| /* |
| * Intel 3000/3010 Memory Controller kernel module |
| * Copyright (C) 2007 Akamai Technologies, Inc. |
| * Shamelessly copied from: |
| * Intel D82875P Memory Controller kernel module |
| * (C) 2003 Linux Networx (http://lnxi.com) |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/edac.h> |
| #include "edac_core.h" |
| |
| #define I3000_REVISION "1.1" |
| |
| #define EDAC_MOD_STR "i3000_edac" |
| |
| #define I3000_RANKS 8 |
| #define I3000_RANKS_PER_CHANNEL 4 |
| #define I3000_CHANNELS 2 |
| |
| /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ |
| |
| #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ |
| #define I3000_MCHBAR_MASK 0xffffc000 |
| #define I3000_MMR_WINDOW_SIZE 16384 |
| |
| #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) |
| * |
| * 7:1 reserved |
| * 0 bit 32 of address |
| */ |
| #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) |
| * |
| * 31:7 address |
| * 6:1 reserved |
| * 0 Error channel 0/1 |
| */ |
| #define I3000_DEAP_GRAIN (1 << 7) |
| |
| /* |
| * Helper functions to decode the DEAP/EDEAP hardware registers. |
| * |
| * The type promotion here is deliberate; we're deriving an |
| * unsigned long pfn and offset from hardware regs which are u8/u32. |
| */ |
| |
| static inline unsigned long deap_pfn(u8 edeap, u32 deap) |
| { |
| deap >>= PAGE_SHIFT; |
| deap |= (edeap & 1) << (32 - PAGE_SHIFT); |
| return deap; |
| } |
| |
| static inline unsigned long deap_offset(u32 deap) |
| { |
| return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK; |
| } |
| |
| static inline int deap_channel(u32 deap) |
| { |
| return deap & 1; |
| } |
| |
| #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) |
| * |
| * 7:0 DRAM ECC Syndrome |
| */ |
| |
| #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) |
| * |
| * 15:12 reserved |
| * 11 MCH Thermal Sensor Event |
| * for SMI/SCI/SERR |
| * 10 reserved |
| * 9 LOCK to non-DRAM Memory Flag (LCKF) |
| * 8 Received Refresh Timeout Flag (RRTOF) |
| * 7:2 reserved |
| * 1 Multi-bit DRAM ECC Error Flag (DMERR) |
| * 0 Single-bit DRAM ECC Error Flag (DSERR) |
| */ |
| #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ |
| #define I3000_ERRSTS_UE 0x0002 |
| #define I3000_ERRSTS_CE 0x0001 |
| |
| #define I3000_ERRCMD 0xca /* Error Command (16b) |
| * |
| * 15:12 reserved |
| * 11 SERR on MCH Thermal Sensor Event |
| * (TSESERR) |
| * 10 reserved |
| * 9 SERR on LOCK to non-DRAM Memory |
| * (LCKERR) |
| * 8 SERR on DRAM Refresh Timeout |
| * (DRTOERR) |
| * 7:2 reserved |
| * 1 SERR Multi-Bit DRAM ECC Error |
| * (DMERR) |
| * 0 SERR on Single-Bit ECC Error |
| * (DSERR) |
| */ |
| |
| /* Intel MMIO register space - device 0 function 0 - MMR space */ |
| |
| #define I3000_DRB_SHIFT 25 /* 32MiB grain */ |
| |
| #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) |
| * |
| * 7:0 Channel 0 DRAM Rank Boundary Address |
| */ |
| #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) |
| * |
| * 7:0 Channel 1 DRAM Rank Boundary Address |
| */ |
| |
| #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) |
| * |
| * 7 reserved |
| * 6:4 DRAM odd Rank Attribute |
| * 3 reserved |
| * 2:0 DRAM even Rank Attribute |
| * |
| * Each attribute defines the page |
| * size of the corresponding rank: |
| * 000: unpopulated |
| * 001: reserved |
| * 010: 4 KB |
| * 011: 8 KB |
| * 100: 16 KB |
| * Others: reserved |
| */ |
| #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ |
| |
| static inline unsigned char odd_rank_attrib(unsigned char dra) |
| { |
| return (dra & 0x70) >> 4; |
| } |
| |
| static inline unsigned char even_rank_attrib(unsigned char dra) |
| { |
| return dra & 0x07; |
| } |
| |
