| /* |
| * DRBG: Deterministic Random Bits Generator |
| * Based on NIST Recommended DRBG from NIST SP800-90A with the following |
| * properties: |
| * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores |
| * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores |
| * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores |
| * * with and without prediction resistance |
| * |
| * Copyright Stephan Mueller <smueller@chronox.de>, 2014 |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, and the entire permission notice in its entirety, |
| * including the disclaimer of warranties. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote |
| * products derived from this software without specific prior |
| * written permission. |
| * |
| * ALTERNATIVELY, this product may be distributed under the terms of |
| * the GNU General Public License, in which case the provisions of the GPL are |
| * required INSTEAD OF the above restrictions. (This clause is |
| * necessary due to a potential bad interaction between the GPL and |
| * the restrictions contained in a BSD-style copyright.) |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF |
| * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * DRBG Usage |
| * ========== |
| * The SP 800-90A DRBG allows the user to specify a personalization string |
| * for initialization as well as an additional information string for each |
| * random number request. The following code fragments show how a caller |
| * uses the kernel crypto API to use the full functionality of the DRBG. |
| * |
| * Usage without any additional data |
| * --------------------------------- |
| * struct crypto_rng *drng; |
| * int err; |
| * char data[DATALEN]; |
| * |
| * drng = crypto_alloc_rng(drng_name, 0, 0); |
| * err = crypto_rng_get_bytes(drng, &data, DATALEN); |
| * crypto_free_rng(drng); |
| * |
| * |
| * Usage with personalization string during initialization |
| * ------------------------------------------------------- |
| * struct crypto_rng *drng; |
| * int err; |
| * char data[DATALEN]; |
| * struct drbg_string pers; |
| * char personalization[11] = "some-string"; |
| * |
| * drbg_string_fill(&pers, personalization, strlen(personalization)); |
| * drng = crypto_alloc_rng(drng_name, 0, 0); |
| * // The reset completely re-initializes the DRBG with the provided |
| * // personalization string |
| * err = crypto_rng_reset(drng, &personalization, strlen(personalization)); |
| * err = crypto_rng_get_bytes(drng, &data, DATALEN); |
| * crypto_free_rng(drng); |
| * |
| * |
| * Usage with additional information string during random number request |
| * --------------------------------------------------------------------- |
| * struct crypto_rng *drng; |
| * int err; |
| * char data[DATALEN]; |
| * char addtl_string[11] = "some-string"; |
| * string drbg_string addtl; |
| * |
| * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string)); |
| * drng = crypto_alloc_rng(drng_name, 0, 0); |
| * // The following call is a wrapper to crypto_rng_get_bytes() and returns |
| * // the same error codes. |
| * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl); |
| * crypto_free_rng(drng); |
| * |
| * |
| * Usage with personalization and additional information strings |
| * ------------------------------------------------------------- |
| * Just mix both scenarios above. |
| */ |
| |
| #include <crypto/drbg.h> |
| #include <linux/kernel.h> |
| |
| /*************************************************************** |
| * Backend cipher definitions available to DRBG |
| ***************************************************************/ |
| |
| /* |
| * The order of the DRBG definitions here matter: every DRBG is registered |
| * as stdrng. Each DRBG receives an increasing cra_priority values the later |
| * they are defined in this array (see drbg_fill_array). |
| * |
| * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and |
| * the SHA256 / AES 256 over other ciphers. Thus, the favored |
| * DRBGs are the latest entries in this array. |
| */ |
| static const struct drbg_core drbg_cores[] = { |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| { |
| .flags = DRBG_CTR | DRBG_STRENGTH128, |
| .statelen = 32, /* 256 bits as defined in 10.2.1 */ |
| .blocklen_bytes = 16, |
| .cra_name = "ctr_aes128", |
| .backend_cra_name = "aes", |
| }, { |
| .flags = DRBG_CTR | DRBG_STRENGTH192, |
| .statelen = 40, /* 320 bits as defined in 10.2.1 */ |
| .blocklen_bytes = 16, |
| .cra_name = "ctr_aes192", |
| .backend_cra_name = "aes", |
| }, { |
| .flags = DRBG_CTR | DRBG_STRENGTH256, |
| .statelen = 48, /* 384 bits as defined in 10.2.1 */ |
| .blocklen_bytes = 16, |
| .cra_name = "ctr_aes256", |
| .backend_cra_name = "aes", |
| }, |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| { |
| .flags = DRBG_HASH | DRBG_STRENGTH128, |
| .statelen = 55, /* 440 bits */ |
| .blocklen_bytes = 20, |
| .cra_name = "sha1", |
| .backend_cra_name = "sha1", |
| }, { |
| .flags = DRBG_HASH | DRBG_STRENGTH256, |
| .statelen = 111, /* 888 bits */ |
| .blocklen_bytes = 48, |
| .cra_name = "sha384", |
| .backend_cra_name = "sha384", |
| }, { |
| .flags = DRBG_HASH | DRBG_STRENGTH256, |
| .statelen = 111, /* 888 bits */ |
| .blocklen_bytes = 64, |
| .cra_name = "sha512", |
