different regions. In that case the arch code needs to |
| * override the variable below for dma-direct to work properly. |
| */ |
| unsigned int zone_dma_bits __ro_after_init = 24; |
| |
| static inline dma_addr_t phys_to_dma_direct(struct device *dev, |
| phys_addr_t phys) |
| { |
| if (force_dma_unencrypted(dev)) |
| return phys_to_dma_unencrypted(dev, phys); |
| return phys_to_dma(dev, phys); |
| } |
| |
| static inline struct page *dma_direct_to_page(struct device *dev, |
| dma_addr_t dma_addr) |
| { |
| return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); |
| } |
| |
| u64 dma_direct_get_required_mask(struct device *dev) |
| { |
| phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; |
| u64 max_dma = phys_to_dma_direct(dev, phys); |
| |
| return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; |
| } |
| EXPORT_SYMBOL_GPL(dma_direct_get_required_mask); |
| |
| static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, |
| u64 *phys_limit) |
| { |
| u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); |
| |
| /* |
| * Optimistically try the zone that the physical address mask falls |
| * into first. If that returns memory that isn't actually addressable |
| * we will fallback to the next lower zone and try again. |
| * |
| * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding |
| * zones. |
| */ |
| *phys_limit = dma_to_phys(dev, dma_limit); |
| if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) |
| return GFP_DMA; |
| if (*phys_limit <= DMA_BIT_MASK(32) && |
| !zone_dma32_are_empty()) |
| return GFP_DMA32; |
| return 0; |
| } |
| |
| static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) |
| { |
| dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); |
| |
| if (dma_addr == DMA_MAPPING_ERROR) |
| return false; |
| return dma_addr + size - 1 <= |
| min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); |
| } |
| |
| static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) |
| { |
| if (!force_dma_unencrypted(dev)) |
| return 0; |
| return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); |
| } |
| |
| static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) |
| { |
| int ret; |
| |
| if (!force_dma_unencrypted(dev)) |
| return 0; |
| ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); |
| if (ret) |
| pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); |
| return ret; |
| } |
| |
| static void __dma_direct_free_pages(struct device *dev, struct page *page, |
| size_t size) |
| { |
| if (swiotlb_free(dev, page, size)) |
| return; |
| dma_free_contiguous(dev, page, size); |
| } |
| |
| static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) |
| { |
| struct page *page = swiotlb_alloc(dev, size); |
| |
| if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| swiotlb_free(dev, page, size); |
| return NULL; |
| } |
| |
| return page; |
| } |
| |
| static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, |
| gfp_t gfp, bool allow_highmem) |
| { |
| int node = dev_to_node(dev); |
| struct page *page = NULL; |
| u64 phys_limit; |
| |
| WARN_ON_ONCE(!PAGE_ALIGNED(size)); |
| |
| if (is_swiotlb_for_alloc(dev)) |
| return dma_direct_alloc_swiotlb(dev, size); |
| |
| gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, |
| &phys_limit); |
| page = dma_alloc_contiguous(dev, size, gfp); |
| if (page) { |
| if (!dma_coherent_ok(dev, page_to_phys(page), size) || |
| (!allow_highmem && PageHighMem(page))) { |
| dma_free_contiguous(dev, page, size); |
| page = NULL; |
| } |
| } |
| again: |
| if (!page) |
| page = alloc_pages_node(node, gfp, get_order(size)); |
| if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| dma_free_contiguous(dev, page, size); |
| page = NULL; |
| |
| if (IS_ENABLED(CONFIG_ZONE_DMA32) && |
| phys_limit < DMA_BIT_MASK(64) && |
| !(gfp & (GFP_DMA32 | GFP_DMA)) && |
| !zone_dma32_are_empty()) { |
| gfp |= GFP_DMA32; |
| goto again; |
| } |
| |
| if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { |
| gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
| goto again; |
| } |
| } |
| |
| return page; |
| } |
| |
| /* |
| * Check if a potentially blocking operations needs to dip into the atomic |
| * pools for the given device/gfp. |
| */ |
| static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) |
| { |
| return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); |
| } |
| |
| static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp) |
