| /* |
| * Copyright (C) 2010 Red Hat, Inc. |
| * Copyright (c) 2016-2018 Christoph Hellwig. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| #include <linux/module.h> |
| #include <linux/compiler.h> |
| #include <linux/fs.h> |
| #include <linux/iomap.h> |
| #include <linux/uaccess.h> |
| #include <linux/gfp.h> |
| #include <linux/migrate.h> |
| #include <linux/mm.h> |
| #include <linux/mm_inline.h> |
| #include <linux/swap.h> |
| #include <linux/pagemap.h> |
| #include <linux/pagevec.h> |
| #include <linux/file.h> |
| #include <linux/uio.h> |
| #include <linux/backing-dev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/task_io_accounting_ops.h> |
| #include <linux/dax.h> |
| #include <linux/sched/signal.h> |
| #include <linux/swap.h> |
| |
| #include "internal.h" |
| |
| /* |
| * Execute a iomap write on a segment of the mapping that spans a |
| * contiguous range of pages that have identical block mapping state. |
| * |
| * This avoids the need to map pages individually, do individual allocations |
| * for each page and most importantly avoid the need for filesystem specific |
| * locking per page. Instead, all the operations are amortised over the entire |
| * range of pages. It is assumed that the filesystems will lock whatever |
| * resources they require in the iomap_begin call, and release them in the |
| * iomap_end call. |
| */ |
| loff_t |
| iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags, |
| const struct iomap_ops *ops, void *data, iomap_actor_t actor) |
| { |
| struct iomap iomap = { 0 }; |
| loff_t written = 0, ret; |
| |
| /* |
| * Need to map a range from start position for length bytes. This can |
| * span multiple pages - it is only guaranteed to return a range of a |
| * single type of pages (e.g. all into a hole, all mapped or all |
| * unwritten). Failure at this point has nothing to undo. |
| * |
| * If allocation is required for this range, reserve the space now so |
| * that the allocation is guaranteed to succeed later on. Once we copy |
| * the data into the page cache pages, then we cannot fail otherwise we |
| * expose transient stale data. If the reserve fails, we can safely |
| * back out at this point as there is nothing to undo. |
| */ |
| ret = ops->iomap_begin(inode, pos, length, flags, &iomap); |
| if (ret) |
| return ret; |
| if (WARN_ON(iomap.offset > pos)) |
| return -EIO; |
| if (WARN_ON(iomap.length == 0)) |
| return -EIO; |
| |
| /* |
| * Cut down the length to the one actually provided by the filesystem, |
| * as it might not be able to give us the whole size that we requested. |
| */ |
| if (iomap.offset + iomap.length < pos + length) |
| length = iomap.offset + iomap.length - pos; |
| |
| /* |
| * Now that we have guaranteed that the space allocation will succeed. |
| * we can do the copy-in page by page without having to worry about |
| * failures exposing transient data. |
| */ |
| written = actor(inode, pos, length, data, &iomap); |
| |
| /* |
| * Now the data has been copied, commit the range we've copied. This |
| * should not fail unless the filesystem has had a fatal error. |
| */ |
| if (ops->iomap_end) { |
| ret = ops->iomap_end(inode, pos, length, |
| written > 0 ? written : 0, |
| flags, &iomap); |
| } |
| |
| return written ? written : ret; |
| } |
| |
| static sector_t |
| iomap_sector(struct iomap *iomap, loff_t pos) |
| { |
| return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT; |
| } |
| |
| static struct iomap_page * |
| iomap_page_create(struct inode *inode, struct page *page) |
| { |
| struct iomap_page *iop = to_iomap_page(page); |
| |
| if (iop || i_blocksize(inode) == PAGE_SIZE) |
| return iop; |
| |
| iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL); |
| atomic_set(&iop->read_count, 0); |
| atomic_set(&iop->write_count, 0); |
| bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE); |
| set_page_private(page, (unsigned long)iop); |
| SetPagePrivate(page); |
| return iop; |
| } |
| |
| static void |
| iomap_page_release(struct page *page) |
| { |
| struct iomap_page *iop = to_iomap_page(page); |
| |
| if (!iop) |
| return; |
| WARN_ON_ONCE(atomic_read(&iop->read_count)); |
| WARN_ON_ONCE(atomic_read(&iop->write_count)); |
| ClearPagePrivate(page); |
| set_page_private(page, 0); |
| kfree(iop); |
| } |
| |
| /* |
| * Calculate the range inside the page that we actually need to read. |
| */ |
| static void |
| iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, |
| loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) |
| { |
| unsigned block_bits = inode->i_blkbits; |
| unsigned block_size = (1 << block_bits); |
| unsigned poff = offset_in_page(*pos); |
| unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); |
| unsigned first = poff >> block_bits; |
| unsigned last = (poff + plen - 1) >> block_bits; |
| unsigned end = offset_in_page(i_size_read(inode)) >> block_bits; |
| |
| /* |
| * If the block size is smaller than the page size we need to check the |
| * per-block uptodate status and adjust the offset and length if needed |
| * to avoid reading in already uptodate ranges. |
| */ |
| if (iop) { |
| unsigned int i; |
| |
| /* move forward for each leading block marked uptodate */ |
| for (i = first; i <= last; i++) { |
| if (!test_bit(i, iop->uptodate)) |
| break; |
| *pos += block_size; |
| poff += block_size; |
| plen -= block_size; |
| first++; |
| } |
| |
| /* truncate len if we find any trailing uptodate block(s) */ |
| for ( ; i <= last; i++) { |
| if (test_bit(i, iop->uptodate)) { |
| plen -= (last - i + 1) * block_size; |
| last = i - 1; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * If the extent spans the block that contains the i_size we need to |
| * handle both halves separately so that we properly zero data in the |
| * page cache for blocks that are entirely outside of i_size. |
| */ |
| if (first <= end && last > end) |
| plen -= (last - end) * block_size; |
| |
| *offp = poff; |
| *lenp = plen; |
| } |
| |
| static void |
| iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) |
| { |
| struct iomap_page *iop = to_iomap_page(page); |
| struct inode *inode = page->mapping->host; |
| unsigned first = off >> inode->i_blkbits; |
| unsigned last = (off + len - 1) >> inode->i_blkbits; |
| unsigned int i; |
| bool uptodate = true; |
| |
| if (iop) { |
| for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) { |
| if (i >= first && i <= last) |
| set_bit(i, iop->uptodate); |
| else if (!test_bit(i, iop->uptodate)) |
| uptodate = false; |
| } |
| } |
| |
| if (uptodate && !PageError(page)) |
| SetPageUptodate(page); |
| } |
| |
| static void |
| iomap_read_finish(struct iomap_page *iop, struct page *page) |
| { |
| if (!iop || atomic_dec_and_test(&iop->read_count)) |
| unlock_page(page); |
| } |
| |
| static void |
| iomap_read_page_end_io(struct bio_vec *bvec, int error) |
| { |
| struct page *page = bvec->bv_page; |
| struct iomap_page *iop = to_iomap_page(page); |
| |
| if (unlikely(error)) { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } else { |
| iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); |
| } |
| |
| iomap_read_finish(iop, page); |
| } |
| |
| static void |