| #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) |
| * |
| * 31:30 reserved |
| * 29 Initialization Complete (IC) |
| * 28:11 reserved |
| * 10:8 Refresh Mode Select (RMS) |
| * 7 reserved |
| * 6:4 Mode Select (SMS) |
| * 3:2 reserved |
| * 1:0 DRAM Type (DT) |
| */ |
| |
| #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) |
| * |
| * 31 Enhanced Addressing Enable (ENHADE) |
| * 30:0 reserved |
| */ |
| |
| enum i3000p_chips { |
| I3000 = 0, |
| }; |
| |
| struct i3000_dev_info { |
| const char *ctl_name; |
| }; |
| |
| struct i3000_error_info { |
| u16 errsts; |
| u8 derrsyn; |
| u8 edeap; |
| u32 deap; |
| u16 errsts2; |
| }; |
| |
| static const struct i3000_dev_info i3000_devs[] = { |
| [I3000] = { |
| .ctl_name = "i3000"}, |
| }; |
| |
| static struct pci_dev *mci_pdev; |
| static int i3000_registered = 1; |
| static struct edac_pci_ctl_info *i3000_pci; |
| |
| static void i3000_get_error_info(struct mem_ctl_info *mci, |
| struct i3000_error_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| pdev = to_pci_dev(mci->pdev); |
| |
| /* |
| * This is a mess because there is no atomic way to read all the |
| * registers at once and the registers can transition from CE being |
| * overwritten by UE. |
| */ |
| pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); |
| if (!(info->errsts & I3000_ERRSTS_BITS)) |
| return; |
| pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
| pci_read_config_dword(pdev, I3000_DEAP, &info->deap); |
| pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); |
| pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); |
| |
| /* |
| * If the error is the same for both reads then the first set |
| * of reads is valid. If there is a change then there is a CE |
| * with no info and the second set of reads is valid and |
| * should be UE info. |
| */ |
| if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { |
| pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
| pci_read_config_dword(pdev, I3000_DEAP, &info->deap); |
| pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); |
| } |
| |
| /* |
| * Clear any error bits. |
| * (Yes, we really clear bits by writing 1 to them.) |
| */ |
| pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
| I3000_ERRSTS_BITS); |
| } |
| |
| static int i3000_process_error_info(struct mem_ctl_info *mci, |
| struct i3000_error_info *info, |
| int handle_errors) |
| { |
| int row, multi_chan, channel; |
| unsigned long pfn, offset; |
| |
| multi_chan = mci->csrows[0]->nr_channels - 1; |
| |
| if (!(info->errsts & I3000_ERRSTS_BITS)) |
| return 0; |
| |
| if (!handle_errors) |
| return 1; |
| |
| if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { |
| edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 0, 0, 0, |
| -1, -1, -1, |
| "UE overwrote CE", ""); |
| info->errsts = info->errsts2; |
| } |
| |
| pfn = deap_pfn(info->edeap, info->deap); |
| offset = deap_offset(info->deap); |
| channel = deap_channel(info->deap); |
| |
| row = edac_mc_find_csrow_by_page(mci, pfn); |
| |
| if (info->errsts & I3000_ERRSTS_UE) |
| edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, |
| pfn, offset, 0, |
| row, -1, -1, |
| "i3000 UE", ""); |
| else |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, |
| pfn, offset, info->derrsyn, |
| row, multi_chan ? channel : 0, -1, |
| "i3000 CE", ""); |
| |
| return 1; |
| } |
| |
| static void i3000_check(struct mem_ctl_info *mci) |
| { |
| struct i3000_error_info info; |
| |
| edac_dbg(1, "MC%d\n", mci->mc_idx); |
| i3000_get_error_info(mci, &info); |
| i3000_process_error_info(mci, &info, 1); |
| } |
| |
| static int i3000_is_interleaved(const unsigned char *c0dra, |