| { |
| struct page *page; |
| u64 phys_mask; |
| void *ret; |
| |
| if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) |
| return NULL; |
| |
| gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, |
| &phys_mask); |
| page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); |
| if (!page) |
| return NULL; |
| *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| return ret; |
| } |
| |
| static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp) |
| { |
| struct page *page; |
| |
| page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); |
| if (!page) |
| return NULL; |
| |
| /* remove any dirty cache lines on the kernel alias */ |
| if (!PageHighMem(page)) |
| arch_dma_prep_coherent(page, size); |
| |
| /* return the page pointer as the opaque cookie */ |
| *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| return page; |
| } |
| |
| void *dma_direct_alloc(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| { |
| bool remap = false, set_uncached = false; |
| struct page *page; |
| void *ret; |
| |
| size = PAGE_ALIGN(size); |
| if (attrs & DMA_ATTR_NO_WARN) |
| gfp |= __GFP_NOWARN; |
| |
| if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
| !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) |
| return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); |
| |
| if (!dev_is_dma_coherent(dev)) { |
| /* |
| * Fallback to the arch handler if it exists. This should |
| * eventually go away. |
| */ |
| if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && |
| !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
| !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && |
| !is_swiotlb_for_alloc(dev)) |
| return arch_dma_alloc(dev, size, dma_handle, gfp, |
| attrs); |
| |
| /* |
| * If there is a global pool, always allocate from it for |
| * non-coherent devices. |
| */ |
| if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) |
| return dma_alloc_from_global_coherent(dev, size, |
| dma_handle); |
| |
| /* |
| * Otherwise remap if the architecture is asking for it. But |
| * given that remapping memory is a blocking operation we'll |
| * instead have to dip into the atomic pools. |
| */ |
| remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); |
| if (remap) { |
| if (dma_direct_use_pool(dev, gfp)) |
| return dma_direct_alloc_from_pool(dev, size, |
| dma_handle, gfp); |
| } else { |
| if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) |
| return NULL; |
| set_uncached = true; |
| } |
| } |
| |
| /* |
| * Decrypting memory may block, so allocate the memory from the atomic |
| * pools if we can't block. |
| */ |
| if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) |
| return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
| |
| /* we always manually zero the memory once we are done */ |
| page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); |
| if (!page) |
| return NULL; |
| |
| /* |
| * dma_alloc_contiguous can return highmem pages depending on a |
| * combination the cma= arguments and per-arch setup. These need to be |
| * remapped to return a kernel virtual address. |
| */ |
| if (PageHighMem(page)) { |
| remap = true; |
| set_uncached = false; |
| } |
| |
| if (remap) { |
| pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); |
| |
| if (force_dma_unencrypted(dev)) |
| prot = pgprot_decrypted(prot); |
| |
| /* remove any dirty cache lines on the kernel alias */ |
| arch_dma_prep_coherent(page, size); |
| |
| /* create a coherent mapping */ |
| ret = dma_common_contiguous_remap(page, size, prot, |
| __builtin_return_address(0)); |
| if (!ret) |
| goto out_free_pages; |
| } else { |
| ret = page_address(page); |
| if (dma_set_decrypted(dev, ret, size)) |
| goto out_free_pages; |
| } |
| |
| memset(ret, 0, size); |
| |
| if (set_uncached) { |
| arch_dma_prep_coherent(page, size); |
| ret = arch_dma_set_uncached(ret, size); |
| if (IS_ERR(ret)) |
| goto out_encrypt_pages; |
| } |
| |
| *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| return ret; |
| |
| out_encrypt_pages: |
| if (dma_set_encrypted(dev, page_address(page), size)) |
| return NULL; |
| out_free_pages: |
| __dma_direct_free_pages(dev, page, size); |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(dma_direct_alloc); |
| |
| void dma_direct_free(struct device *dev, size_t size, |
| void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) |
| { |
| unsigned int page_order = get_order(size); |