| iomap_read_inline_data(struct inode *inode, struct page *page, |
| struct iomap *iomap) |
| { |
| size_t size = i_size_read(inode); |
| void *addr; |
| |
| if (PageUptodate(page)) |
| return; |
| |
| BUG_ON(page->index); |
| BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); |
| |
| addr = kmap_atomic(page); |
| memcpy(addr, iomap->inline_data, size); |
| memset(addr + size, 0, PAGE_SIZE - size); |
| kunmap_atomic(addr); |
| SetPageUptodate(page); |
| } |
| |
| static void |
| iomap_read_end_io(struct bio *bio) |
| { |
| int error = blk_status_to_errno(bio->bi_status); |
| struct bio_vec *bvec; |
| int i; |
| |
| bio_for_each_segment_all(bvec, bio, i) |
| iomap_read_page_end_io(bvec, error); |
| bio_put(bio); |
| } |
| |
| struct iomap_readpage_ctx { |
| struct page *cur_page; |
| bool cur_page_in_bio; |
| bool is_readahead; |
| struct bio *bio; |
| struct list_head *pages; |
| }; |
| |
| static loff_t |
| iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
| struct iomap *iomap) |
| { |
| struct iomap_readpage_ctx *ctx = data; |
| struct page *page = ctx->cur_page; |
| struct iomap_page *iop = iomap_page_create(inode, page); |
| bool is_contig = false; |
| loff_t orig_pos = pos; |
| unsigned poff, plen; |
| sector_t sector; |
| |
| if (iomap->type == IOMAP_INLINE) { |
| WARN_ON_ONCE(pos); |
| iomap_read_inline_data(inode, page, iomap); |
| return PAGE_SIZE; |
| } |
| |
| /* zero post-eof blocks as the page may be mapped */ |
| iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); |
| if (plen == 0) |
| goto done; |
| |
| if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) { |
| zero_user(page, poff, plen); |
| iomap_set_range_uptodate(page, poff, plen); |
| goto done; |
| } |
| |
| ctx->cur_page_in_bio = true; |
| |
| /* |
| * Try to merge into a previous segment if we can. |
| */ |
| sector = iomap_sector(iomap, pos); |
| if (ctx->bio && bio_end_sector(ctx->bio) == sector) { |
| if (__bio_try_merge_page(ctx->bio, page, plen, poff)) |
| goto done; |
| is_contig = true; |
| } |
| |
| /* |
| * If we start a new segment we need to increase the read count, and we |
| * need to do so before submitting any previous full bio to make sure |
| * that we don't prematurely unlock the page. |
| */ |
| if (iop) |
| atomic_inc(&iop->read_count); |
| |
| if (!ctx->bio || !is_contig || bio_full(ctx->bio)) { |
| gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); |
| int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| |
| if (ctx->bio) |
| submit_bio(ctx->bio); |
| |
| if (ctx->is_readahead) /* same as readahead_gfp_mask */ |
| gfp |= __GFP_NORETRY | __GFP_NOWARN; |
| ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); |
| ctx->bio->bi_opf = REQ_OP_READ; |
| if (ctx->is_readahead) |
| ctx->bio->bi_opf |= REQ_RAHEAD; |
| ctx->bio->bi_iter.bi_sector = sector; |
| bio_set_dev(ctx->bio, iomap->bdev); |
| ctx->bio->bi_end_io = iomap_read_end_io; |
| } |
| |
| __bio_add_page(ctx->bio, page, plen, poff); |
| done: |
| /* |
| * Move the caller beyond our range so that it keeps making progress. |
| * For that we have to include any leading non-uptodate ranges, but |
| * we can skip trailing ones as they will be handled in the next |
| * iteration. |
| */ |
| return pos - orig_pos + plen; |
| } |
| |
| int |
| iomap_readpage(struct page *page, const struct iomap_ops *ops) |
| { |
| struct iomap_readpage_ctx ctx = { .cur_page = page }; |
| struct inode *inode = page->mapping->host; |
| unsigned poff; |
| loff_t ret; |
| |
| for (poff = 0; poff < PAGE_SIZE; poff += ret) { |
| ret = iomap_apply(inode, page_offset(page) + poff, |
| PAGE_SIZE - poff, 0, ops, &ctx, |
| iomap_readpage_actor); |
| if (ret <= 0) { |
| WARN_ON_ONCE(ret == 0); |
| SetPageError(page); |
| break; |
| } |
| } |
| |
| if (ctx.bio) { |
| submit_bio(ctx.bio); |
| WARN_ON_ONCE(!ctx.cur_page_in_bio); |
| } else { |
| WARN_ON_ONCE(ctx.cur_page_in_bio); |
| unlock_page(page); |
| } |
| |
| /* |
| * Just like mpage_readpages and block_read_full_page we always |
| * return 0 and just mark the page as PageError on errors. This |
| * should be cleaned up all through the stack eventually. |
| */ |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(iomap_readpage); |
| |
| static struct page * |
| iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos, |
| loff_t length, loff_t *done) |
| { |
| while (!list_empty(pages)) { |
| struct page *page = lru_to_page(pages); |
| |
| if (page_offset(page) >= (u64)pos + length) |
| break; |
| |
| list_del(&page->lru); |
| if (!add_to_page_cache_lru(page, inode->i_mapping, page->index, |
| GFP_NOFS)) |
| return page; |
| |
| /* |
| * If we already have a page in the page cache at index we are |
| * done. Upper layers don't care if it is uptodate after the |
| * readpages call itself as every page gets checked again once |
| * actually needed. |
| */ |
| *done += PAGE_SIZE; |
| put_page(page); |
| } |
| |
| return NULL; |
| } |
| |
| static loff_t |
| iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length, |
| void *data, struct iomap *iomap) |
| { |
| struct iomap_readpage_ctx *ctx = data; |
| loff_t done, ret; |
| |
| for (done = 0; done < length; done += ret) { |
| if (ctx->cur_page && offset_in_page(pos + done) == 0) { |
| if (!ctx->cur_page_in_bio) |
| unlock_page(ctx->cur_page); |
| put_page(ctx->cur_page); |
| ctx->cur_page = NULL; |
| } |
| if (!ctx->cur_page) { |
| ctx->cur_page = iomap_next_page(inode, ctx->pages, |
| pos, length, &done); |
| if (!ctx->cur_page) |
| break; |
| ctx->cur_page_in_bio = false; |
| } |
| ret = iomap_readpage_actor(inode, pos + done, length - done, |
| ctx, iomap); |
| } |
| |
| return done; |
| } |
| |
| int |
| iomap_readpages(struct address_space *mapping, struct list_head *pages, |
| unsigned nr_pages, const struct iomap_ops *ops) |
| { |
| struct iomap_readpage_ctx ctx = { |
| .pages = pages, |
| .is_readahead = true, |
| }; |
| loff_t pos = page_offset(list_entry(pages->prev, struct page, lru)); |
| loff_t last = page_offset(list_entry(pages->next, struct page, lru)); |
| loff_t length = last - pos + PAGE_SIZE, ret = 0; |
| |
| while (length > 0) { |
| ret = iomap_apply(mapping->host, pos, length, 0, ops, |
| &ctx, iomap_readpages_actor); |
| if (ret <= 0) { |
| WARN_ON_ONCE(ret == 0); |
| goto done; |
| } |
| pos += ret; |
| length -= ret; |
| } |
| ret = 0; |
| done: |
| if (ctx.bio) |
| submit_bio(ctx.bio); |
| if (ctx.cur_page) { |
| if (!ctx.cur_page_in_bio) |
| unlock_page(ctx.cur_page); |
| put_page(ctx.cur_page); |
| } |
| |
| /* |
| * Check that we didn't lose a page due to the arcance calling |
| * conventions.. |
| */ |
| WARN_ON_ONCE(!ret && !list_empty(ctx.pages)); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(iomap_readpages); |
| |
| int |
| iomap_is_partially_uptodate(struct page *page, unsigned long from, |
| unsigned long count) |
| { |
| struct iomap_page *iop = to_iomap_page(page); |
| struct inode *inode = page->mapping->host; |
| unsigned first = from >> inode->i_blkbits; |
| unsigned last = (from + count - 1) >> inode->i_blkbits; |
| unsigned i; |
| |
| if (iop) { |
| for (i = first; i <= last; i++) |
| if (!test_bit(i, iop->uptodate)) |
| return 0; |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); |
| |
| int |
| iomap_releasepage(struct page *page, gfp_t gfp_mask) |
| { |
| /* |
| * mm accommodates an old ext3 case where clean pages might not have had |
| * the dirty bit cleared. Thus, it can send actual dirty pages to |
| * ->releasepage() via shrink_active_list(), skip those here. |
| */ |
| if (PageDirty(page) || PageWriteback(page)) |
| return 0; |
| iomap_page_release(page); |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(iomap_releasepage); |
| |
| void |
| iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) |
| { |
| /* |
| * If we are invalidating the entire page, clear the dirty state from it |
| * and release it to avoid unnecessary buildup of the LRU. |
| */ |
| if (offset == 0 && len == PAGE_SIZE) { |
| WARN_ON_ONCE(PageWriteback(page)); |
| cancel_dirty_page(page); |
| iomap_page_release(page); |
| } |
| } |
| EXPORT_SYMBOL_GPL(iomap_invalidatepage); |
| |
| #ifdef CONFIG_MIGRATION |
| int |
| iomap_migrate_page(struct address_space *mapping, struct page *newpage, |
| struct page *page, enum migrate_mode mode) |
| { |
| int ret; |
| |
| ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); |
| if (ret != MIGRATEPAGE_SUCCESS) |
| return ret; |
| |
| if (page_has_private(page)) { |
| ClearPagePrivate(page); |
| set_page_private(newpage, page_private(page)); |
| set_page_private(page, 0); |
| SetPagePrivate(newpage); |
| } |
| |
| if (mode != MIGRATE_SYNC_NO_COPY) |
| migrate_page_copy(newpage, page); |
| else |
| migrate_page_states(newpage, page); |
| return MIGRATEPAGE_SUCCESS; |
| } |
| EXPORT_SYMBOL_GPL(iomap_migrate_page); |
| #endif /* CONFIG_MIGRATION */ |
| |
| static void |
| iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) |
| { |
| loff_t i_size = i_size_read(inode); |
| |
| /* |
| * Only truncate newly allocated pages beyoned EOF, even if the |
| * write started inside the existing inode size. |
| */ |
| if (pos + len > i_size) |
| truncate_pagecache_range(inode, max(pos, i_size), pos + len); |
| } |
| |
| static int |
| iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page, |
| unsigned poff, unsigned plen, unsigned from, unsigned to, |
| struct iomap *iomap) |
| { |
| struct bio_vec bvec; |
| struct bio bio; |
| |
| if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) { |
| zero_user_segments(page, poff, from, to, poff + plen); |
| iomap_set_range_uptodate(page, poff, plen); |
| return 0; |
| } |
| |
| bio_init(&bio, &bvec, 1); |
| bio.bi_opf = REQ_OP_READ; |
| bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); |
| bio_set_dev(&bio, iomap->bdev); |
| __bio_add_page(&bio, page, plen, poff); |
| return submit_bio_wait(&bio); |
| } |
| |
| static int |
| __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, |
| struct page *page, struct iomap *iomap) |
| { |
| struct iomap_page *iop = iomap_page_create(inode, page); |
| loff_t block_size = i_blocksize(inode); |
| loff_t block_start = pos & ~(block_size - 1); |
| loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1); |
| unsigned from = offset_in_page(pos), to = from + len, poff, plen; |
| int status = 0; |
| |
| if (PageUptodate(page)) |
| return 0; |
| |
| do { |
| iomap_adjust_read_range(inode, iop, &block_start, |
| block_end - block_start, &poff, &plen); |
| if (plen == 0) |
| break; |
| |
| if ((from > poff && from < poff + plen) || |
| (to > poff && to < poff + plen)) { |
| status = iomap_read_page_sync(inode, block_start, page, |
| poff, plen, from, to, iomap); |
| if (status) |
| break; |
| } |
| |
| } while ((block_start += plen) < block_end); |
| |
| return status; |
| } |
| |
| static int |
| iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, struct iomap *iomap) |
| { |
| pgoff_t index = pos >> PAGE_SHIFT; |
| struct page *page; |
| int status = 0; |
| |
| BUG_ON(pos + len > iomap->offset + iomap->length); |
| |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| |
| page = grab_cache_page_write_begin(inode->i_mapping, index, flags); |
| if (!page) |
| return -ENOMEM; |
| |
| if (iomap->type == IOMAP_INLINE) |
| iomap_read_inline_data(inode, page, iomap); |
| else if (iomap->flags & IOMAP_F_BUFFER_HEAD) |
| status = __block_write_begin_int(page, pos, len, NULL, iomap); |
| else |
| status = __iomap_write_begin(inode, pos, len, page, iomap); |
| if (unlikely(status)) { |
| unlock_page(page); |
| put_page(page); |
| page = NULL; |
| |
| iomap_write_failed(inode, pos, len); |
| } |
| |
| *pagep = page; |
| return status; |
| } |
| |
| int |
| iomap_set_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page_mapping(page); |
| int newly_dirty; |
| |
| if (unlikely(!mapping)) |
| return !TestSetPageDirty(page); |
| |
| /* |
| * Lock out page->mem_cgroup migration to keep PageDirty |
| * synchronized with per-memcg dirty page counters. |
| */ |
| lock_page_memcg(page); |
| newly_dirty = !TestSetPageDirty(page); |
| if (newly_dirty) |
| __set_page_dirty(page, mapping, 0); |
| unlock_page_memcg(page); |
| |
| if (newly_dirty) |
| __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| return newly_dirty; |
| } |
| EXPORT_SYMBOL_GPL(iomap_set_page_dirty); |
| |
| static int |
| __iomap_write_end(struct inode *inode, loff_t pos, unsigned len, |
| unsigned copied, struct page *page, struct iomap *iomap) |
| { |
| flush_dcache_page(page); |
| |
| /* |
| * The blocks that were entirely written will now be uptodate, so we |
| * don't have to worry about a readpage reading them and overwriting a |
| * partial write. However if we have encountered a short write and only |
| * partially written into a block, it will not be marked uptodate, so a |
| * readpage might come in and destroy our partial write. |
| * |
| * Do the simplest thing, and just treat any short write to a non |
| * uptodate page as a zero-length write, and force the caller to redo |
| * the whole thing. |
| */ |
| if (unlikely(copied < len && !PageUptodate(page))) { |
| copied = 0; |
| } else { |
| iomap_set_range_uptodate(page, offset_in_page(pos), len); |
| iomap_set_page_dirty(page); |
| } |
| return __generic_write_end(inode, pos, copied, page); |
| } |
| |
| static int |
| iomap_write_end_inline(struct inode *inode, struct page *page, |
| struct iomap *iomap, loff_t pos, unsigned copied) |
| { |
| void *addr; |
| |
| WARN_ON_ONCE(!PageUptodate(page)); |
| BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); |
| |
| addr = kmap_atomic(page); |
| memcpy(iomap->inline_data + pos, addr + pos, copied); |
| kunmap_atomic(addr); |
| |
| mark_inode_dirty(inode); |
| __generic_write_end(inode, pos, copied, page); |
| return copied; |
| } |
| |
| static int |
| iomap_write_end(struct inode *inode, loff_t pos, unsigned len, |
| unsigned copied, struct page *page, struct iomap *iomap) |
| { |
| int ret; |
| |
| if (iomap->type == IOMAP_INLINE) { |
| ret = iomap_write_end_inline(inode, page, iomap, pos, copied); |
| } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) { |
| ret = generic_write_end(NULL, inode->i_mapping, pos, len, |
| copied, page, NULL); |
| } else { |
| ret = __iomap_write_end(inode, pos, len, copied, page, iomap); |
| } |
| |
| if (iomap->page_done) |
| iomap->page_done(inode, pos, copied, page, iomap); |
| |
| if (ret < len) |
| iomap_write_failed(inode, pos, len); |
| return ret; |
| } |
| |
| static loff_t |
| iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
| struct iomap *iomap) |
| { |
| struct iov_iter *i = data; |
| long status = 0; |
| ssize_t written = 0; |
| unsigned int flags = AOP_FLAG_NOFS; |
| |
| do { |
| struct page *page; |
| unsigned long offset; /* Offset into pagecache page */ |
| unsigned long bytes; /* Bytes to write to page */ |
| size_t copied; /* Bytes copied from user */ |
| |
| offset = offset_in_page(pos); |
| bytes = min_t(unsigned long, PAGE_SIZE - offset, |
| iov_iter_count(i)); |
| again: |
| if (bytes > length) |
| bytes = length; |
| |
| /* |
| * Bring in the user page that we will copy from _first_. |
| * Otherwise there's a nasty deadlock on copying from the |
| * same page as we're writing to, without it being marked |
| * up-to-date. |
| * |
| * Not only is this an optimisation, but it is also required |
| * to check that the address is actually valid, when atomic |
| * usercopies are used, below. |
| */ |
| if (unlikely(iov_iter_fault_in_readable(i, bytes))) { |
| status = -EFAULT; |
| break; |
| } |
| |
| status = iomap_write_begin(inode, pos, bytes, flags, &page, |
| iomap); |
| if (unlikely(status)) |
| break; |
| |
| if (mapping_writably_mapped(inode->i_mapping)) |
| flush_dcache_page(page); |
| |
| copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
| |
| flush_dcache_page(page); |
| |
| status = iomap_write_end(inode, pos, bytes, copied, page, |
| iomap); |
| if (unlikely(status < 0)) |
| break; |
| copied = status; |
| |
| cond_resched(); |
| |
| iov_iter_advance(i, copied); |
| if (unlikely(copied == 0)) { |
| /* |
| * If we were unable to copy any data at all, we must |
| * fall back to a single segment length write. |
| * |
| * If we didn't fallback here, we could livelock |
| * because not all segments in the iov can be copied at |
| * once without a pagefault. |
| */ |
| bytes = min_t(unsigned long, PAGE_SIZE - offset, |
| iov_iter_single_seg_count(i)); |
| goto again; |
| } |
| pos += copied; |
| written += copied; |
| length -= copied; |
| |
| balance_dirty_pages_ratelimited(inode->i_mapping); |
| } while (iov_iter_count(i) && length); |
| |
| return written ? written : status; |
| } |
| |
| ssize_t |
| iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, |
| const struct iomap_ops *ops) |
| { |
| struct inode *inode = iocb->ki_filp->f_mapping->host; |
| loff_t pos = iocb->ki_pos, ret = 0, written = 0; |
| |
| while (iov_iter_count(iter)) { |
| ret = iomap_apply(inode, pos, iov_iter_count(iter), |
| IOMAP_WRITE, ops, iter, iomap_write_actor); |
| if (ret <= 0) |
| break; |
| pos += ret; |
| written += ret; |
| } |
| |
| return written ? written : ret; |
| } |
| EXPORT_SYMBOL_GPL(iomap_file_buffered_write); |
| |
| static struct page * |
| __iomap_read_page(struct inode *inode, loff_t offset) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| |
| page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL); |
| if (IS_ERR(page)) |
| return page; |
| if (!PageUptodate(page)) { |
| put_page(page); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| static loff_t |
| iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
| struct iomap *iomap) |
| { |
| long status = 0; |
| ssize_t written = 0; |
| |
| do { |
| struct page *page, *rpage; |
| unsigned long offset; /* Offset into pagecache page */ |
| unsigned long bytes; /* Bytes to write to page */ |
| |
| offset = offset_in_page(pos); |
| bytes = min_t(loff_t, PAGE_SIZE - offset, length); |
| |
| rpage = __iomap_read_page(inode, pos); |
| if (IS_ERR(rpage)) |
| return PTR_ERR(rpage); |
| |
| status = iomap_write_begin(inode, pos, bytes, |
| AOP_FLAG_NOFS, &page, iomap); |
| put_page(rpage); |
| if (unlikely(status)) |
| return status; |
| |
| WARN_ON_ONCE(!PageUptodate(page)); |
| |
| status = iomap_write_end(inode, pos, bytes, bytes, page, iomap); |
| if (unlikely(status <= 0)) { |
| if (WARN_ON_ONCE(status == 0)) |
| return -EIO; |
| return status; |
| } |
| |
| cond_resched(); |
| |
| pos += status; |
| written += status; |
| length -= status; |
| |
| balance_dirty_pages_ratelimited(inode->i_mapping); |
| } while (length); |
| |
| return written; |
| } |
| |
| int |
| iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len, |
| const struct iomap_ops *ops) |
| { |
| loff_t ret; |
| |
| while (len) { |
| ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, |
| iomap_dirty_actor); |
| if (ret <= 0) |
| return ret; |
| pos += ret; |
| len -= ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(iomap_file_dirty); |
| |
| static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset, |
| unsigned bytes, struct iomap *iomap) |
| { |
| struct page *page; |
| int status; |
| |
| status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page, |
| iomap); |
| if (status) |
| return status; |
| |
| zero_user(page, offset, bytes); |
| mark_page_accessed(page); |
| |
| return iomap_write_end(inode, pos, bytes, bytes, page, iomap); |
| } |
| |
| static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes, |
| struct iomap *iomap) |
| { |
| return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, |
| iomap_sector(iomap, pos & PAGE_MASK), offset, bytes); |
| } |
| |
| static loff_t |
| iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count, |
| void *data, struct iomap *iomap) |
| { |
| bool *did_zero = data; |
| loff_t written = 0; |
| int status; |
| |
| /* already zeroed? we're done. */ |
| if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) |
| return count; |
| |
| do { |
| unsigned offset, bytes; |
| |
| offset = offset_in_page(pos); |
| bytes = min_t(loff_t, PAGE_SIZE - offset, count); |
| |
| if (IS_DAX(inode)) |
| status = iomap_dax_zero(pos, offset, bytes, iomap); |
| else |
| status = iomap_zero(inode, pos, offset, bytes, iomap); |
| if (status < 0) |
| return status; |
| |
| pos += bytes; |
| count -= bytes; |
| written += bytes; |
| if (did_zero) |
| *did_zero = true; |
| } while (count > 0); |
| |
| return written; |
| } |
| |
| int |
| iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, |
| const struct iomap_ops *ops) |
| { |
| loff_t ret; |
| |
| while (len > 0) { |
| ret = iomap_apply(inode, pos, len, IOMAP_ZERO, |
| ops, did_zero, iomap_zero_range_actor); |
| if (ret <= 0) |
| return ret; |
| |
| pos += ret; |
| len -= ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(iomap_zero_range); |
| |
| int |
| iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, |
| const struct iomap_ops *ops) |
| { |
| unsigned int blocksize = i_blocksize(inode); |
| unsigned int off = pos & (blocksize - 1); |
| |
| /* Block boundary? Nothing to do */ |
| if (!off) |
| return 0; |
| return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); |
| } |
| EXPORT_SYMBOL_GPL(iomap_truncate_page); |
| |
| static loff_t |
| iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, |
| void *data, struct iomap *iomap) |
| { |
| struct page *page = data; |
| int ret; |
| |
| if (iomap->flags & IOMAP_F_BUFFER_HEAD) { |
| ret = __block_write_begin_int(page, pos, length, NULL, iomap); |
| if (ret) |
| return ret; |
| block_commit_write(page, 0, length); |
| } else { |
| WARN_ON_ONCE(!PageUptodate(page)); |
| iomap_page_create(inode, page); |
| } |
| |
| return length; |
| } |
| |
| int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) |
| { |
| struct page *page = vmf->page; |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| unsigned long length; |
| loff_t offset, size; |
| ssize_t ret; |
| |
| lock_page(page); |
| size = i_size_read(inode); |
| if ((page->mapping != inode->i_mapping) || |
| (page_offset(page) > size)) { |
| /* We overload EFAULT to mean page got truncated */ |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| /* page is wholly or partially inside EOF */ |
| if (((page->index + 1) << PAGE_SHIFT) > size) |
| length = offset_in_page(size); |
| else |
| length = PAGE_SIZE; |
| |
| offset = page_offset(page); |
| while (length > 0) { |
| ret = iomap_apply(inode, offset, length, |
| IOMAP_WRITE | IOMAP_FAULT, ops, page, |
| iomap_page_mkwrite_actor); |
| if (unlikely(ret <= 0)) |
| goto out_unlock; |
| offset += ret; |
| length -= ret; |
| } |
| |
| set_page_dirty(page); |
| wait_for_stable_page(page); |
| return VM_FAULT_LOCKED; |
| out_unlock: |
| unlock_page(page); |
| return block_page_mkwrite_return(ret); |
| } |
| EXPORT_SYMBOL_GPL(iomap_page_mkwrite); |
| |
| struct fiemap_ctx { |
| struct fiemap_extent_info *fi; |
| struct iomap prev; |
| }; |
| |
| static int iomap_to_fiemap(struct fiemap_extent_info *fi, |
| struct iomap *iomap, u32 flags) |
| { |
| switch (iomap->type) { |
| case IOMAP_HOLE: |
| /* skip holes */ |
| return 0; |
| case IOMAP_DELALLOC: |
| flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN; |
| break; |
| case IOMAP_MAPPED: |
| break; |
| case IOMAP_UNWRITTEN: |
| flags |= FIEMAP_EXTENT_UNWRITTEN; |
| break; |
| case IOMAP_INLINE: |
| flags |= FIEMAP_EXTENT_DATA_INLINE; |
| break; |
| } |
| |
| if (iomap->flags & IOMAP_F_MERGED) |
| flags |= FIEMAP_EXTENT_MERGED; |
| if (iomap->flags & IOMAP_F_SHARED) |
| flags |= FIEMAP_EXTENT_SHARED; |
| |
| return fiemap_fill_next_extent(fi, iomap->offset, |
| iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0, |
| iomap->length, flags); |
| } |
| |
| static loff_t |
| iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
| struct iomap *iomap) |
| { |
| struct fiemap_ctx *ctx = data; |
| loff_t ret = length; |
| |
| if (iomap->type == IOMAP_HOLE) |
| return length; |
| |
| ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0); |
| ctx->prev = *iomap; |
| switch (ret) { |
| case 0: /* success */ |
| return length; |
| case 1: /* extent array full */ |
| return 0; |
| default: |
| return ret; |
| } |
| } |
| |
| int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi, |
| loff_t start, loff_t len, const struct iomap_ops *ops) |
| { |
| struct fiemap_ctx ctx; |
| loff_t ret; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| ctx.fi = fi; |
| ctx.prev.type = IOMAP_HOLE; |
| |
| ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC); |
| if (ret) |
| return ret; |
| |
| if (fi->fi_flags & FIEMAP_FLAG_SYNC) { |
| ret = filemap_write_and_wait(inode->i_mapping); |
| if (ret) |
| return ret; |
| } |
| |
| while (len > 0) { |
| ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx, |
| iomap_fiemap_actor); |
| /* inode with no (attribute) mapping will give ENOENT */ |
| if (ret == -ENOENT) |
| break; |
| if (ret < 0) |
| return ret; |
| if (ret == 0) |
| break; |
| |
| start += ret; |
| len -= ret; |
| } |
| |
| if (ctx.prev.type != IOMAP_HOLE) { |
| ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(iomap_fiemap); |
| |
| /* |
| * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff. |
| * Returns true if found and updates @lastoff to the offset in file. |
| */ |
| static bool |
| page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff, |
| int whence) |
| { |
| const struct address_space_operations *ops = inode->i_mapping->a_ops; |
| unsigned int bsize = i_blocksize(inode), off; |
| bool seek_data = whence == SEEK_DATA; |
| loff_t poff = page_offset(page); |
| |
| if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE)) |
| return false; |
| |
| if (*lastoff < poff) { |
| /* |
| * Last offset smaller than the start of the page means we found |
| * a hole: |
| */ |
| if (whence == SEEK_HOLE) |
| return true; |
| *lastoff = poff; |
| } |
| |
| /* |
| * Just check the page unless we can and should check block ranges: |
| */ |
| if (bsize == PAGE_SIZE || !ops->is_partially_uptodate) |
| return PageUptodate(page) == seek_data; |
| |
| lock_page(page); |
| if (unlikely(page->mapping != inode->i_mapping)) |
| goto out_unlock_not_found; |
| |
| for (off = 0; off < PAGE_SIZE; off += bsize) { |
| if (offset_in_page(*lastoff) >= off + bsize) |
| continue; |
| if (ops->is_partially_uptodate(page, off, bsize) == seek_data) { |
| unlock_page(page); |
| return true; |
| } |
| *lastoff = poff + off + bsize; |
| } |
| |
| out_unlock_not_found: |
| unlock_page(page); |
| return false; |
| } |
| |
| /* |
| * Seek for SEEK_DATA / SEEK_HOLE in the page cache. |
| * |
| * Within unwritten extents, the page cache determines which parts are holes |
| * and which are data: uptodate buffer heads count as data; everything else |
| * counts as a hole. |
| * |
| * Returns the resulting offset on successs, and -ENOENT otherwise. |
| */ |
| static loff_t |
| page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length, |
| int whence) |
| { |
| pgoff_t index = offset >> PAGE_SHIFT; |
| pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE); |
| loff_t lastoff = offset; |
| struct pagevec pvec; |
| |
| if (length <= 0) |
| return -ENOENT; |
| |
| pagevec_init(&pvec); |
| |
| do { |
| unsigned nr_pages, i; |
| |
| nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index, |
| end - 1); |
| if (nr_pages == 0) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| if (page_seek_hole_data(inode, page, &lastoff, whence)) |
| goto check_range; |
| lastoff = page_offset(page) + PAGE_SIZE; |
| } |
| pagevec_release(&pvec); |
| } while (index < end); |
| |
| /* When no page at lastoff and we are not done, we found a hole. */ |
| if (whence != SEEK_HOLE) |
| goto not_found; |
| |
| check_range: |
| if (lastoff < offset + length) |
| goto out; |
| not_found: |
| lastoff = -ENOENT; |
| out: |
| pagevec_release(&pvec); |
| return lastoff; |
| } |
| |
| |
| static loff_t |
| iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length, |
| void *data, struct iomap *iomap) |
| { |
| switch (iomap->type) { |
| case IOMAP_UNWRITTEN: |
| offset = page_cache_seek_hole_data(inode, offset, length, |
| SEEK_HOLE); |
| if (offset < 0) |
| return length; |
| /* fall through */ |
| case IOMAP_HOLE: |
| *(loff_t *)data = offset; |
| return 0; |
| default: |
| return length; |
| } |
| } |
| |
| loff_t |
| iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops) |
| { |
| loff_t size = i_size_read(inode); |
| loff_t length = size - offset; |
| loff_t ret; |
| |
| /* Nothing to be found before or beyond the end of the file. */ |
| if (offset < 0 || offset >= size) |
| return -ENXIO; |
| |
| while (length > 0) { |
| ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops, |
| &offset, iomap_seek_hole_actor); |
| if (ret < 0) |
| return ret; |
| if (ret == 0) |
| break; |
| |
| offset += ret; |
| length -= ret; |
| } |
| |
| return offset; |
| } |
| EXPORT_SYMBOL_GPL(iomap_seek_hole); |
| |
| static loff_t |
| iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length, |
| void *data, struct iomap *iomap) |
| { |
| switch (iomap->type) { |
| case IOMAP_HOLE: |
| return length; |
| case IOMAP_UNWRITTEN: |
| offset = page_cache_seek_hole_data(inode, offset, length, |
| SEEK_DATA); |
| if (offset < 0) |
| return length; |
| /*FALLTHRU*/ |
| default: |
| *(loff_t *)data = offset; |
| return 0; |
| } |
| } |
| |
| loff_t |
| iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops) |
| { |
| loff_t size = i_size_read(inode); |
| loff_t length = size - offset; |
| loff_t ret; |
| |
| /* Nothing to be found before or beyond the end of the file. */ |
| if (offset < 0 || offset >= size) |
| return -ENXIO; |
| |
| while (length > 0) { |
| ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops, |
| &offset, iomap_seek_data_actor); |
| if (ret < 0) |
| return ret; |
| if (ret == 0) |
| break; |
| |
| offset += ret; |
| length -= ret; |
| } |
| |
| if (length <= 0) |
| return -ENXIO; |
| return offset; |
| } |
| EXPORT_SYMBOL_GPL(iomap_seek_data); |
| |
| /* |
| * Private flags for iomap_dio, must not overlap with the public ones in |
| * iomap.h: |
| */ |
| #define IOMAP_DIO_WRITE_FUA (1 << 28) |
| #define IOMAP_DIO_NEED_SYNC (1 << 29) |
| #define IOMAP_DIO_WRITE (1 << 30) |
| #define IOMAP_DIO_DIRTY (1 << 31) |
| |
| struct iomap_dio { |
| struct kiocb *iocb; |
| iomap_dio_end_io_t *end_io; |
| loff_t i_size; |
| loff_t size; |
| atomic_t ref; |
| unsigned flags; |
| int error; |
| bool wait_for_completion; |
| |
| union { |
| /* used during submission and for synchronous completion: */ |
| struct { |
| struct iov_iter *iter; |
| struct task_struct *waiter; |
| struct request_queue *last_queue; |
| blk_qc_t cookie; |
| } submit; |
| |
| /* used for aio completion: */ |
| struct { |
| struct work_struct work; |
| } aio; |
| }; |
| }; |
| |
| static ssize_t iomap_dio_complete(struct iomap_dio *dio) |
| { |
| struct kiocb *iocb = dio->iocb; |
| struct inode *inode = file_inode(iocb->ki_filp); |
| loff_t offset = iocb->ki_pos; |
| ssize_t ret; |
| |
| if (dio->end_io) { |
| ret = dio->end_io(iocb, |
| dio->error ? dio->error : dio->size, |
| dio->flags); |
| } else { |
| ret = dio->error; |
| } |
| |
| if (likely(!ret)) { |
| ret = dio->size; |
| /* check for short read */ |
| if (offset + ret > dio->i_size && |
| !(dio->flags & IOMAP_DIO_WRITE)) |
| ret = dio->i_size - offset; |
| iocb->ki_pos += ret; |
| } |
| |
| /* |
| * Try again to invalidate clean pages which might have been cached by |
| * non-direct readahead, or faulted in by get_user_pages() if the source |
| * of the write was an mmap'ed region of the file we're writing. Either |
| * one is a pretty crazy thing to do, so we don't support it 100%. If |
| * this invalidation fails, tough, the write still worked... |
| * |
| * And this page cache invalidation has to be after dio->end_io(), as |
| * some filesystems convert unwritten extents to real allocations in |
| * end_io() when necessary, otherwise a racing buffer read would cache |
| * zeros from unwritten extents. |
| */ |
| if (!dio->error && |
| (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { |
| int err; |
| err = invalidate_inode_pages2_range(inode->i_mapping, |
| offset >> PAGE_SHIFT, |
| (offset + dio->size - 1) >> PAGE_SHIFT); |
| if (err) |
| dio_warn_stale_pagecache(iocb->ki_filp); |
| } |
| |
| /* |
| * If this is a DSYNC write, make sure we push it to stable storage now |
| * that we've written data. |
| */ |
| if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) |
| ret = generic_write_sync(iocb, ret); |
| |
| inode_dio_end(file_inode(iocb->ki_filp)); |
| kfree(dio); |
| |
| return ret; |
| } |
| |
| static void iomap_dio_complete_work(struct work_struct *work) |
| { |
| struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); |
| struct kiocb *iocb = dio->iocb; |
| |
| iocb->ki_complete(iocb, iomap_dio_complete(dio), 0); |
| } |
| |
| /* |
| * Set an error in the dio if none is set yet. We have to use cmpxchg |
| * as the submission context and the completion context(s) can race to |
| * update the error. |
| */ |
| static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) |
| { |
| cmpxchg(&dio->error, 0, ret); |
| } |
| |
| static void iomap_dio_bio_end_io(struct bio *bio) |
| { |
| struct iomap_dio *dio = bio->bi_private; |
| bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); |
| |
| if (bio->bi_status) |
| iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); |
| |
| if (atomic_dec_and_test(&dio->ref)) { |
| if (dio->wait_for_completion) { |
| struct task_struct *waiter = dio->submit.waiter; |
| WRITE_ONCE(dio->submit.waiter, NULL); |
| wake_up_process(waiter); |
| } else if (dio->flags & IOMAP_DIO_WRITE) { |
| struct inode *inode = file_inode(dio->iocb->ki_filp); |
| |
| INIT_WORK(&dio->aio.work, iomap_dio_complete_work); |
| queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); |
| } else { |
| iomap_dio_complete_work(&dio->aio.work); |
| } |
| } |
| |
| if (should_dirty) { |
| bio_check_pages_dirty(bio); |
| } else { |
| struct bio_vec *bvec; |
| int i; |
| |
| bio_for_each_segment_all(bvec, bio, i) |
| put_page(bvec->bv_page); |
| bio_put(bio); |
| } |
| } |
| |
| static blk_qc_t |
| iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos, |
| unsigned len) |
| { |
| struct page *page = ZERO_PAGE(0); |
| struct bio *bio; |
| |
| bio = bio_alloc(GFP_KERNEL, 1); |
| bio_set_dev(bio, iomap->bdev); |
| bio->bi_iter.bi_sector = iomap_sector(iomap, pos); |
| bio->bi_private = dio; |
| bio->bi_end_io = iomap_dio_bio_end_io; |
| |
| get_page(page); |
| __bio_add_page(bio, page, len, 0); |
| bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE); |
| |
| atomic_inc(&dio->ref); |
| return submit_bio(bio); |
| } |
| |
| static loff_t |
| iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length, |
| struct iomap_dio *dio, struct iomap *iomap) |
| { |
| unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev)); |
| unsigned int fs_block_size = i_blocksize(inode), pad; |
| unsigned int align = iov_iter_alignment(dio->submit.iter); |
| struct iov_iter iter; |
| struct bio *bio; |
| bool need_zeroout = false; |
| bool use_fua = false; |
| int nr_pages, ret; |
| size_t copied = 0; |
| |
| if ((pos | length | align) & ((1 << blkbits) - 1)) |
| return -EINVAL; |
| |
| if (iomap->type == IOMAP_UNWRITTEN) { |
| dio->flags |= IOMAP_DIO_UNWRITTEN; |
| need_zeroout = true; |
| } |
| |
| if (iomap->flags & IOMAP_F_SHARED) |
| dio->flags |= IOMAP_DIO_COW; |
| |
| if (iomap->flags & IOMAP_F_NEW) { |
| need_zeroout = true; |
| } else { |
| /* |
| * Use a FUA write if we need datasync semantics, this |
| * is a pure data IO that doesn't require any metadata |
| * updates and the underlying device supports FUA. This |
| * allows us to avoid cache flushes on IO completion. |
| */ |
| if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && |
| (dio->flags & IOMAP_DIO_WRITE_FUA) && |
| blk_queue_fua(bdev_get_queue(iomap->bdev))) |
| use_fua = true; |
| } |
| |
| /* |
| * Operate on a partial iter trimmed to the extent we were called for. |
| * We'll update the iter in the dio once we're done with this extent. |
| */ |
| iter = *dio->submit.iter; |
| iov_iter_truncate(&iter, length); |
| |
| nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES); |
| if (nr_pages <= 0) |
| return nr_pages; |
| |
| if (need_zeroout) { |
| /* zero out from the start of the block to the write offset */ |
| pad = pos & (fs_block_size - 1); |
| if (pad) |
| iomap_dio_zero(dio, iomap, pos - pad, pad); |
| } |
| |
| do { |
| size_t n; |
| if (dio->error) { |
| iov_iter_revert(dio->submit.iter, copied); |
| return 0; |
| } |
| |
| bio = bio_alloc(GFP_KERNEL, nr_pages); |
| bio_set_dev(bio, iomap->bdev); |
| bio->bi_iter.bi_sector = iomap_sector(iomap, pos); |
| bio->bi_write_hint = dio->iocb->ki_hint; |
| bio->bi_ioprio = dio->iocb->ki_ioprio; |
| bio->bi_private = dio; |
| bio->bi_end_io = iomap_dio_bio_end_io; |
| |
| ret = bio_iov_iter_get_pages(bio, &iter); |
| if (unlikely(ret)) { |
| bio_put(bio); |
| return copied ? copied : ret; |
| } |
| |
| n = bio->bi_iter.bi_size; |
| if (dio->flags & IOMAP_DIO_WRITE) { |
| bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; |
| if (use_fua) |
| bio->bi_opf |= REQ_FUA; |
| else |
| dio->flags &= ~IOMAP_DIO_WRITE_FUA; |
| task_io_account_write(n); |
| } else { |
| bio->bi_opf = REQ_OP_READ; |
| if (dio->flags & IOMAP_DIO_DIRTY) |
| bio_set_pages_dirty(bio); |
| } |
| |
| iov_iter_advance(dio->submit.iter, n); |
| |
| dio->size += n; |
| pos += n; |
| copied += n; |
| |
| nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES); |
| |
| atomic_inc(&dio->ref); |
| |
| dio->submit.last_queue = bdev_get_queue(iomap->bdev); |
| dio->submit.cookie = submit_bio(bio); |
| } while (nr_pages); |
| |
| if (need_zeroout) { |
| /* zero out from the end of the write to the end of the block */ |
| pad = pos & (fs_block_size - 1); |
| if (pad) |
| iomap_dio_zero(dio, iomap, pos, fs_block_size - pad); |
| } |
| return copied; |
| } |
| |
| static loff_t |
| iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio) |
| { |
| length = iov_iter_zero(length, dio->submit.iter); |
| dio->size += length; |
| return length; |
| } |
| |
| static loff_t |
| iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length, |
| struct iomap_dio *dio, struct iomap *iomap) |
| { |
| struct iov_iter *iter = dio->submit.iter; |
| size_t copied; |
| |
| BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data)); |
| |
| if (dio->flags & IOMAP_DIO_WRITE) { |
| loff_t size = inode->i_size; |
| |
| if (pos > size) |
| memset(iomap->inline_data + size, 0, pos - size); |
| copied = copy_from_iter(iomap->inline_data + pos, length, iter); |
| if (copied) { |
| if (pos + copied > size) |
| i_size_write(inode, pos + copied); |
| mark_inode_dirty(inode); |
| } |
| } else { |
| copied = copy_to_iter(iomap->inline_data + pos, length, iter); |
| } |
| dio->size += copied; |
| return copied; |
| } |
| |
| static loff_t |
| iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length, |
| void *data, struct iomap *iomap) |
| { |
| struct iomap_dio *dio = data; |
| |
| switch (iomap->type) { |
| case IOMAP_HOLE: |
| if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) |
| return -EIO; |
| return iomap_dio_hole_actor(length, dio); |
| case IOMAP_UNWRITTEN: |
| if (!(dio->flags & IOMAP_DIO_WRITE)) |
| return iomap_dio_hole_actor(length, dio); |
| return iomap_dio_bio_actor(inode, pos, length, dio, iomap); |
| case IOMAP_MAPPED: |
| return iomap_dio_bio_actor(inode, pos, length, dio, iomap); |
| case IOMAP_INLINE: |
| return iomap_dio_inline_actor(inode, pos, length, dio, iomap); |
| default: |
| WARN_ON_ONCE(1); |
| return -EIO; |
| } |
| } |
| |
| /* |
| * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO |
| * is being issued as AIO or not. This allows us to optimise pure data writes |
| * to use REQ_FUA rather than requiring generic_write_sync() to issue a |
| * REQ_FLUSH post write. This is slightly tricky because a single request here |
| * can be mapped into multiple disjoint IOs and only a subset of the IOs issued |
| * may be pure data writes. In that case, we still need to do a full data sync |
| * completion. |
| */ |
| ssize_t |
| iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, |
| const struct iomap_ops *ops, iomap_dio_end_io_t end_io) |
| { |
| struct address_space *mapping = iocb->ki_filp->f_mapping; |
| struct inode *inode = file_inode(iocb->ki_filp); |
| size_t count = iov_iter_count(iter); |
| loff_t pos = iocb->ki_pos, start = pos; |
| loff_t end = iocb->ki_pos + count - 1, ret = 0; |
| unsigned int flags = IOMAP_DIRECT; |
| struct blk_plug plug; |
| struct iomap_dio *dio; |
| |
| lockdep_assert_held(&inode->i_rwsem); |
| |
| if (!count) |
| return 0; |
| |
| dio = kmalloc(sizeof(*dio), GFP_KERNEL); |
| if (!dio) |
| return -ENOMEM; |
| |
| dio->iocb = iocb; |
| atomic_set(&dio->ref, 1); |
| dio->size = 0; |
| dio->i_size = i_size_read(inode); |
| dio->end_io = end_io; |
| dio->error = 0; |
| dio->flags = 0; |
| dio->wait_for_completion = is_sync_kiocb(iocb); |
| |
| dio->submit.iter = iter; |
| dio->submit.waiter = current; |
| dio->submit.cookie = BLK_QC_T_NONE; |
| dio->submit.last_queue = NULL; |
| |
| if (iov_iter_rw(iter) == READ) { |
| if (pos >= dio->i_size) |
| goto out_free_dio; |
| |
| if (iter->type == ITER_IOVEC) |
| dio->flags |= IOMAP_DIO_DIRTY; |
| } else { |
| flags |= IOMAP_WRITE; |
| dio->flags |= IOMAP_DIO_WRITE; |
| |
| /* for data sync or sync, we need sync completion processing */ |
| if (iocb->ki_flags & IOCB_DSYNC) |
| dio->flags |= IOMAP_DIO_NEED_SYNC; |
| |
| /* |
| * For datasync only writes, we optimistically try using FUA for |
| * this IO. Any non-FUA write that occurs will clear this flag, |
| * hence we know before completion whether a cache flush is |
| * necessary. |
| */ |
| if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC) |
| dio->flags |= IOMAP_DIO_WRITE_FUA; |
| } |
| |
| if (iocb->ki_flags & IOCB_NOWAIT) { |
| if (filemap_range_has_page(mapping, start, end)) { |
| ret = -EAGAIN; |
| goto out_free_dio; |
| } |
| flags |= IOMAP_NOWAIT; |
| } |
| |
| ret = filemap_write_and_wait_range(mapping, start, end); |
| if (ret) |
| goto out_free_dio; |
| |
| /* |
| * Try to invalidate cache pages for the range we're direct |
| * writing. If this invalidation fails, tough, the write will |
| * still work, but racing two incompatible write paths is a |
| * pretty crazy thing to do, so we don't support it 100%. |
| */ |
| ret = invalidate_inode_pages2_range(mapping, |
| start >> PAGE_SHIFT, end >> PAGE_SHIFT); |
| if (ret) |
| dio_warn_stale_pagecache(iocb->ki_filp); |
| ret = 0; |
| |
| if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion && |
| !inode->i_sb->s_dio_done_wq) { |
| ret = sb_init_dio_done_wq(inode->i_sb); |
| if (ret < 0) |
| goto out_free_dio; |
| } |
| |
| inode_dio_begin(inode); |
| |
| blk_start_plug(&plug); |
| do { |
| ret = iomap_apply(inode, pos, count, flags, ops, dio, |
| iomap_dio_actor); |
| if (ret <= 0) { |
| /* magic error code to fall back to buffered I/O */ |
| if (ret == -ENOTBLK) { |
| dio->wait_for_completion = true; |
| ret = 0; |
| } |
| break; |
| } |
| pos += ret; |
| |
| if (iov_iter_rw(iter) == READ && pos >= dio->i_size) |
| break; |
| } while ((count = iov_iter_count(iter)) > 0); |
| blk_finish_plug(&plug); |
| |
| if (ret < 0) |
| iomap_dio_set_error(dio, ret); |
| |
| /* |
| * If all the writes we issued were FUA, we don't need to flush the |
| * cache on IO completion. Clear the sync flag for this case. |
| */ |
| if (dio->flags & IOMAP_DIO_WRITE_FUA) |
| dio->flags &= ~IOMAP_DIO_NEED_SYNC; |
| |
| if (!atomic_dec_and_test(&dio->ref)) { |
| if (!dio->wait_for_completion) |
| return -EIOCBQUEUED; |
| |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (!READ_ONCE(dio->submit.waiter)) |
| break; |
| |
| if (!(iocb->ki_flags & IOCB_HIPRI) || |
| !dio->submit.last_queue || |
| !blk_poll(dio->submit.last_queue, |
| dio->submit.cookie)) |
| io_schedule(); |
| } |
| __set_current_state(TASK_RUNNING); |
| } |
| |
| ret = iomap_dio_complete(dio); |
| |
| return ret; |
| |
| out_free_dio: |
| kfree(dio); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(iomap_dio_rw); |
| |
| /* Swapfile activation */ |
| |
| #ifdef CONFIG_SWAP |
| struct iomap_swapfile_info { |
| struct iomap iomap; /* accumulated iomap */ |
| struct swap_info_struct *sis; |
| uint64_t lowest_ppage; /* lowest physical addr seen (pages) */ |
| uint64_t highest_ppage; /* highest physical addr seen (pages) */ |
| unsigned long nr_pages; /* number of pages collected */ |
| int nr_extents; /* extent count */ |
| }; |
| |
| /* |
| * Collect physical extents for this swap file. Physical extents reported to |
| * the swap code must be trimmed to align to a page boundary. The logical |
| * offset within the file is irrelevant since the swapfile code maps logical |
| * page numbers of the swap device to the physical page-aligned extents. |
| */ |
| static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi) |
| { |
| struct iomap *iomap = &isi->iomap; |
| unsigned long nr_pages; |
| uint64_t first_ppage; |
| uint64_t first_ppage_reported; |
| uint64_t next_ppage; |
| int error; |
| |
| /* |
| * Round the start up and the end down so that the physical |
| * extent aligns to a page boundary. |
| */ |
| first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT; |
| next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >> |
| PAGE_SHIFT; |
| |
| /* Skip too-short physical extents. */ |
| if (first_ppage >= next_ppage) |
| return 0; |
| nr_pages = next_ppage - first_ppage; |
| |
| /* |
| * Calculate how much swap space we're adding; the first page contains |
| * the swap header and doesn't count. The mm still wants that first |
| * page fed to add_swap_extent, however. |
| */ |
| first_ppage_reported = first_ppage; |
| if (iomap->offset == 0) |
| first_ppage_reported++; |
| if (isi->lowest_ppage > first_ppage_reported) |
| isi->lowest_ppage = first_ppage_reported; |
| if (isi->highest_ppage < (next_ppage - 1)) |
| isi->highest_ppage = next_ppage - 1; |
| |
| /* Add extent, set up for the next call. */ |
| error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage); |
| if (error < 0) |
| return error; |
| isi->nr_extents += error; |
| isi->nr_pages += nr_pages; |
| return 0; |
| } |
| |
| /* |
| * Accumulate iomaps for this swap file. We have to accumulate iomaps because |
| * swap only cares about contiguous page-aligned physical extents and makes no |
| * distinction between written and unwritten extents. |
| */ |
| static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos, |
| loff_t count, void *data, struct iomap *iomap) |
| { |
| struct iomap_swapfile_info *isi = data; |
| int error; |
| |
| switch (iomap->type) { |
| case IOMAP_MAPPED: |
| case IOMAP_UNWRITTEN: |
| /* Only real or unwritten extents. */ |
| break; |
| case IOMAP_INLINE: |
| /* No inline data. */ |
| pr_err("swapon: file is inline\n"); |
| return -EINVAL; |
| default: |
| pr_err("swapon: file has unallocated extents\n"); |
| return -EINVAL; |
| } |
| |
| /* No uncommitted metadata or shared blocks. */ |
| if (iomap->flags & IOMAP_F_DIRTY) { |
| pr_err("swapon: file is not committed\n"); |
| return -EINVAL; |
| } |
| if (iomap->flags & IOMAP_F_SHARED) { |
| pr_err("swapon: file has shared extents\n"); |
| return -EINVAL; |
| } |
| |
| /* Only one bdev per swap file. */ |
| if (iomap->bdev != isi->sis->bdev) { |
| pr_err("swapon: file is on multiple devices\n"); |
| return -EINVAL; |
| } |
| |
| if (isi->iomap.length == 0) { |
| /* No accumulated extent, so just store it. */ |
| memcpy(&isi->iomap, iomap, sizeof(isi->iomap)); |
| } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) { |
| /* Append this to the accumulated extent. */ |
| isi->iomap.length += iomap->length; |
| } else { |
| /* Otherwise, add the retained iomap and store this one. */ |
| error = iomap_swapfile_add_extent(isi); |
| if (error) |
| return error; |
| memcpy(&isi->iomap, iomap, sizeof(isi->iomap)); |
| } |
| return count; |
| } |
| |
| /* |
| * Iterate a swap file's iomaps to construct physical extents that can be |
| * passed to the swapfile subsystem. |
| */ |
| int iomap_swapfile_activate(struct swap_info_struct *sis, |
| struct file *swap_file, sector_t *pagespan, |
| const struct iomap_ops *ops) |
| { |
| struct iomap_swapfile_info isi = { |
| .sis = sis, |
| .lowest_ppage = (sector_t)-1ULL, |
| }; |
| struct address_space *mapping = swap_file->f_mapping; |
| struct inode *inode = mapping->host; |
| loff_t pos = 0; |
| loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE); |
| loff_t ret; |
| |
| /* |
| * Persist all file mapping metadata so that we won't have any |
| * IOMAP_F_DIRTY iomaps. |
| */ |
| ret = vfs_fsync(swap_file, 1); |
| if (ret) |
| return ret; |
| |
| while (len > 0) { |
| ret = iomap_apply(inode, pos, len, IOMAP_REPORT, |
| ops, &isi, iomap_swapfile_activate_actor); |
| if (ret <= 0) |
| return ret; |
| |
| pos += ret; |
| len -= ret; |
| } |
| |
| if (isi.iomap.length) { |
| ret = iomap_swapfile_add_extent(&isi); |
| if (ret) |
| return ret; |
| } |
| |
| *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage; |
| sis->max = isi.nr_pages; |
| sis->pages = isi.nr_pages - 1; |
| sis->highest_bit = isi.nr_pages - 1; |
| return isi.nr_extents; |
| } |
| EXPORT_SYMBOL_GPL(iomap_swapfile_activate); |
| #endif /* CONFIG_SWAP */ |
| |
| static loff_t |
| iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length, |
| void *data, struct iomap *iomap) |
| { |
| sector_t *bno = data, addr; |
| |
| if (iomap->type == IOMAP_MAPPED) { |
| addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits; |
| if (addr > INT_MAX) |
| WARN(1, "would truncate bmap result\n"); |
| else |
| *bno = addr; |
| } |
| return 0; |
| } |
| |
| /* legacy ->bmap interface. 0 is the error return (!) */ |
| sector_t |
| iomap_bmap(struct address_space *mapping, sector_t bno, |
| const struct iomap_ops *ops) |
| { |
| struct inode *inode = mapping->host; |
| loff_t pos = bno << inode->i_blkbits; |
| unsigned blocksize = i_blocksize(inode); |
| |
| if (filemap_write_and_wait(mapping)) |
| return 0; |
| |
| bno = 0; |
| iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor); |
| return bno; |
| } |
| EXPORT_SYMBOL_GPL(iomap_bmap); |