| const unsigned char *c1dra, |
| const unsigned char *c0drb, |
| const unsigned char *c1drb) |
| { |
| int i; |
| |
| /* |
| * If the channels aren't populated identically then |
| * we're not interleaved. |
| */ |
| for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) |
| if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) || |
| even_rank_attrib(c0dra[i]) != |
| even_rank_attrib(c1dra[i])) |
| return 0; |
| |
| /* |
| * If the rank boundaries for the two channels are different |
| * then we're not interleaved. |
| */ |
| for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) |
| if (c0drb[i] != c1drb[i]) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int i3000_probe1(struct pci_dev *pdev, int dev_idx) |
| { |
| int rc; |
| int i, j; |
| struct mem_ctl_info *mci = NULL; |
| struct edac_mc_layer layers[2]; |
| unsigned long last_cumul_size, nr_pages; |
| int interleaved, nr_channels; |
| unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; |
| unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; |
| unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; |
| unsigned long mchbar; |
| void __iomem *window; |
| |
| edac_dbg(0, "MC:\n"); |
| |
| pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); |
| mchbar &= I3000_MCHBAR_MASK; |
| window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); |
| if (!window) { |
| printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", |
| mchbar); |
| return -ENODEV; |
| } |
| |
| c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ |
| c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ |
| c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ |
| c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ |
| |
| for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { |
| c0drb[i] = readb(window + I3000_C0DRB + i); |
| c1drb[i] = readb(window + I3000_C1DRB + i); |
| } |
| |
| iounmap(window); |
| |
| /* |
| * Figure out how many channels we have. |
| * |
| * If we have what the datasheet calls "asymmetric channels" |
| * (essentially the same as what was called "virtual single |
| * channel mode" in the i82875) then it's a single channel as |
| * far as EDAC is concerned. |
| */ |
| interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); |
| nr_channels = interleaved ? 2 : 1; |
| |
| layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
| layers[0].size = I3000_RANKS / nr_channels; |
| layers[0].is_virt_csrow = true; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = nr_channels; |
| layers[1].is_virt_csrow = false; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); |
| if (!mci) |
| return -ENOMEM; |
| |
| edac_dbg(3, "MC: init mci\n"); |
| |
| mci->pdev = &pdev->dev; |
| mci->mtype_cap = MEM_FLAG_DDR2; |
| |
| mci->edac_ctl_cap = EDAC_FLAG_SECDED; |
| mci->edac_cap = EDAC_FLAG_SECDED; |
| |
| mci->mod_name = EDAC_MOD_STR; |
| mci->mod_ver = I3000_REVISION; |
| mci->ctl_name = i3000_devs[dev_idx].ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->edac_check = i3000_check; |
| mci->ctl_page_to_phys = NULL; |
| |
| /* |
| * The dram rank boundary (DRB) reg values are boundary addresses |
| * for each DRAM rank with a granularity of 32MB. DRB regs are |
| * cumulative; the last one will contain the total memory |
| * contained in all ranks. |
| * |
| * If we're in interleaved mode then we're only walking through |
| * the ranks of controller 0, so we double all the values we see. |
| */ |
| for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { |
| u8 value; |
| u32 cumul_size; |
| struct csrow_info *csrow = mci->csrows[i]; |
| |
| value = drb[i]; |
| cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); |
