| /* |
| * VGIC MMIO handling functions |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/bsearch.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <kvm/iodev.h> |
| #include <kvm/arm_vgic.h> |
| |
| #include "vgic.h" |
| #include "vgic-mmio.h" |
| |
| unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| return 0; |
| } |
| |
| unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| return -1UL; |
| } |
| |
| void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, |
| unsigned int len, unsigned long val) |
| { |
| /* Ignore */ |
| } |
| |
| /* |
| * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value |
| * of the enabled bit, so there is only one function for both here. |
| */ |
| unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* Loop over all IRQs affected by this read */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->enabled) |
| value |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock(&irq->irq_lock); |
| irq->enabled = true; |
| vgic_queue_irq_unlock(vcpu->kvm, irq); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock(&irq->irq_lock); |
| |
| irq->enabled = false; |
| |
| spin_unlock(&irq->irq_lock); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* Loop over all IRQs affected by this read */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->pending) |
| value |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock(&irq->irq_lock); |
| irq->pending = true; |
| if (irq->config == VGIC_CONFIG_LEVEL) |
| irq->soft_pending = true; |
| |
| vgic_queue_irq_unlock(vcpu->kvm, irq); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock(&irq->irq_lock); |
| |
| if (irq->config == VGIC_CONFIG_LEVEL) { |
| irq->soft_pending = false; |
| irq->pending = irq->line_level; |
| } else { |
| irq->pending = false; |
| } |
| |
| spin_unlock(&irq->irq_lock); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* Loop over all IRQs affected by this read */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->active) |
| value |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq, |
| bool new_active_state) |
| { |
| spin_lock(&irq->irq_lock); |
| /* |
| * If this virtual IRQ was written into a list register, we |
| * have to make sure the CPU that runs the VCPU thread has |
| * synced back LR state to the struct vgic_irq. We can only |
| * know this for sure, when either this irq is not assigned to |
| * anyone's AP list anymore, or the VCPU thread is not |
| * running on any CPUs. |
| * |
| * In the opposite case, we know the VCPU thread may be on its |
| * way back from the guest and still has to sync back this |
| * IRQ, so we release and re-acquire the spin_lock to let the |
| * other thread sync back the IRQ. |
| */ |
| while (irq->vcpu && /* IRQ may have state in an LR somewhere */ |
| irq->vcpu->cpu != -1) /* VCPU thread is running */ |
| cond_resched_lock(&irq->irq_lock); |
| |
| irq->active = new_active_state; |
| if (new_active_state) |
| vgic_queue_irq_unlock(vcpu->kvm, irq); |
| else |
| spin_unlock(&irq->irq_lock); |
| } |
| |
| /* |
| * If we are fiddling with an IRQ's active state, we have to make sure the IRQ |
| * is not queued on some running VCPU's LRs, because then the change to the |
| * active state can be overwritten when the VCPU's state is synced coming back |
| * from the guest. |
| * |
| * For shared interrupts, we have to stop all the VCPUs because interrupts can |
| * be migrated while we don't hold the IRQ locks and we don't want to be |
| * chasing moving targets. |
| * |
| * For private interrupts, we only have to make sure the single and only VCPU |
| * that can potentially queue the IRQ is stopped. |
| */ |
| static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid) |
| { |
| if (intid < VGIC_NR_PRIVATE_IRQS) |
| kvm_arm_halt_vcpu(vcpu); |
| else |
| kvm_arm_halt_guest(vcpu->kvm); |
| } |
| |
| /* See vgic_change_active_prepare */ |
| static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid) |
| { |
| if (intid < VGIC_NR_PRIVATE_IRQS) |
| kvm_arm_resume_vcpu(vcpu); |
| else |
| kvm_arm_resume_guest(vcpu->kvm); |
| } |
| |
| void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| vgic_change_active_prepare(vcpu, intid); |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| vgic_mmio_change_active(vcpu, irq, false); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| vgic_change_active_finish(vcpu, intid); |
| } |
| |
| void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| vgic_change_active_prepare(vcpu, intid); |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| vgic_mmio_change_active(vcpu, irq, true); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| vgic_change_active_finish(vcpu, intid); |
| } |
| |
| unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 8); |
| int i; |
| u64 val = 0; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| val |= (u64)irq->priority << (i * 8); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return val; |
| } |
| |
| /* |
| * We currently don't handle changing the priority of an interrupt that |
| * is already pending on a VCPU. If there is a need for this, we would |
| * need to make this VCPU exit and re-evaluate the priorities, potentially |
| * leading to this interrupt getting presented now to the guest (if it has |
| * been masked by the priority mask before). |
| */ |
| void vgic_mmio_write_priority(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 8); |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock(&irq->irq_lock); |
| /* Narrow the priority range to what we actually support */ |
| irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS); |
| spin_unlock(&irq->irq_lock); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 2); |
| u32 value = 0; |
| int i; |
| |
| for (i = 0; i < len * 4; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->config == VGIC_CONFIG_EDGE) |
| value |= (2U << (i * 2)); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| void vgic_mmio_write_config(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 2); |
| int i; |
| |
| for (i = 0; i < len * 4; i++) { |
| struct vgic_irq *irq; |
| |
| /* |
| * The configuration cannot be changed for SGIs in general, |
| * for PPIs this is IMPLEMENTATION DEFINED. The arch timer |
| * code relies on PPIs being level triggered, so we also |
| * make them read-only here. |
| */ |
| if (intid + i < VGIC_NR_PRIVATE_IRQS) |
| continue; |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| spin_lock(&irq->irq_lock); |
| |
| if (test_bit(i * 2 + 1, &val)) { |
| irq->config = VGIC_CONFIG_EDGE; |
| } else { |
| irq->config = VGIC_CONFIG_LEVEL; |
| irq->pending = irq->line_level | irq->soft_pending; |
| } |
| |
| spin_unlock(&irq->irq_lock); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| static int match_region(const void *key, const void *elt) |
| { |
| const unsigned int offset = (unsigned long)key; |
| const struct vgic_register_region *region = elt; |
| |
| if (offset < region->reg_offset) |
| return -1; |
| |
| if (offset >= region->reg_offset + region->len) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Find the proper register handler entry given a certain address offset. */ |
| static const struct vgic_register_region * |
| vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions, |
| unsigned int offset) |
| { |
| return bsearch((void *)(uintptr_t)offset, region, nr_regions, |
| sizeof(region[0]), match_region); |
| } |
| |
| /* |
| * kvm_mmio_read_buf() returns a value in a format where it can be converted |
| * to a byte array and be directly observed as the guest wanted it to appear |
| * in memory if it had done the store itself, which is LE for the GIC, as the |
| * guest knows the GIC is always LE. |
| * |
| * We convert this value to the CPUs native format to deal with it as a data |
| * value. |
| */ |
| unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len) |
| { |
| unsigned long data = kvm_mmio_read_buf(val, len); |
| |
| switch (len) { |
| case 1: |
| return data; |
| case 2: |
| return le16_to_cpu(data); |
| case 4: |
| return le32_to_cpu(data); |
| default: |
| return le64_to_cpu(data); |
| } |
| } |
| |
| /* |
| * kvm_mmio_write_buf() expects a value in a format such that if converted to |
| * a byte array it is observed as the guest would see it if it could perform |
| * the load directly. Since the GIC is LE, and the guest knows this, the |
| * guest expects a value in little endian format. |
| * |
| * We convert the data value from the CPUs native format to LE so that the |
| * value is returned in the proper format. |
| */ |
| void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, |
| unsigned long data) |
| { |
| switch (len) { |
| case 1: |
| break; |
| case 2: |
| data = cpu_to_le16(data); |
| break; |
| case 4: |
| data = cpu_to_le32(data); |
| break; |
| default: |
| data = cpu_to_le64(data); |
| } |
| |
| kvm_mmio_write_buf(buf, len, data); |
| } |
| |
| static |
| struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev) |
| { |
| return container_of(dev, struct vgic_io_device, dev); |
| } |
| |
| static bool check_region(const struct vgic_register_region *region, |
| gpa_t addr, int len) |
| { |
| if ((region->access_flags & VGIC_ACCESS_8bit) && len == 1) |
| return true; |
| if ((region->access_flags & VGIC_ACCESS_32bit) && |
| len == sizeof(u32) && !(addr & 3)) |
| return true; |
| if ((region->access_flags & VGIC_ACCESS_64bit) && |
| len == sizeof(u64) && !(addr & 7)) |
| return true; |
| |
| return false; |
| } |
| |
| static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| gpa_t addr, int len, void *val) |
| { |
| struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| const struct vgic_register_region *region; |
| unsigned long data = 0; |
| |
| region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, |
| addr - iodev->base_addr); |
| if (!region || !check_region(region, addr, len)) { |
| memset(val, 0, len); |
| return 0; |
| } |
| |
| switch (iodev->iodev_type) { |
| case IODEV_CPUIF: |
| data = region->read(vcpu, addr, len); |
| break; |
| case IODEV_DIST: |
| data = region->read(vcpu, addr, len); |
| break; |
| case IODEV_REDIST: |
| data = region->read(iodev->redist_vcpu, addr, len); |
| break; |
| case IODEV_ITS: |
| data = region->its_read(vcpu->kvm, iodev->its, addr, len); |
| break; |
| } |
| |
| vgic_data_host_to_mmio_bus(val, len, data); |
| return 0; |
| } |
| |
| static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| gpa_t addr, int len, const void *val) |
| { |
| struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| const struct vgic_register_region *region; |
| unsigned long data = vgic_data_mmio_bus_to_host(val, len); |
| |
| region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, |
| addr - iodev->base_addr); |
| if (!region) |
| return 0; |
| |
| if (!check_region(region, addr, len)) |
| return 0; |
| |
| switch (iodev->iodev_type) { |
| case IODEV_CPUIF: |
| region->write(vcpu, addr, len, data); |
| break; |
| case IODEV_DIST: |
| region->write(vcpu, addr, len, data); |
| break; |
| case IODEV_REDIST: |
| region->write(iodev->redist_vcpu, addr, len, data); |
| break; |
| case IODEV_ITS: |
| region->its_write(vcpu->kvm, iodev->its, addr, len, data); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| struct kvm_io_device_ops kvm_io_gic_ops = { |
| .read = dispatch_mmio_read, |
| .write = dispatch_mmio_write, |
| }; |
| |
| int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, |
| enum vgic_type type) |
| { |
| struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev; |
| int ret = 0; |
| unsigned int len; |
| |
| switch (type) { |
| case VGIC_V2: |
| len = vgic_v2_init_dist_iodev(io_device); |
| break; |
| case VGIC_V3: |
| len = vgic_v3_init_dist_iodev(io_device); |
| break; |
| default: |
| BUG_ON(1); |
| } |
| |
| io_device->base_addr = dist_base_address; |
| io_device->iodev_type = IODEV_DIST; |
| io_device->redist_vcpu = NULL; |
| |
| mutex_lock(&kvm->slots_lock); |
| ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address, |
| len, &io_device->dev); |
| mutex_unlock(&kvm->slots_lock); |
| |
| return ret; |
| } |