| |
| if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
| !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { |
| /* cpu_addr is a struct page cookie, not a kernel address */ |
| dma_free_contiguous(dev, cpu_addr, size); |
| return; |
| } |
| |
| if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && |
| !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
| !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && |
| !dev_is_dma_coherent(dev) && |
| !is_swiotlb_for_alloc(dev)) { |
| arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); |
| return; |
| } |
| |
| if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && |
| !dev_is_dma_coherent(dev)) { |
| if (!dma_release_from_global_coherent(page_order, cpu_addr)) |
| WARN_ON_ONCE(1); |
| return; |
| } |
| |
| /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
| if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
| dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) |
| return; |
| |
| if (is_vmalloc_addr(cpu_addr)) { |
| vunmap(cpu_addr); |
| } else { |
| if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) |
| arch_dma_clear_uncached(cpu_addr, size); |
| if (dma_set_encrypted(dev, cpu_addr, size)) |
| return; |
| } |
| |
| __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); |
| } |
| EXPORT_SYMBOL_GPL(dma_direct_free); |
| |
| struct page *dma_direct_alloc_pages(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
| { |
| struct page *page; |
| void *ret; |
| |
| if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) |
| return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
| |
| page = __dma_direct_alloc_pages(dev, size, gfp, false); |
| if (!page) |
| return NULL; |
| |
| ret = page_address(page); |
| if (dma_set_decrypted(dev, ret, size)) |
| goto out_free_pages; |
| memset(ret, 0, size); |
| *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| return page; |
| out_free_pages: |
| __dma_direct_free_pages(dev, page, size); |
| return NULL; |
| } |
| |
| void dma_direct_free_pages(struct device *dev, size_t size, |
| struct page *page, dma_addr_t dma_addr, |
| enum dma_data_direction dir) |
| { |
| void *vaddr = page_address(page); |
| |
| /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
| if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
| dma_free_from_pool(dev, vaddr, size)) |
| return; |
| |
| if (dma_set_encrypted(dev, vaddr, size)) |
| return; |
| __dma_direct_free_pages(dev, page, size); |
| } |
| |
| #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ |
| defined(CONFIG_SWIOTLB) |
| void dma_direct_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| |
| if (unlikely(is_swiotlb_buffer(dev, paddr))) |
| swiotlb_sync_single_for_device(dev, paddr, sg->length, |
| dir); |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_device(paddr, sg->length, |
| dir); |
| } |
| } |
| #endif |
| |
| #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ |
| defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ |
| defined(CONFIG_SWIOTLB) |
| void dma_direct_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_cpu(paddr, sg->length, dir); |
| |
| if (unlikely(is_swiotlb_buffer(dev, paddr))) |
| swiotlb_sync_single_for_cpu(dev, paddr, sg->length, |
| dir); |
| |
| if (dir == DMA_FROM_DEVICE) |
| arch_dma_mark_clean(paddr, sg->length); |
| } |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_cpu_all(); |
| } |
| |
| /* |
| * Unmaps segments, except for ones marked as pci_p2pdma which do not |
| * require any further action as they contain a bus address. |
| */ |
| void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| if (sg_is_dma_bus_address(sg)) |
| sg_dma_unmark_bus_address(sg); |
| else |
| dma_direct_unmap_page(dev, sg->dma_address, |
| sg_dma_len(sg), dir, attrs); |
| } |
| } |
| #endif |
| |
| int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct pci_p2pdma_map_state p2pdma_state = {}; |
| enum pci_p2pdma_map_type map; |
| struct scatterlist *sg; |
| int i, ret; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| if (is_pci_p2pdma_page(sg_page(sg))) { |
| map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); |
| switch (map) { |
| case PCI_P2PDMA_MAP_BUS_ADDR: |
| continue; |
| case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: |
| /* |
| * Any P2P mapping that traverses the PCI |
| * host bridge must be mapped with CPU physical |
| * address and not PCI bus addresses. This is |
| * done with dma_direct_map_page() below. |
| */ |
| break; |
| default: |
| ret = -EREMOTEIO; |
| goto out_unmap; |
| } |
| } |
| |
| sg->dma_address = dma_direct_map_page(dev, sg_page(sg), |
| sg->offset, sg->length, dir, attrs); |
| if (sg->dma_address == DMA_MAPPING_ERROR) { |
| ret = -EIO; |
| goto out_unmap; |
| } |
| sg_dma_len(sg) = sg->length; |
| } |
| |
| return nents; |
| |
| out_unmap: |
| dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| return ret; |
| } |
| |
| dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| dma_addr_t dma_addr = paddr; |
| |
| if (unlikely(!dma_capable(dev, dma_addr, size, false))) { |
| dev_err_once(dev, |
| "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", |
| &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); |
| WARN_ON_ONCE(1); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| return dma_addr; |
| } |
| |
| int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| struct page *page = dma_direct_to_page(dev, dma_addr); |
| int ret; |
| |
| ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| if (!ret) |
| sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| return ret; |
| } |
| |
| bool dma_direct_can_mmap(struct device *dev) |
| { |
| return dev_is_dma_coherent(dev) || |
| IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); |
| } |
| |
| int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| unsigned long user_count = vma_pages(vma); |
| unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); |
| int ret = -ENXIO; |
| |
| vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
| if (force_dma_unencrypted(dev)) |
| vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) |
| return -ENXIO; |
| return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, |
| user_count << PAGE_SHIFT, vma->vm_page_prot); |
| } |
| |
| int dma_direct_supported(struct device *dev, u64 mask) |
| { |
| u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; |
| |
| /* |
| * Because 32-bit DMA masks are so common we expect every architecture |
| * to be able to satisfy them - either by not supporting more physical |
| * memory, or by providing a ZONE_DMA32. If neither is the case, the |
| * architecture needs to use an IOMMU instead of the direct mapping. |
| */ |
| if (mask >= DMA_BIT_MASK(32)) |
| return 1; |
| |
| /* |
| * This check needs to be against the actual bit mask value, so use |
| * phys_to_dma_unencrypted() here so that the SME encryption mask isn't |
| * part of the check. |
| */ |
| if (IS_ENABLED(CONFIG_ZONE_DMA)) |
| min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); |
| return mask >= phys_to_dma_unencrypted(dev, min_mask); |
| } |
| |
| size_t dma_direct_max_mapping_size(struct device *dev) |
| { |
| /* If SWIOTLB is active, use its maximum mapping size */ |
| if (is_swiotlb_active(dev) && |
| (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) |
| return swiotlb_max_mapping_size(dev); |
| return SIZE_MAX; |
| } |
| |
| bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) |
| { |
| return !dev_is_dma_coherent(dev) || |
| is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); |
| } |
| |
| /** |
| * dma_direct_set_offset - Assign scalar offset for a single DMA range. |
| * @dev: device pointer; needed to "own" the alloced memory. |
| * @cpu_start: beginning of memory region covered by this offset. |
| * @dma_start: beginning of DMA/PCI region covered by this offset. |
| * @size: size of the region. |
| * |
| * This is for the simple case of a uniform offset which cannot |
| * be discovered by "dma-ranges". |
| * |
| * It returns -ENOMEM if out of memory, -EINVAL if a map |
| * already exists, 0 otherwise. |
| * |
| * Note: any call to this from a driver is a bug. The mapping needs |
| * to be described by the device tree or other firmware interfaces. |
| */ |
| int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, |
| dma_addr_t dma_start, u64 size) |
| { |
| struct bus_dma_region *map; |
| u64 offset = (u64)cpu_start - (u64)dma_start; |
| |
| if (dev->dma_range_map) { |
| dev_err(dev, "attempt to add DMA range to existing map\n"); |
| return -EINVAL; |
| } |
| |
| if (!offset) |
| return 0; |
| |
| map = kcalloc(2, sizeof(*map), GFP_KERNEL); |
| if (!map) |
| return -ENOMEM; |
| map[0].cpu_start = cpu_start; |
| map[0].dma_start = dma_start; |
| map[0].offset = offset; |
| map[0].size = size; |
| dev->dma_range_map = map; |
| return 0; |
| } |