| if (interleaved) |
| cumul_size <<= 1; |
| edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size); |
| if (cumul_size == last_cumul_size) |
| continue; |
| |
| csrow->first_page = last_cumul_size; |
| csrow->last_page = cumul_size - 1; |
| nr_pages = cumul_size - last_cumul_size; |
| last_cumul_size = cumul_size; |
| |
| for (j = 0; j < nr_channels; j++) { |
| struct dimm_info *dimm = csrow->channels[j]->dimm; |
| |
| dimm->nr_pages = nr_pages / nr_channels; |
| dimm->grain = I3000_DEAP_GRAIN; |
| dimm->mtype = MEM_DDR2; |
| dimm->dtype = DEV_UNKNOWN; |
| dimm->edac_mode = EDAC_UNKNOWN; |
| } |
| } |
| |
| /* |
| * Clear any error bits. |
| * (Yes, we really clear bits by writing 1 to them.) |
| */ |
| pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
| I3000_ERRSTS_BITS); |
| |
| rc = -ENODEV; |
| if (edac_mc_add_mc(mci)) { |
| edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); |
| goto fail; |
| } |
| |
| /* allocating generic PCI control info */ |
| i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
| if (!i3000_pci) { |
| printk(KERN_WARNING |
| "%s(): Unable to create PCI control\n", |
| __func__); |
| printk(KERN_WARNING |
| "%s(): PCI error report via EDAC not setup\n", |
| __func__); |
| } |
| |
| /* get this far and it's successful */ |
| edac_dbg(3, "MC: success\n"); |
| return 0; |
| |
| fail: |
| if (mci) |
| edac_mc_free(mci); |
| |
| return rc; |
| } |
| |
| /* returns count (>= 0), or negative on error */ |
| static int __devinit i3000_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int rc; |
| |
| edac_dbg(0, "MC:\n"); |
| |
| if (pci_enable_device(pdev) < 0) |
| return -EIO; |
| |
| rc = i3000_probe1(pdev, ent->driver_data); |
| if (!mci_pdev) |
| mci_pdev = pci_dev_get(pdev); |
| |
| return rc; |
| } |
| |
| static void __devexit i3000_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| |
| edac_dbg(0, "\n"); |
| |
| if (i3000_pci) |
| edac_pci_release_generic_ctl(i3000_pci); |
| |
| mci = edac_mc_del_mc(&pdev->dev); |
| if (!mci) |
| return; |
| |
| edac_mc_free(mci); |
| } |
| |
| static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = { |
| { |
| PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| I3000}, |
| { |
| 0, |
| } /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); |
| |
| static struct pci_driver i3000_driver = { |
| .name = EDAC_MOD_STR, |
| .probe = i3000_init_one, |
| .remove = __devexit_p(i3000_remove_one), |
| .id_table = i3000_pci_tbl, |
| }; |
| |
| static int __init i3000_init(void) |
| { |
| int pci_rc; |
| |
| edac_dbg(3, "MC:\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&i3000_driver); |
| if (pci_rc < 0) |
| goto fail0; |
| |
| if (!mci_pdev) { |
| i3000_registered = 0; |
| mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_3000_HB, NULL); |
| if (!mci_pdev) { |
| edac_dbg(0, "i3000 pci_get_device fail\n"); |
| pci_rc = -ENODEV; |
| goto fail1; |
| } |
| |
| pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); |
| if (pci_rc < 0) { |
| edac_dbg(0, "i3000 init fail\n"); |
| pci_rc = -ENODEV; |
| goto fail1; |
| } |
| } |
| |
| return 0; |
| |
| fail1: |
| pci_unregister_driver(&i3000_driver); |
| |
| fail0: |
| if (mci_pdev) |
| pci_dev_put(mci_pdev); |
| |
| return pci_rc; |
| } |
| |
| static void __exit i3000_exit(void) |
| { |
| edac_dbg(3, "MC:\n"); |
| |
| pci_unregister_driver(&i3000_driver); |
| if (!i3000_registered) { |
| i3000_remove_one(mci_pdev); |
| pci_dev_put(mci_pdev); |
| } |
| } |
| |
| module_init(i3000_init); |
| module_exit(i3000_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); |
| MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |