blob: e83b39d3993cebc70177891f5608f34b41ec2cc4 [file] [log] [blame]
/*
* Afatech AF9035 DVB USB driver
*
* Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "af9035.h"
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static DEFINE_MUTEX(af9035_usb_mutex);
static struct dvb_usb_device_properties af9035_properties[2];
static int af9035_properties_count = ARRAY_SIZE(af9035_properties);
static u16 af9035_checksum(const u8 *buf, size_t len)
{
size_t i;
u16 checksum = 0;
for (i = 1; i < len; i++) {
if (i % 2)
checksum += buf[i] << 8;
else
checksum += buf[i];
}
checksum = ~checksum;
return checksum;
}
static int af9035_ctrl_msg(struct usb_device *udev, struct usb_req *req)
{
#define BUF_LEN 64
#define REQ_HDR_LEN 4 /* send header size */
#define ACK_HDR_LEN 3 /* rece header size */
#define CHECKSUM_LEN 2
#define USB_TIMEOUT 2000
int ret, msg_len, act_len;
u8 buf[BUF_LEN];
static u8 seq; /* packet sequence number */
u16 checksum, tmp_checksum;
/* buffer overflow check */
if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
pr_debug("%s: too much data wlen=%d rlen=%d\n", __func__,
req->wlen, req->rlen);
return -EINVAL;
}
if (mutex_lock_interruptible(&af9035_usb_mutex) < 0)
return -EAGAIN;
buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
buf[1] = req->mbox;
buf[2] = req->cmd;
buf[3] = seq++;
if (req->wlen)
memcpy(&buf[4], req->wbuf, req->wlen);
/* calc and add checksum */
checksum = af9035_checksum(buf, buf[0] - 1);
buf[buf[0] - 1] = (checksum >> 8);
buf[buf[0] - 0] = (checksum & 0xff);
msg_len = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN ;
/* send req */
ret = usb_bulk_msg(udev, usb_sndbulkpipe(udev, 0x02), buf, msg_len,
&act_len, USB_TIMEOUT);
if (ret < 0)
err("bulk message failed=%d (%d/%d)", ret, msg_len, act_len);
else
if (act_len != msg_len)
ret = -EIO; /* all data is not send */
if (ret < 0)
goto err_mutex_unlock;
/* no ack for those packets */
if (req->cmd == CMD_FW_DL)
goto exit_mutex_unlock;
/* receive ack and data if read req */
msg_len = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
ret = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, 0x81), buf, msg_len,
&act_len, USB_TIMEOUT);
if (ret < 0) {
err("recv bulk message failed=%d", ret);
ret = -EIO;
goto err_mutex_unlock;
}
if (act_len != msg_len) {
err("recv bulk message truncated (%d != %d)", act_len, msg_len);
ret = -EIO;
goto err_mutex_unlock;
}
/* verify checksum */
checksum = af9035_checksum(buf, act_len - 2);
tmp_checksum = (buf[act_len - 2] << 8) | buf[act_len - 1];
if (tmp_checksum != checksum) {
err("%s: command=%02x checksum mismatch (%04x != %04x)",
__func__, req->cmd, tmp_checksum, checksum);
ret = -EIO;
goto err_mutex_unlock;
}
/* check status */
if (buf[2]) {
pr_debug("%s: command=%02x failed fw error=%d\n", __func__,
req->cmd, buf[2]);
ret = -EIO;
goto err_mutex_unlock;
}
/* read request, copy returned data to return buf */
if (req->rlen)
memcpy(req->rbuf, &buf[ACK_HDR_LEN], req->rlen);
err_mutex_unlock:
exit_mutex_unlock:
mutex_unlock(&af9035_usb_mutex);
return ret;
}
/* write multiple registers */
static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
{
u8 wbuf[6 + len];
u8 mbox = (reg >> 16) & 0xff;
struct usb_req req = { CMD_MEM_WR, mbox, sizeof(wbuf), wbuf, 0, NULL };
wbuf[0] = len;
wbuf[1] = 2;
wbuf[2] = 0;
wbuf[3] = 0;
wbuf[4] = (reg >> 8) & 0xff;
wbuf[5] = (reg >> 0) & 0xff;
memcpy(&wbuf[6], val, len);
return af9035_ctrl_msg(d->udev, &req);
}
/* read multiple registers */
static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
{
u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
u8 mbox = (reg >> 16) & 0xff;
struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
return af9035_ctrl_msg(d->udev, &req);
}
/* write single register */
static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
{
return af9035_wr_regs(d, reg, &val, 1);
}
/* read single register */
static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
{
return af9035_rd_regs(d, reg, val, 1);
}
/* write single register with mask */
static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
u8 mask)
{
int ret;
u8 tmp;
/* no need for read if whole reg is written */
if (mask != 0xff) {
ret = af9035_rd_regs(d, reg, &tmp, 1);
if (ret)
return ret;
val &= mask;
tmp &= ~mask;
val |= tmp;
}
return af9035_wr_regs(d, reg, &val, 1);
}
static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
struct i2c_msg msg[], int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
struct state *state = d->priv;
int ret;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
/*
* I2C sub header is 5 bytes long. Meaning of those bytes are:
* 0: data len
* 1: I2C addr << 1
* 2: reg addr len
* byte 3 and 4 can be used as reg addr
* 3: reg addr MSB
* used when reg addr len is set to 2
* 4: reg addr LSB
* used when reg addr len is set to 1 or 2
*
* For the simplify we do not use register addr at all.
* NOTE: As a firmware knows tuner type there is very small possibility
* there could be some tuner I2C hacks done by firmware and this may
* lead problems if firmware expects those bytes are used.
*/
if (num == 2 && !(msg[0].flags & I2C_M_RD) &&
(msg[1].flags & I2C_M_RD)) {
if (msg[0].len > 40 || msg[1].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if (msg[0].addr == state->af9033_config[0].i2c_addr) {
/* integrated demod */
u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
msg[0].buf[2];
ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
msg[1].len);
} else {
/* I2C */
u8 buf[5 + msg[0].len];
struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
buf, msg[1].len, msg[1].buf };
buf[0] = msg[1].len;
buf[1] = msg[0].addr << 1;
buf[2] = 0x00; /* reg addr len */
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
memcpy(&buf[5], msg[0].buf, msg[0].len);
ret = af9035_ctrl_msg(d->udev, &req);
}
} else if (num == 1 && !(msg[0].flags & I2C_M_RD)) {
if (msg[0].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if (msg[0].addr == state->af9033_config[0].i2c_addr) {
/* integrated demod */
u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
msg[0].buf[2];
ret = af9035_wr_regs(d, reg, &msg[0].buf[3],
msg[0].len - 3);
} else {
/* I2C */
u8 buf[5 + msg[0].len];
struct usb_req req = { CMD_I2C_WR, 0, sizeof(buf), buf,
0, NULL };
buf[0] = msg[0].len;
buf[1] = msg[0].addr << 1;
buf[2] = 0x00; /* reg addr len */
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
memcpy(&buf[5], msg[0].buf, msg[0].len);
ret = af9035_ctrl_msg(d->udev, &req);
}
} else {
/*
* We support only two kind of I2C transactions:
* 1) 1 x read + 1 x write
* 2) 1 x write
*/
ret = -EOPNOTSUPP;
}
mutex_unlock(&d->i2c_mutex);
if (ret < 0)
return ret;
else
return num;
}
static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm af9035_i2c_algo = {
.master_xfer = af9035_i2c_master_xfer,
.functionality = af9035_i2c_functionality,
};
#define AF9035_POLL 250
static int af9035_rc_query(struct dvb_usb_device *d)
{
unsigned int key;
unsigned char b[4];
int ret;
struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, b };
ret = af9035_ctrl_msg(d->udev, &req);
if (ret < 0)
goto err;
if ((b[2] + b[3]) == 0xff) {
if ((b[0] + b[1]) == 0xff) {
/* NEC */
key = b[0] << 8 | b[2];
} else {
/* ext. NEC */
key = b[0] << 16 | b[1] << 8 | b[2];
}
} else {
key = b[0] << 24 | b[1] << 16 | b[2] << 8 | b[3];
}
rc_keydown(d->rc_dev, key, 0);
err:
/* ignore errors */
return 0;
}
static int af9035_init(struct dvb_usb_device *d)
{
struct state *state = d->priv;
int ret, i;
u16 frame_size = 87 * 188 / 4;
u8 packet_size = 512 / 4;
struct reg_val_mask tab[] = {
{ 0x80f99d, 0x01, 0x01 },
{ 0x80f9a4, 0x01, 0x01 },
{ 0x00dd11, 0x00, 0x20 },
{ 0x00dd11, 0x00, 0x40 },
{ 0x00dd13, 0x00, 0x20 },
{ 0x00dd13, 0x00, 0x40 },
{ 0x00dd11, 0x20, 0x20 },
{ 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0c, packet_size, 0xff},
{ 0x00dd11, state->dual_mode << 6, 0x40 },
{ 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0d, packet_size, 0xff },
{ 0x80f9a3, 0x00, 0x01 },
{ 0x80f9cd, 0x00, 0x01 },
{ 0x80f99d, 0x00, 0x01 },
{ 0x80f9a4, 0x00, 0x01 },
};
pr_debug("%s: USB speed=%d frame_size=%04x packet_size=%02x\n",
__func__, d->udev->speed, frame_size, packet_size);
/* init endpoints */
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
tab[i].mask);
if (ret < 0)
goto err;
}
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9035_identify_state(struct usb_device *udev,
struct dvb_usb_device_properties *props,
struct dvb_usb_device_description **desc,
int *cold)
{
int ret;
u8 wbuf[1] = { 1 };
u8 rbuf[4];
struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
sizeof(rbuf), rbuf };
ret = af9035_ctrl_msg(udev, &req);
if (ret < 0)
goto err;
pr_debug("%s: reply=%02x %02x %02x %02x\n", __func__,
rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
*cold = 0;
else
*cold = 1;
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9035_download_firmware(struct usb_device *udev,
const struct firmware *fw)
{
int ret, i, j, len;
u8 wbuf[1];
u8 rbuf[4];
struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ;
u8 hdr_core;
u16 hdr_addr, hdr_data_len, hdr_checksum;
#define MAX_DATA 58
#define HDR_SIZE 7
/*
* Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
*
* byte 0: MCS 51 core
* There are two inside the AF9035 (1=Link and 2=OFDM) with separate
* address spaces
* byte 1-2: Big endian destination address
* byte 3-4: Big endian number of data bytes following the header
* byte 5-6: Big endian header checksum, apparently ignored by the chip
* Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
*/
for (i = fw->size; i > HDR_SIZE;) {
hdr_core = fw->data[fw->size - i + 0];
hdr_addr = fw->data[fw->size - i + 1] << 8;
hdr_addr |= fw->data[fw->size - i + 2] << 0;
hdr_data_len = fw->data[fw->size - i + 3] << 8;
hdr_data_len |= fw->data[fw->size - i + 4] << 0;
hdr_checksum = fw->data[fw->size - i + 5] << 8;
hdr_checksum |= fw->data[fw->size - i + 6] << 0;
pr_debug("%s: core=%d addr=%04x data_len=%d checksum=%04x\n",
__func__, hdr_core, hdr_addr, hdr_data_len,
hdr_checksum);
if (((hdr_core != 1) && (hdr_core != 2)) ||
(hdr_data_len > i)) {
pr_debug("%s: bad firmware\n", __func__);
break;
}
/* download begin packet */
req.cmd = CMD_FW_DL_BEGIN;
ret = af9035_ctrl_msg(udev, &req);
if (ret < 0)
goto err;
/* download firmware packet(s) */
for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
len = j;
if (len > MAX_DATA)
len = MAX_DATA;
req_fw_dl.wlen = len;
req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
HDR_SIZE + hdr_data_len - j];
ret = af9035_ctrl_msg(udev, &req_fw_dl);
if (ret < 0)
goto err;
}
/* download end packet */
req.cmd = CMD_FW_DL_END;
ret = af9035_ctrl_msg(udev, &req);
if (ret < 0)
goto err;
i -= hdr_data_len + HDR_SIZE;
pr_debug("%s: data uploaded=%zu\n", __func__, fw->size - i);
}
/* firmware loaded, request boot */
req.cmd = CMD_FW_BOOT;
ret = af9035_ctrl_msg(udev, &req);
if (ret < 0)
goto err;
/* ensure firmware starts */
wbuf[0] = 1;
ret = af9035_ctrl_msg(udev, &req_fw_ver);
if (ret < 0)
goto err;
if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
info("firmware did not run");
ret = -ENODEV;
goto err;
}
info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2],
rbuf[3]);
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9035_download_firmware_it9135(struct usb_device *udev,
const struct firmware *fw)
{
int ret, i, i_prev;
u8 wbuf[1];
u8 rbuf[4];
struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ;
#define HDR_SIZE 7
/*
* There seems to be following firmware header. Meaning of bytes 0-3
* is unknown.
*
* 0: 3
* 1: 0, 1
* 2: 0
* 3: 1, 2, 3
* 4: addr MSB
* 5: addr LSB
* 6: count of data bytes ?
*/
for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) {
if (i == fw->size ||
(fw->data[i + 0] == 0x03 &&
(fw->data[i + 1] == 0x00 ||
fw->data[i + 1] == 0x01) &&
fw->data[i + 2] == 0x00)) {
req_fw_dl.wlen = i - i_prev;
req_fw_dl.wbuf = (u8 *) &fw->data[i_prev];
i_prev = i;
ret = af9035_ctrl_msg(udev, &req_fw_dl);
if (ret < 0)
goto err;
pr_debug("%s: data uploaded=%d\n", __func__, i);
}
}
/* firmware loaded, request boot */
req.cmd = CMD_FW_BOOT;
ret = af9035_ctrl_msg(udev, &req);
if (ret < 0)
goto err;
/* ensure firmware starts */
wbuf[0] = 1;
ret = af9035_ctrl_msg(udev, &req_fw_ver);
if (ret < 0)
goto err;
if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
info("firmware did not run");
ret = -ENODEV;
goto err;
}
info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2],
rbuf[3]);
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
/* abuse that callback as there is no better one for reading eeprom */
static int af9035_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
{
struct state *state = d->priv;
int ret, i, eeprom_shift = 0;
u8 tmp;
u16 tmp16;
/* check if there is dual tuners */
ret = af9035_rd_reg(d, EEPROM_DUAL_MODE, &tmp);
if (ret < 0)
goto err;
state->dual_mode = tmp;
pr_debug("%s: dual mode=%d\n", __func__, state->dual_mode);
for (i = 0; i < af9035_properties[0].num_adapters; i++) {
/* tuner */
ret = af9035_rd_reg(d, EEPROM_1_TUNER_ID + eeprom_shift, &tmp);
if (ret < 0)
goto err;
state->af9033_config[i].tuner = tmp;
pr_debug("%s: [%d]tuner=%02x\n", __func__, i, tmp);
switch (tmp) {
case AF9033_TUNER_TUA9001:
case AF9033_TUNER_FC0011:
case AF9033_TUNER_MXL5007T:
case AF9033_TUNER_TDA18218:
state->af9033_config[i].spec_inv = 1;
break;
default:
warn("tuner ID=%02x not supported, please report!",
tmp);
};
/* tuner IF frequency */
ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_L + eeprom_shift, &tmp);
if (ret < 0)
goto err;
tmp16 = tmp;
ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_H + eeprom_shift, &tmp);
if (ret < 0)
goto err;
tmp16 |= tmp << 8;
pr_debug("%s: [%d]IF=%d\n", __func__, i, tmp16);
eeprom_shift = 0x10; /* shift for the 2nd tuner params */
}
/* get demod clock */
ret = af9035_rd_reg(d, 0x00d800, &tmp);
if (ret < 0)
goto err;
tmp = (tmp >> 0) & 0x0f;
for (i = 0; i < af9035_properties[0].num_adapters; i++)
state->af9033_config[i].clock = clock_lut[tmp];
ret = af9035_rd_reg(d, EEPROM_IR_MODE, &tmp);
if (ret < 0)
goto err;
pr_debug("%s: ir_mode=%02x\n", __func__, tmp);
/* don't activate rc if in HID mode or if not available */
if (tmp == 5) {
ret = af9035_rd_reg(d, EEPROM_IR_TYPE, &tmp);
if (ret < 0)
goto err;
pr_debug("%s: ir_type=%02x\n", __func__, tmp);
switch (tmp) {
case 0: /* NEC */
default:
d->props.rc.core.protocol = RC_TYPE_NEC;
d->props.rc.core.allowed_protos = RC_TYPE_NEC;
break;
case 1: /* RC6 */
d->props.rc.core.protocol = RC_TYPE_RC6;
d->props.rc.core.allowed_protos = RC_TYPE_RC6;
break;
}
d->props.rc.core.rc_query = af9035_rc_query;
}
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
/* abuse that callback as there is no better one for reading eeprom */
static int af9035_read_mac_address_it9135(struct dvb_usb_device *d, u8 mac[6])
{
struct state *state = d->priv;
int ret, i;
u8 tmp;
state->dual_mode = false;
/* get demod clock */
ret = af9035_rd_reg(d, 0x00d800, &tmp);
if (ret < 0)
goto err;
tmp = (tmp >> 0) & 0x0f;
for (i = 0; i < af9035_properties[0].num_adapters; i++)
state->af9033_config[i].clock = clock_lut_it9135[tmp];
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d,
int cmd, int arg)
{
int ret;
switch (cmd) {
case FC0011_FE_CALLBACK_POWER:
/* Tuner enable */
ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1);
if (ret < 0)
goto err;
/* LED */
ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
break;
case FC0011_FE_CALLBACK_RESET:
ret = af9035_wr_reg(d, 0xd8e9, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0xd8e8, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0xd8e7, 1);
if (ret < 0)
goto err;
usleep_range(10000, 20000);
ret = af9035_wr_reg(d, 0xd8e7, 0);
if (ret < 0)
goto err;
usleep_range(10000, 20000);
break;
default:
ret = -EINVAL;
goto err;
}
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg)
{
struct state *state = d->priv;
switch (state->af9033_config[0].tuner) {
case AF9033_TUNER_FC0011:
return af9035_fc0011_tuner_callback(d, cmd, arg);
default:
break;
}
return -ENODEV;
}
static int af9035_frontend_callback(void *adapter_priv, int component,
int cmd, int arg)
{
struct i2c_adapter *adap = adapter_priv;
struct dvb_usb_device *d = i2c_get_adapdata(adap);
switch (component) {
case DVB_FRONTEND_COMPONENT_TUNER:
return af9035_tuner_callback(d, cmd, arg);
default:
break;
}
return -EINVAL;
}
static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap->dev->priv;
int ret;
if (!state->af9033_config[adap->id].tuner) {
/* unsupported tuner */
ret = -ENODEV;
goto err;
}
if (adap->id == 0) {
state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB;
state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL;
ret = af9035_wr_reg(adap->dev, 0x00417f,
state->af9033_config[1].i2c_addr);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d81a,
state->dual_mode);
if (ret < 0)
goto err;
}
/* attach demodulator */
adap->fe_adap[0].fe = dvb_attach(af9033_attach,
&state->af9033_config[adap->id], &adap->dev->i2c_adap);
if (adap->fe_adap[0].fe == NULL) {
ret = -ENODEV;
goto err;
}
/* disable I2C-gate */
adap->fe_adap[0].fe->ops.i2c_gate_ctrl = NULL;
adap->fe_adap[0].fe->callback = af9035_frontend_callback;
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
static struct tua9001_config af9035_tua9001_config = {
.i2c_addr = 0x60,
};
static const struct fc0011_config af9035_fc0011_config = {
.i2c_address = 0x60,
};
static struct mxl5007t_config af9035_mxl5007t_config = {
.xtal_freq_hz = MxL_XTAL_24_MHZ,
.if_freq_hz = MxL_IF_4_57_MHZ,
.invert_if = 0,
.loop_thru_enable = 0,
.clk_out_enable = 0,
.clk_out_amp = MxL_CLKOUT_AMP_0_94V,
};
static struct tda18218_config af9035_tda18218_config = {
.i2c_address = 0x60,
.i2c_wr_max = 21,
};
static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap->dev->priv;
int ret;
struct dvb_frontend *fe;
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_TUA9001:
/* AF9035 gpiot3 = TUA9001 RESETN
AF9035 gpiot2 = TUA9001 RXEN */
/* configure gpiot2 and gpiot2 as output */
ret = af9035_wr_reg_mask(adap->dev, 0x00d8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(adap->dev, 0x00d8ed, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(adap->dev, 0x00d8e8, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(adap->dev, 0x00d8e9, 0x01, 0x01);
if (ret < 0)
goto err;
/* reset tuner */
ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x00, 0x01);
if (ret < 0)
goto err;
usleep_range(2000, 20000);
ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x01, 0x01);
if (ret < 0)
goto err;
/* activate tuner RX */
/* TODO: use callback for TUA9001 RXEN */
ret = af9035_wr_reg_mask(adap->dev, 0x00d8eb, 0x01, 0x01);
if (ret < 0)
goto err;
/* attach tuner */
fe = dvb_attach(tua9001_attach, adap->fe_adap[0].fe,
&adap->dev->i2c_adap, &af9035_tua9001_config);
break;
case AF9033_TUNER_FC0011:
fe = dvb_attach(fc0011_attach, adap->fe_adap[0].fe,
&adap->dev->i2c_adap, &af9035_fc0011_config);
break;
case AF9033_TUNER_MXL5007T:
ret = af9035_wr_reg(adap->dev, 0x00d8e0, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8e1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8df, 0);
if (ret < 0)
goto err;
msleep(30);
ret = af9035_wr_reg(adap->dev, 0x00d8df, 1);
if (ret < 0)
goto err;
msleep(300);
ret = af9035_wr_reg(adap->dev, 0x00d8c0, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8c1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8bf, 0);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8b4, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8b5, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(adap->dev, 0x00d8b3, 1);
if (ret < 0)
goto err;
/* attach tuner */
fe = dvb_attach(mxl5007t_attach, adap->fe_adap[0].fe,
&adap->dev->i2c_adap, 0x60, &af9035_mxl5007t_config);
break;
case AF9033_TUNER_TDA18218:
/* attach tuner */
fe = dvb_attach(tda18218_attach, adap->fe_adap[0].fe,
&adap->dev->i2c_adap, &af9035_tda18218_config);
break;
default:
fe = NULL;
}
if (fe == NULL) {
ret = -ENODEV;
goto err;
}
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
enum af9035_id_entry {
AF9035_15A4_9035,
AF9035_15A4_1000,
AF9035_15A4_1001,
AF9035_15A4_1002,
AF9035_15A4_1003,
AF9035_0CCD_0093,
AF9035_07CA_A835,
AF9035_07CA_B835,
AF9035_07CA_1867,
AF9035_07CA_A867,
AF9035_07CA_0825,
};
static struct usb_device_id af9035_id[] = {
[AF9035_15A4_9035] = {
USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_9035)},
[AF9035_15A4_1000] = {
USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1000)},
[AF9035_15A4_1001] = {
USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1001)},
[AF9035_15A4_1002] = {
USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1002)},
[AF9035_15A4_1003] = {
USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1003)},
[AF9035_0CCD_0093] = {
USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK)},
[AF9035_07CA_A835] = {
USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835)},
[AF9035_07CA_B835] = {
USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835)},
[AF9035_07CA_1867] = {
USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867)},
[AF9035_07CA_A867] = {
USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867)},
[AF9035_07CA_0825] = {
USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR)},
{},
};
MODULE_DEVICE_TABLE(usb, af9035_id);
static struct dvb_usb_device_properties af9035_properties[] = {
{
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.download_firmware = af9035_download_firmware,
.firmware = "dvb-usb-af9035-02.fw",
.no_reconnect = 1,
.size_of_priv = sizeof(struct state),
.num_adapters = 1,
.adapter = {
{
.num_frontends = 1,
.fe = {
{
.frontend_attach = af9035_frontend_attach,
.tuner_attach = af9035_tuner_attach,
.stream = {
.type = USB_BULK,
.count = 6,
.endpoint = 0x84,
.u = {
.bulk = {
.buffersize = (87 * 188),
}
}
}
}
}
}
},
.identify_state = af9035_identify_state,
.read_mac_address = af9035_read_mac_address,
.i2c_algo = &af9035_i2c_algo,
.rc.core = {
.protocol = RC_TYPE_UNKNOWN,
.module_name = "af9035",
.rc_query = NULL,
.rc_interval = AF9035_POLL,
.allowed_protos = RC_TYPE_UNKNOWN,
.rc_codes = RC_MAP_EMPTY,
},
.num_device_descs = 5,
.devices = {
{
.name = "Afatech AF9035 reference design",
.cold_ids = {
&af9035_id[AF9035_15A4_9035],
&af9035_id[AF9035_15A4_1000],
&af9035_id[AF9035_15A4_1001],
&af9035_id[AF9035_15A4_1002],
&af9035_id[AF9035_15A4_1003],
},
}, {
.name = "TerraTec Cinergy T Stick",
.cold_ids = {
&af9035_id[AF9035_0CCD_0093],
},
}, {
.name = "AVerMedia AVerTV Volar HD/PRO (A835)",
.cold_ids = {
&af9035_id[AF9035_07CA_A835],
&af9035_id[AF9035_07CA_B835],
},
}, {
.name = "AVerMedia HD Volar (A867)",
.cold_ids = {
&af9035_id[AF9035_07CA_1867],
&af9035_id[AF9035_07CA_A867],
},
}, {
.name = "AVerMedia Twinstar (A825)",
.cold_ids = {
&af9035_id[AF9035_07CA_0825],
},
},
}
},
{
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.download_firmware = af9035_download_firmware_it9135,
.firmware = "dvb-usb-it9135-01.fw",
.no_reconnect = 1,
.size_of_priv = sizeof(struct state),
.num_adapters = 1,
.adapter = {
{
.num_frontends = 1,
.fe = {
{
.frontend_attach = af9035_frontend_attach,
.tuner_attach = af9035_tuner_attach,
.stream = {
.type = USB_BULK,
.count = 6,
.endpoint = 0x84,
.u = {
.bulk = {
.buffersize = (87 * 188),
}
}
}
}
}
}
},
.identify_state = af9035_identify_state,
.read_mac_address = af9035_read_mac_address_it9135,
.i2c_algo = &af9035_i2c_algo,
.num_device_descs = 0, /* disabled as no support for IT9135 */
.devices = {
{
.name = "ITE Tech. IT9135 reference design",
},
}
},
};
static int af9035_usb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
int ret, i;
struct dvb_usb_device *d = NULL;
struct usb_device *udev;
bool found;
pr_debug("%s: interface=%d\n", __func__,
intf->cur_altsetting->desc.bInterfaceNumber);
/* interface 0 is used by DVB-T receiver and
interface 1 is for remote controller (HID) */
if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
return 0;
/* Dynamic USB ID support. Replaces first device ID with current one. */
udev = interface_to_usbdev(intf);
for (i = 0, found = false; i < ARRAY_SIZE(af9035_id) - 1; i++) {
if (af9035_id[i].idVendor ==
le16_to_cpu(udev->descriptor.idVendor) &&
af9035_id[i].idProduct ==
le16_to_cpu(udev->descriptor.idProduct)) {
found = true;
break;
}
}
if (!found) {
pr_debug("%s: using dynamic ID %04x:%04x\n", __func__,
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
af9035_properties[0].devices[0].cold_ids[0]->idVendor =
le16_to_cpu(udev->descriptor.idVendor);
af9035_properties[0].devices[0].cold_ids[0]->idProduct =
le16_to_cpu(udev->descriptor.idProduct);
}
for (i = 0; i < af9035_properties_count; i++) {
ret = dvb_usb_device_init(intf, &af9035_properties[i],
THIS_MODULE, &d, adapter_nr);
if (ret == -ENODEV)
continue;
else
break;
}
if (ret < 0)
goto err;
if (d) {
ret = af9035_init(d);
if (ret < 0)
goto err;
}
return 0;
err:
pr_debug("%s: failed=%d\n", __func__, ret);
return ret;
}
/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver af9035_usb_driver = {
.name = "dvb_usb_af9035",
.probe = af9035_usb_probe,
.disconnect = dvb_usb_device_exit,
.id_table = af9035_id,
};
module_usb_driver(af9035_usb_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9035 driver");
MODULE_LICENSE("GPL");