| .backend_cra_name = "sha512", |
| }, { |
| .flags = DRBG_HASH | DRBG_STRENGTH256, |
| .statelen = 55, /* 440 bits */ |
| .blocklen_bytes = 32, |
| .cra_name = "sha256", |
| .backend_cra_name = "sha256", |
| }, |
| #endif /* CONFIG_CRYPTO_DRBG_HASH */ |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| { |
| .flags = DRBG_HMAC | DRBG_STRENGTH128, |
| .statelen = 20, /* block length of cipher */ |
| .blocklen_bytes = 20, |
| .cra_name = "hmac_sha1", |
| .backend_cra_name = "hmac(sha1)", |
| }, { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 48, /* block length of cipher */ |
| .blocklen_bytes = 48, |
| .cra_name = "hmac_sha384", |
| .backend_cra_name = "hmac(sha384)", |
| }, { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 64, /* block length of cipher */ |
| .blocklen_bytes = 64, |
| .cra_name = "hmac_sha512", |
| .backend_cra_name = "hmac(sha512)", |
| }, { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 32, /* block length of cipher */ |
| .blocklen_bytes = 32, |
| .cra_name = "hmac_sha256", |
| .backend_cra_name = "hmac(sha256)", |
| }, |
| #endif /* CONFIG_CRYPTO_DRBG_HMAC */ |
| }; |
| |
| static int drbg_uninstantiate(struct drbg_state *drbg); |
| |
| /****************************************************************** |
| * Generic helper functions |
| ******************************************************************/ |
| |
| /* |
| * Return strength of DRBG according to SP800-90A section 8.4 |
| * |
| * @flags DRBG flags reference |
| * |
| * Return: normalized strength in *bytes* value or 32 as default |
| * to counter programming errors |
| */ |
| static inline unsigned short drbg_sec_strength(drbg_flag_t flags) |
| { |
| switch (flags & DRBG_STRENGTH_MASK) { |
| case DRBG_STRENGTH128: |
| return 16; |
| case DRBG_STRENGTH192: |
| return 24; |
| case DRBG_STRENGTH256: |
| return 32; |
| default: |
| return 32; |
| } |
| } |
| |
| /* |
| * Convert an integer into a byte representation of this integer. |
| * The byte representation is big-endian |
| * |
| * @val value to be converted |
| * @buf buffer holding the converted integer -- caller must ensure that |
| * buffer size is at least 32 bit |
| */ |
| #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR)) |
| static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf) |
| { |
| struct s { |
| __be32 conv; |
| }; |
| struct s *conversion = (struct s *) buf; |
| |
| conversion->conv = cpu_to_be32(val); |
| } |
| #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */ |
| |
| /****************************************************************** |
| * CTR DRBG callback functions |
| ******************************************************************/ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| #define CRYPTO_DRBG_CTR_STRING "CTR " |
| MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128"); |
| |
| static void drbg_kcapi_symsetkey(struct drbg_state *drbg, |
| const unsigned char *key); |
| static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval, |
| const struct drbg_string *in); |
| static int drbg_init_sym_kernel(struct drbg_state *drbg); |
| static int drbg_fini_sym_kernel(struct drbg_state *drbg); |
| static int drbg_kcapi_sym_ctr(struct drbg_state *drbg, |
| u8 *inbuf, u32 inbuflen, |
| u8 *outbuf, u32 outlen); |
| #define DRBG_CTR_NULL_LEN 128 |
| #define DRBG_OUTSCRATCHLEN DRBG_CTR_NULL_LEN |
| |
| /* BCC function for CTR DRBG as defined in 10.4.3 */ |
| static int drbg_ctr_bcc(struct drbg_state *drbg, |
| unsigned char *out, const unsigned char *key, |
| struct list_head *in) |
| { |
| int ret = 0; |
| struct drbg_string *curr = NULL; |
| struct drbg_string data; |
| short cnt = 0; |
| |
| drbg_string_fill(&data, out, drbg_blocklen(drbg)); |
| |
| /* 10.4.3 step 2 / 4 */ |
| drbg_kcapi_symsetkey(drbg, key); |
| list_for_each_entry(curr, in, list) { |
| const unsigned char *pos = curr->buf; |
| size_t len = curr->len; |
| /* 10.4.3 step 4.1 */ |
| while (len) { |
| /* 10.4.3 step 4.2 */ |
| if (drbg_blocklen(drbg) == cnt) { |
| cnt = 0; |
| ret = drbg_kcapi_sym(drbg, out, &data); |
| if (ret) |
| return ret; |
| } |
| out[cnt] ^= *pos; |
| pos++; |
| cnt++; |
| len--; |
| } |
| } |
| /* 10.4.3 step 4.2 for last block */ |
| if (cnt) |
| ret = drbg_kcapi_sym(drbg, out, &data); |
| |
| return ret; |
| } |
| |
| /* |
| * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df |
| * (and drbg_ctr_bcc, but this function does not need any temporary buffers), |
| * the scratchpad is used as follows: |
| * drbg_ctr_update: |
| * temp |
| * start: drbg->scratchpad |
| * length: drbg_statelen(drbg) + drbg_blocklen(drbg) |
| * note: the cipher writing into this variable works |
| * blocklen-wise. Now, when the statelen is not a multiple |
| * of blocklen, the generateion loop below "spills over" |
| * by at most blocklen. Thus, we need to give sufficient |
| * memory. |
| * df_data |
| * start: drbg->scratchpad + |
| * drbg_statelen(drbg) + drbg_blocklen(drbg) |
| * length: drbg_statelen(drbg) |
| * |
| * drbg_ctr_df: |
| * pad |
| * start: df_data + drbg_statelen(drbg) |
| * length: drbg_blocklen(drbg) |
| * iv |
| * start: pad + drbg_blocklen(drbg) |
| * length: drbg_blocklen(drbg) |
| * temp |
| * start: iv + drbg_blocklen(drbg) |
| * length: drbg_satelen(drbg) + drbg_blocklen(drbg) |
| * note: temp is the buffer that the BCC function operates |
| * on. BCC operates blockwise. drbg_statelen(drbg) |
| * is sufficient when the DRBG state length is a multiple |
| * of the block size. For AES192 (and maybe other ciphers) |
| * this is not correct and the length for temp is |
| * insufficient (yes, that also means for such ciphers, |
| * the final output of all BCC rounds are truncated). |
| * Therefore, add drbg_blocklen(drbg) to cover all |
| * possibilities. |
| */ |
| |
| /* Derivation Function for CTR DRBG as defined in 10.4.2 */ |
| static int drbg_ctr_df(struct drbg_state *drbg, |
| unsigned char *df_data, size_t bytes_to_return, |
| struct list_head *seedlist) |
| { |
| int ret = -EFAULT; |
| unsigned char L_N[8]; |
| /* S3 is input */ |
| struct drbg_string S1, S2, S4, cipherin; |
| LIST_HEAD(bcc_list); |
| unsigned char *pad = df_data + drbg_statelen(drbg); |
| unsigned char *iv = pad + drbg_blocklen(drbg); |
| unsigned char *temp = iv + drbg_blocklen(drbg); |
| size_t padlen = 0; |
| unsigned int templen = 0; |
| /* 10.4.2 step 7 */ |
| unsigned int i = 0; |
| /* 10.4.2 step 8 */ |
| const unsigned char *K = (unsigned char *) |
| "\x00\x01\x02\x03\x04\x05\x06\x07" |
| "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" |
| "\x10\x11\x12\x13\x14\x15\x16\x17" |
| "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"; |
| unsigned char *X; |
| size_t generated_len = 0; |
| size_t inputlen = 0; |
| struct drbg_string *seed = NULL; |
| |
| memset(pad, 0, drbg_blocklen(drbg)); |
| memset(iv, 0, drbg_blocklen(drbg)); |
| |
| /* 10.4.2 step 1 is implicit as we work byte-wise */ |
| |
| /* 10.4.2 step 2 */ |
| if ((512/8) < bytes_to_return) |
| return -EINVAL; |
| |
| /* 10.4.2 step 2 -- calculate the entire length of all input data */ |
| list_for_each_entry(seed, seedlist, list) |
| inputlen += seed->len; |
| drbg_cpu_to_be32(inputlen, &L_N[0]); |
| |
| /* 10.4.2 step 3 */ |
| drbg_cpu_to_be32(bytes_to_return, &L_N[4]); |
| |
| /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */ |
| padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg)); |
| /* wrap the padlen appropriately */ |
| if (padlen) |
| padlen = drbg_blocklen(drbg) - padlen; |
| /* |
| * pad / padlen contains the 0x80 byte and the following zero bytes. |
| * As the calculated padlen value only covers the number of zero |
| * bytes, this value has to be incremented by one for the 0x80 byte. |
| */ |
| padlen++; |
| pad[0] = 0x80; |
| |
| /* 10.4.2 step 4 -- first fill the linked list and then order it */ |
| drbg_string_fill(&S1, iv, drbg_blocklen(drbg)); |
| list_add_tail(&S1.list, &bcc_list); |
| drbg_string_fill(&S2, L_N, sizeof(L_N)); |
| list_add_tail(&S2.list, &bcc_list); |
| list_splice_tail(seedlist, &bcc_list); |
| drbg_string_fill(&S4, pad, padlen); |
| list_add_tail(&S4.list, &bcc_list); |
| |
| /* 10.4.2 step 9 */ |
| while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) { |
| /* |
| * 10.4.2 step 9.1 - the padding is implicit as the buffer |
| * holds zeros after allocation -- even the increment of i |
| * is irrelevant as the increment remains within length of i |
| */ |
| drbg_cpu_to_be32(i, iv); |
| /* 10.4.2 step 9.2 -- BCC and concatenation with temp */ |
| ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list); |
| if (ret) |
| goto out; |
| /* 10.4.2 step 9.3 */ |
| i++; |
| templen += drbg_blocklen(drbg); |
| } |
| |
| /* 10.4.2 step 11 */ |
| X = temp + (drbg_keylen(drbg)); |
| drbg_string_fill(&cipherin, X, drbg_blocklen(drbg)); |
| |
| /* 10.4.2 step 12: overwriting of outval is implemented in next step */ |
| |
| /* 10.4.2 step 13 */ |
| drbg_kcapi_symsetkey(drbg, temp); |
| while (generated_len < bytes_to_return) { |
| short blocklen = 0; |
| /* |
| * 10.4.2 step 13.1: the truncation of the key length is |
| * implicit as the key is only drbg_blocklen in size based on |
| * the implementation of the cipher function callback |
| */ |
| ret = drbg_kcapi_sym(drbg, X, &cipherin); |
| if (ret) |
| goto out; |
| blocklen = (drbg_blocklen(drbg) < |
| (bytes_to_return - generated_len)) ? |
| drbg_blocklen(drbg) : |
| (bytes_to_return - generated_len); |
| /* 10.4.2 step 13.2 and 14 */ |
| memcpy(df_data + generated_len, X, blocklen); |
| generated_len += blocklen; |
| } |
| |
| ret = 0; |
| |
| out: |
| memset(iv, 0, drbg_blocklen(drbg)); |
| memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg)); |
| memset(pad, 0, drbg_blocklen(drbg)); |
| return ret; |
| } |
| |
| /* |
| * update function of CTR DRBG as defined in 10.2.1.2 |
| * |
| * The reseed variable has an enhanced meaning compared to the update |
| * functions of the other DRBGs as follows: |
| * 0 => initial seed from initialization |
| * 1 => reseed via drbg_seed |
| * 2 => first invocation from drbg_ctr_update when addtl is present. In |
| * this case, the df_data scratchpad is not deleted so that it is |
| * available for another calls to prevent calling the DF function |
| * again. |
| * 3 => second invocation from drbg_ctr_update. When the update function |
| * was called with addtl, the df_data memory already contains the |
| * DFed addtl information and we do not need to call DF again. |
| */ |
| static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed, |
| int reseed) |
| { |
| int ret = -EFAULT; |
| /* 10.2.1.2 step 1 */ |
| unsigned char *temp = drbg->scratchpad; |
| unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) + |
| drbg_blocklen(drbg); |
| |
| if (3 > reseed) |
| memset(df_data, 0, drbg_statelen(drbg)); |
| |
| if (!reseed) { |
| /* |
| * The DRBG uses the CTR mode of the underlying AES cipher. The |
| * CTR mode increments the counter value after the AES operation |
| * but SP800-90A requires that the counter is incremented before |
| * the AES operation. Hence, we increment it at the time we set |
| * it by one. |
| */ |
| crypto_inc(drbg->V, drbg_blocklen(drbg)); |
| |
| ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C, |
| drbg_keylen(drbg)); |
| if (ret) |
| goto out; |
| } |
| |
| /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */ |
| if (seed) { |
| ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed); |
| if (ret) |
| goto out; |
| } |
| |
| ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg), |
| temp, drbg_statelen(drbg)); |
| if (ret) |
| return ret; |
| |
| /* 10.2.1.2 step 5 */ |
| ret = crypto_skcipher_setkey(drbg->ctr_handle, temp, |
| drbg_keylen(drbg)); |
| if (ret) |
| goto out; |
| /* 10.2.1.2 step 6 */ |
| memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg)); |
| /* See above: increment counter by one to compensate timing of CTR op */ |
| crypto_inc(drbg->V, drbg_blocklen(drbg)); |
| ret = 0; |
| |
| out: |
| memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg)); |
| if (2 != reseed) |
| memset(df_data, 0, drbg_statelen(drbg)); |
| return ret; |
| } |
| |
| /* |
| * scratchpad use: drbg_ctr_update is called independently from |
| * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused |
| */ |
| /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */ |
| static int drbg_ctr_generate(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct list_head *addtl) |
| { |
| int ret; |
| int len = min_t(int, buflen, INT_MAX); |
| |
| /* 10.2.1.5.2 step 2 */ |
| if (addtl && !list_empty(addtl)) { |
| ret = drbg_ctr_update(drbg, addtl, 2); |
| if (ret) |
| return 0; |
| } |
| |
| /* 10.2.1.5.2 step 4.1 */ |
| ret = drbg_kcapi_sym_ctr(drbg, drbg->ctr_null_value, DRBG_CTR_NULL_LEN, |
| buf, len); |
| if (ret) |
| return ret; |
| |
| /* 10.2.1.5.2 step 6 */ |
| ret = drbg_ctr_update(drbg, NULL, 3); |
| if (ret) |
| len = ret; |
| |
| return len; |
| } |
| |
| static const struct drbg_state_ops drbg_ctr_ops = { |
| .update = drbg_ctr_update, |
| .generate = drbg_ctr_generate, |
| .crypto_init = drbg_init_sym_kernel, |
| .crypto_fini = drbg_fini_sym_kernel, |
| }; |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| |
| /****************************************************************** |
| * HMAC DRBG callback functions |
| ******************************************************************/ |
| |
| #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC) |
| static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval, |
| const struct list_head *in); |
| static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg, |
| const unsigned char *key); |
| static int drbg_init_hash_kernel(struct drbg_state *drbg); |
| static int drbg_fini_hash_kernel(struct drbg_state *drbg); |
| #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| #define CRYPTO_DRBG_HMAC_STRING "HMAC " |
| MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1"); |
| |
| /* update function of HMAC DRBG as defined in 10.1.2.2 */ |
| static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed, |
| int reseed) |
| { |
| int ret = -EFAULT; |
| int i = 0; |
| struct drbg_string seed1, seed2, vdata; |
| LIST_HEAD(seedlist); |
| LIST_HEAD(vdatalist); |
| |
| if (!reseed) { |
| /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */ |
| memset(drbg->V, 1, drbg_statelen(drbg)); |
| drbg_kcapi_hmacsetkey(drbg, drbg->C); |
| } |
| |
| drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg)); |
| list_add_tail(&seed1.list, &seedlist); |
| /* buffer of seed2 will be filled in for loop below with one byte */ |
| drbg_string_fill(&seed2, NULL, 1); |
| list_add_tail(&seed2.list, &seedlist); |
| /* input data of seed is allowed to be NULL at this point */ |
| if (seed) |
| list_splice_tail(seed, &seedlist); |
| |
| drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg)); |
| list_add_tail(&vdata.list, &vdatalist); |
| for (i = 2; 0 < i; i--) { |
| /* first round uses 0x0, second 0x1 */ |
| unsigned char prefix = DRBG_PREFIX0; |
| if (1 == i) |
| prefix = DRBG_PREFIX1; |
| /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */ |
| seed2.buf = &prefix; |
| ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist); |
| if (ret) |
| return ret; |
| drbg_kcapi_hmacsetkey(drbg, drbg->C); |
| |
| /* 10.1.2.2 step 2 and 5 -- HMAC for V */ |
| ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist); |
| if (ret) |
| return ret; |
| |
| /* 10.1.2.2 step 3 */ |
| if (!seed) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* generate function of HMAC DRBG as defined in 10.1.2.5 */ |
| static int drbg_hmac_generate(struct drbg_state *drbg, |
| unsigned char *buf, |
| unsigned int buflen, |
| struct list_head *addtl) |
| { |
| int len = 0; |
| int ret = 0; |
| struct drbg_string data; |
| LIST_HEAD(datalist); |
| |
| /* 10.1.2.5 step 2 */ |
| if (addtl && !list_empty(addtl)) { |
| ret = drbg_hmac_update(drbg, addtl, 1); |
| if (ret) |
| return ret; |
| } |
| |
| drbg_string_fill(&data, drbg->V, drbg_statelen(drbg)); |
| list_add_tail(&data.list, &datalist); |
| while (len < buflen) { |
| unsigned int outlen = 0; |
| /* 10.1.2.5 step 4.1 */ |
| ret = drbg_kcapi_hash(drbg, drbg->V, &datalist); |
| if (ret) |
| return ret; |
| outlen = (drbg_blocklen(drbg) < (buflen - len)) ? |
| drbg_blocklen(drbg) : (buflen - len); |
| |
| /* 10.1.2.5 step 4.2 */ |
| memcpy(buf + len, drbg->V, outlen); |
| len += outlen; |
| } |
| |
| /* 10.1.2.5 step 6 */ |
| if (addtl && !list_empty(addtl)) |
| ret = drbg_hmac_update(drbg, addtl, 1); |
| else |
| ret = drbg_hmac_update(drbg, NULL, 1); |
| if (ret) |
| return ret; |
| |
| return len; |
| } |
| |
| static const struct drbg_state_ops drbg_hmac_ops = { |
| .update = drbg_hmac_update, |
| .generate = drbg_hmac_generate, |
| .crypto_init = drbg_init_hash_kernel, |
| .crypto_fini = drbg_fini_hash_kernel, |
| }; |
| #endif /* CONFIG_CRYPTO_DRBG_HMAC */ |
| |
| /****************************************************************** |
| * Hash DRBG callback functions |
| ******************************************************************/ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| #define CRYPTO_DRBG_HASH_STRING "HASH " |
| MODULE_ALIAS_CRYPTO("drbg_pr_sha512"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_sha512"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_sha384"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_sha384"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_sha256"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_sha256"); |
| MODULE_ALIAS_CRYPTO("drbg_pr_sha1"); |
| MODULE_ALIAS_CRYPTO("drbg_nopr_sha1"); |
| |
| /* |
| * Increment buffer |
| * |
| * @dst buffer to increment |
| * @add value to add |
| */ |
| static inline void drbg_add_buf(unsigned char *dst, size_t dstlen, |
| const unsigned char *add, size_t addlen) |
| { |
| /* implied: dstlen > addlen */ |
| unsigned char *dstptr; |
| const unsigned char *addptr; |
| unsigned int remainder = 0; |
| size_t len = addlen; |
| |
| dstptr = dst + (dstlen-1); |
| addptr = add + (addlen-1); |
| while (len) { |
| remainder += *dstptr + *addptr; |
| *dstptr = remainder & 0xff; |
| remainder >>= 8; |
| len--; dstptr--; addptr--; |
| } |
| len = dstlen - addlen; |
| while (len && remainder > 0) { |
| remainder = *dstptr + 1; |
| *dstptr = remainder & 0xff; |
| remainder >>= 8; |
| len--; dstptr--; |
| } |
| } |
| |
| /* |
| * scratchpad usage: as drbg_hash_update and drbg_hash_df are used |
| * interlinked, the scratchpad is used as follows: |
| * drbg_hash_update |
| * start: drbg->scratchpad |
| * length: drbg_statelen(drbg) |
| * drbg_hash_df: |
| * start: drbg->scratchpad + drbg_statelen(drbg) |
| * length: drbg_blocklen(drbg) |
| * |
| * drbg_hash_process_addtl uses the scratchpad, but fully completes |
| * before either of the functions mentioned before are invoked. Therefore, |
| * drbg_hash_process_addtl does not need to be specifically considered. |
| */ |
| |
| /* Derivation Function for Hash DRBG as defined in 10.4.1 */ |
| static int drbg_hash_df(struct drbg_state *drbg, |
| unsigned char *outval, size_t outlen, |
| struct list_head *entropylist) |
| { |
| int ret = 0; |
| size_t len = 0; |
| unsigned char input[5]; |
| unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg); |
| struct drbg_string data; |
| |
| /* 10.4.1 step 3 */ |
| input[0] = 1; |
| drbg_cpu_to_be32((outlen * 8), &input[1]); |
| |
| /* 10.4.1 step 4.1 -- concatenation of data for input into hash */ |
| drbg_string_fill(&data, input, 5); |
| list_add(&data.list, entropylist); |
| |
| /* 10.4.1 step 4 */ |
| while (len < outlen) { |
| short blocklen = 0; |
| /* 10.4.1 step 4.1 */ |
| ret = drbg_kcapi_hash(drbg, tmp, entropylist); |
| if (ret) |
| goto out; |
| /* 10.4.1 step 4.2 */ |
| input[0]++; |
| blocklen = (drbg_blocklen(drbg) < (outlen - len)) ? |
| drbg_blocklen(drbg) : (outlen - len); |
| memcpy(outval + len, tmp, blocklen); |
| len += blocklen; |
| } |
| |
| out: |
| memset(tmp, 0, drbg_blocklen(drbg)); |
| return ret; |
| } |
| |
| /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */ |
| static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed, |
| int reseed) |
| { |
| int ret = 0; |
| struct drbg_string data1, data2; |
| LIST_HEAD(datalist); |
| LIST_HEAD(datalist2); |
| unsigned char *V = drbg->scratchpad; |
| unsigned char prefix = DRBG_PREFIX1; |
| |
| if (!seed) |
| return -EINVAL; |
| |
| if (reseed) { |
| /* 10.1.1.3 step 1 */ |
| memcpy(V, drbg->V, drbg_statelen(drbg)); |
| drbg_string_fill(&data1, &prefix, 1); |
| list_add_tail(&data1.list, &datalist); |
| drbg_string_fill(&data2, V, drbg_statelen(drbg)); |
| list_add_tail(&data2.list, &datalist); |
| } |
| list_splice_tail(seed, &datalist); |
| |
| /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */ |
| ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist); |
| if (ret) |
| goto out; |
| |
| /* 10.1.1.2 / 10.1.1.3 step 4 */ |
| prefix = DRBG_PREFIX0; |
| drbg_string_fill(&data1, &prefix, 1); |
| list_add_tail(&data1.list, &datalist2); |
| drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg)); |
| list_add_tail(&data2.list, &datalist2); |
| /* 10.1.1.2 / 10.1.1.3 step 4 */ |
| ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2); |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_statelen(drbg)); |
| return ret; |
| } |
| |
| /* processing of additional information string for Hash DRBG */ |
| static int drbg_hash_process_addtl(struct drbg_state *drbg, |
| struct list_head *addtl) |
| { |
| int ret = 0; |
| struct drbg_string data1, data2; |
| LIST_HEAD(datalist); |
| unsigned char prefix = DRBG_PREFIX2; |
| |
| /* 10.1.1.4 step 2 */ |
| if (!addtl || list_empty(addtl)) |
| return 0; |
| |
| /* 10.1.1.4 step 2a */ |
| drbg_string_fill(&data1, &prefix, 1); |
| drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg)); |
| list_add_tail(&data1.list, &datalist); |
| list_add_tail(&data2.list, &datalist); |
| list_splice_tail(addtl, &datalist); |
| ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist); |
| if (ret) |
| goto out; |
| |
| /* 10.1.1.4 step 2b */ |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), |
| drbg->scratchpad, drbg_blocklen(drbg)); |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| return ret; |
| } |
| |
| /* Hashgen defined in 10.1.1.4 */ |
| static int drbg_hash_hashgen(struct drbg_state *drbg, |
| unsigned char *buf, |
| unsigned int buflen) |
| { |
| int len = 0; |
| int ret = 0; |
| unsigned char *src = drbg->scratchpad; |
| unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg); |
| struct drbg_string data; |
| LIST_HEAD(datalist); |
| |
| /* 10.1.1.4 step hashgen 2 */ |
| memcpy(src, drbg->V, drbg_statelen(drbg)); |
| |
| drbg_string_fill(&data, src, drbg_statelen(drbg)); |
| list_add_tail(&data.list, &datalist); |
| while (len < buflen) { |
| unsigned int outlen = 0; |
| /* 10.1.1.4 step hashgen 4.1 */ |
| ret = drbg_kcapi_hash(drbg, dst, &datalist); |
| if (ret) { |
| len = ret; |
| goto out; |
| } |
| outlen = (drbg_blocklen(drbg) < (buflen - len)) ? |
| drbg_blocklen(drbg) : (buflen - len); |
| /* 10.1.1.4 step hashgen 4.2 */ |
| memcpy(buf + len, dst, outlen); |
| len += outlen; |
| /* 10.1.1.4 hashgen step 4.3 */ |
| if (len < buflen) |
| crypto_inc(src, drbg_statelen(drbg)); |
| } |
| |
| out: |
| memset(drbg->scratchpad, 0, |
| (drbg_statelen(drbg) + drbg_blocklen(drbg))); |
| return len; |
| } |
| |
| /* generate function for Hash DRBG as defined in 10.1.1.4 */ |
| static int drbg_hash_generate(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct list_head *addtl) |
| { |
| int len = 0; |
| int ret = 0; |
| union { |
| unsigned char req[8]; |
| __be64 req_int; |
| } u; |
| unsigned char prefix = DRBG_PREFIX3; |
| struct drbg_string data1, data2; |
| LIST_HEAD(datalist); |
| |
| /* 10.1.1.4 step 2 */ |
| ret = drbg_hash_process_addtl(drbg, addtl); |
| if (ret) |
| return ret; |
| /* 10.1.1.4 step 3 */ |
| len = drbg_hash_hashgen(drbg, buf, buflen); |
| |
| /* this is the value H as documented in 10.1.1.4 */ |
| /* 10.1.1.4 step 4 */ |
| drbg_string_fill(&data1, &prefix, 1); |
| list_add_tail(&data1.list, &datalist); |
| drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg)); |
| list_add_tail(&data2.list, &datalist); |
| ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist); |
| if (ret) { |
| len = ret; |
| goto out; |
| } |
| |
| /* 10.1.1.4 step 5 */ |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), |
| drbg->scratchpad, drbg_blocklen(drbg)); |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), |
| drbg->C, drbg_statelen(drbg)); |
| u.req_int = cpu_to_be64(drbg->reseed_ctr); |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8); |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| return len; |
| } |
| |
| /* |
| * scratchpad usage: as update and generate are used isolated, both |
| * can use the scratchpad |
| */ |
| static const struct drbg_state_ops drbg_hash_ops = { |
| .update = drbg_hash_update, |
| .generate = drbg_hash_generate, |
| .crypto_init = drbg_init_hash_kernel, |
| .crypto_fini = drbg_fini_hash_kernel, |
| }; |
| #endif /* CONFIG_CRYPTO_DRBG_HASH */ |
| |
| /****************************************************************** |
| * Functions common for DRBG implementations |
| ******************************************************************/ |
| |
| static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed, |
| int reseed) |
| { |
| int ret = drbg->d_ops->update(drbg, seed, reseed); |
| |
| if (ret) |
| return ret; |
| |
| drbg->seeded = true; |
| /* 10.1.1.2 / 10.1.1.3 step 5 */ |
| drbg->reseed_ctr = 1; |
| |
| return ret; |
| } |
| |
| static void drbg_async_seed(struct work_struct *work) |
| { |
| struct drbg_string data; |
| LIST_HEAD(seedlist); |
| struct drbg_state *drbg = container_of(work, struct drbg_state, |
| seed_work); |
| unsigned int entropylen = drbg_sec_strength(drbg->core->flags); |
| unsigned char entropy[32]; |
| |
| BUG_ON(!entropylen); |
| BUG_ON(entropylen > sizeof(entropy)); |
| get_random_bytes(entropy, entropylen); |
| |
| drbg_string_fill(&data, entropy, entropylen); |
| list_add_tail(&data.list, &seedlist); |
| |
| mutex_lock(&drbg->drbg_mutex); |
| |
| /* If nonblocking pool is initialized, deactivate Jitter RNG */ |
| crypto_free_rng(drbg->jent); |
| drbg->jent = NULL; |
| |
| /* Set seeded to false so that if __drbg_seed fails the |
| * next generate call will trigger a reseed. |
| */ |
| drbg->seeded = false; |
| |
| __drbg_seed(drbg, &seedlist, true); |
| |
| if (drbg->seeded) |
| drbg->reseed_threshold = drbg_max_requests(drbg); |
| |
| mutex_unlock(&drbg->drbg_mutex); |
| |
| memzero_explicit(entropy, entropylen); |
| } |
| |
| /* |
| * Seeding or reseeding of the DRBG |
| * |
| * @drbg: DRBG state struct |
| * @pers: personalization / additional information buffer |
| * @reseed: 0 for initial seed process, 1 for reseeding |
| * |
| * return: |
| * 0 on success |
| * error value otherwise |
| */ |
| static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers, |
| bool reseed) |
| { |
| int ret; |
| unsigned char entropy[((32 + 16) * 2)]; |
| unsigned int entropylen = drbg_sec_strength(drbg->core->flags); |
| struct drbg_string data1; |
| LIST_HEAD(seedlist); |
| |
| /* 9.1 / 9.2 / 9.3.1 step 3 */ |
| if (pers && pers->len > (drbg_max_addtl(drbg))) { |
| pr_devel("DRBG: personalization string too long %zu\n", |
| pers->len); |
| return -EINVAL; |
| } |
| |
| if (list_empty(&drbg->test_data.list)) { |
| drbg_string_fill(&data1, drbg->test_data.buf, |
| drbg->test_data.len); |
| pr_devel("DRBG: using test entropy\n"); |
| } else { |
| /* |
| * Gather entropy equal to the security strength of the DRBG. |
| * With a derivation function, a nonce is required in addition |
| * to the entropy. A nonce must be at least 1/2 of the security |
| * strength of the DRBG in size. Thus, entropy + nonce is 3/2 |
| * of the strength. The consideration of a nonce is only |
| * applicable during initial seeding. |
| */ |
| BUG_ON(!entropylen); |
| if (!reseed) |
| entropylen = ((entropylen + 1) / 2) * 3; |
| BUG_ON((entropylen * 2) > sizeof(entropy)); |
| |
| /* Get seed from in-kernel /dev/urandom */ |
| get_random_bytes(entropy, entropylen); |
| |
| if (!drbg->jent) { |
| drbg_string_fill(&data1, entropy, entropylen); |
| pr_devel("DRBG: (re)seeding with %u bytes of entropy\n", |
| entropylen); |
| } else { |
| /* Get seed from Jitter RNG */ |
| ret = crypto_rng_get_bytes(drbg->jent, |
| entropy + entropylen, |
| entropylen); |
| if (ret) { |
| pr_devel("DRBG: jent failed with %d\n", ret); |
| return ret; |
| } |
| |
| drbg_string_fill(&data1, entropy, entropylen * 2); |
| pr_devel("DRBG: (re)seeding with %u bytes of entropy\n", |
| entropylen * 2); |
| } |
| } |
| list_add_tail(&data1.list, &seedlist); |
| |
| /* |
| * concatenation of entropy with personalization str / addtl input) |
| * the variable pers is directly handed in by the caller, so check its |
| * contents whether it is appropriate |
| */ |
| if (pers && pers->buf && 0 < pers->len) { |
| list_add_tail(&pers->list, &seedlist); |
| pr_devel("DRBG: using personalization string\n"); |
| } |
| |
| if (!reseed) { |
| memset(drbg->V, 0, drbg_statelen(drbg)); |
| memset(drbg->C, 0, drbg_statelen(drbg)); |
| } |
| |
| ret = __drbg_seed(drbg, &seedlist, reseed); |
| |
| memzero_explicit(entropy, entropylen * 2); |
| |
| return ret; |
| } |
| |
| /* Free all substructures in a DRBG state without the DRBG state structure */ |
| static inline void drbg_dealloc_state(struct drbg_state *drbg) |
| { |
| if (!drbg) |
| return; |
| kzfree(drbg->V); |
| drbg->Vbuf = NULL; |
| kzfree(drbg->C); |
| drbg->Cbuf = NULL; |
| kzfree(drbg->scratchpadbuf); |
| drbg->scratchpadbuf = NULL; |
| drbg->reseed_ctr = 0; |
| drbg->d_ops = NULL; |
| drbg->core = NULL; |
| } |
| |
| /* |
| * Allocate all sub-structures for a DRBG state. |
| * The DRBG state structure must already be allocated. |
| */ |
| static inline int drbg_alloc_state(struct drbg_state *drbg) |
| { |
| int ret = -ENOMEM; |
| unsigned int sb_size = 0; |
| |
| switch (drbg->core->flags & DRBG_TYPE_MASK) { |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| case DRBG_HMAC: |
| drbg->d_ops = &drbg_hmac_ops; |
| break; |
| #endif /* CONFIG_CRYPTO_DRBG_HMAC */ |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| case DRBG_HASH: |
| drbg->d_ops = &drbg_hash_ops; |
| break; |
| #endif /* CONFIG_CRYPTO_DRBG_HASH */ |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| case DRBG_CTR: |
| drbg->d_ops = &drbg_ctr_ops; |
| break; |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| default: |
| ret = -EOPNOTSUPP; |
| goto err; |
| } |
| |
| ret = drbg->d_ops->crypto_init(drbg); |
| if (ret < 0) |
| goto err; |
| |
| drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL); |
| if (!drbg->Vbuf) { |
| ret = -ENOMEM; |
| goto fini; |
| } |
| drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1); |
| drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL); |
| if (!drbg->Cbuf) { |
| ret = -ENOMEM; |
| goto fini; |
| } |
| drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1); |
| /* scratchpad is only generated for CTR and Hash */ |
| if (drbg->core->flags & DRBG_HMAC) |
| sb_size = 0; |
| else if (drbg->core->flags & DRBG_CTR) |
| sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */ |
| drbg_statelen(drbg) + /* df_data */ |
| drbg_blocklen(drbg) + /* pad */ |
| drbg_blocklen(drbg) + /* iv */ |
| drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */ |
| else |
| sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg); |
| |
| if (0 < sb_size) { |
| drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL); |
| if (!drbg->scratchpadbuf) { |
| ret = -ENOMEM; |
| goto fini; |
| } |
| drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1); |
| } |
| |
| return 0; |
| |
| fini: |
| drbg->d_ops->crypto_fini(drbg); |
| err: |
| drbg_dealloc_state(drbg); |
| return ret; |
| } |
| |
| /************************************************************************* |
| * DRBG interface functions |
| *************************************************************************/ |
| |
| /* |
| * DRBG generate function as required by SP800-90A - this function |
| * generates random numbers |
| * |
| * @drbg DRBG state handle |
| * @buf Buffer where to store the random numbers -- the buffer must already |
| * be pre-allocated by caller |
| * @buflen Length of output buffer - this value defines the number of random |
| * bytes pulled from DRBG |
| * @addtl Additional input that is mixed into state, may be NULL -- note |
| * the entropy is pulled by the DRBG internally unconditionally |
| * as defined in SP800-90A. The additional input is mixed into |
| * the state in addition to the pulled entropy. |
| * |
| * return: 0 when all bytes are generated; < 0 in case of an error |
| */ |
| static int drbg_generate(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| int len = 0; |
| LIST_HEAD(addtllist); |
| |
| if (!drbg->core) { |
| pr_devel("DRBG: not yet seeded\n"); |
| return -EINVAL; |
| } |
| if (0 == buflen || !buf) { |
| pr_devel("DRBG: no output buffer provided\n"); |
| return -EINVAL; |
| } |
| if (addtl && NULL == addtl->buf && 0 < addtl->len) { |
| pr_devel("DRBG: wrong format of additional information\n"); |
| return -EINVAL; |
| } |
| |
| /* 9.3.1 step 2 */ |
| len = -EINVAL; |
| if (buflen > (drbg_max_request_bytes(drbg))) { |
| pr_devel("DRBG: requested random numbers too large %u\n", |
| buflen); |
| goto err; |
| } |
| |
| /* 9.3.1 step 3 is implicit with the chosen DRBG */ |
| |
| /* 9.3.1 step 4 */ |
| if (addtl && addtl->len > (drbg_max_addtl(drbg))) { |
| pr_devel("DRBG: additional information string too long %zu\n", |
| addtl->len); |
| goto err; |
| } |
| /* 9.3.1 step 5 is implicit with the chosen DRBG */ |
| |
| /* |
| * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented |
| * here. The spec is a bit convoluted here, we make it simpler. |
| */ |
| if (drbg->reseed_threshold < drbg->reseed_ctr) |
| drbg->seeded = false; |
| |
| if (drbg->pr || !drbg->seeded) { |
| pr_devel("DRBG: reseeding before generation (prediction " |
| "resistance: %s, state %s)\n", |
| drbg->pr ? "true" : "false", |
| drbg->seeded ? "seeded" : "unseeded"); |
| /* 9.3.1 steps 7.1 through 7.3 */ |
| len = drbg_seed(drbg, addtl, true); |
| if (len) |
| goto err; |
| /* 9.3.1 step 7.4 */ |
| addtl = NULL; |
| } |
| |
| if (addtl && 0 < addtl->len) |
| list_add_tail(&addtl->list, &addtllist); |
| /* 9.3.1 step 8 and 10 */ |
| len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist); |
| |
| /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */ |
| drbg->reseed_ctr++; |
| if (0 >= len) |
| goto err; |
| |
| /* |
| * Section 11.3.3 requires to re-perform self tests after some |
| * generated random numbers. The chosen value after which self |
| * test is performed is arbitrary, but it should be reasonable. |
| * However, we do not perform the self tests because of the following |
| * reasons: it is mathematically impossible that the initial self tests |
| * were successfully and the following are not. If the initial would |
| * pass and the following would not, the kernel integrity is violated. |
| * In this case, the entire kernel operation is questionable and it |
| * is unlikely that the integrity violation only affects the |
| * correct operation of the DRBG. |
| * |
| * Albeit the following code is commented out, it is provided in |
| * case somebody has a need to implement the test of 11.3.3. |
| */ |
| #if 0 |
| if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) { |
| int err = 0; |
| pr_devel("DRBG: start to perform self test\n"); |
| if (drbg->core->flags & DRBG_HMAC) |
| err = alg_test("drbg_pr_hmac_sha256", |
| "drbg_pr_hmac_sha256", 0, 0); |
| else if (drbg->core->flags & DRBG_CTR) |
| err = alg_test("drbg_pr_ctr_aes128", |
| "drbg_pr_ctr_aes128", 0, 0); |
| else |
| err = alg_test("drbg_pr_sha256", |
| "drbg_pr_sha256", 0, 0); |
| if (err) { |
| pr_err("DRBG: periodical self test failed\n"); |
| /* |
| * uninstantiate implies that from now on, only errors |
| * are returned when reusing this DRBG cipher handle |
| */ |
| drbg_uninstantiate(drbg); |
| return 0; |
| } else { |
| pr_devel("DRBG: self test successful\n"); |
| } |
| } |
| #endif |
| |
| /* |
| * All operations were successful, return 0 as mandated by |
| * the kernel crypto API interface. |
| */ |
| len = 0; |
| err: |
| return len; |
| } |
| |
| /* |
| * Wrapper around drbg_generate which can pull arbitrary long strings |
| * from the DRBG without hitting the maximum request limitation. |
| * |
| * Parameters: see drbg_generate |
| * Return codes: see drbg_generate -- if one drbg_generate request fails, |
| * the entire drbg_generate_long request fails |
| */ |
| static int drbg_generate_long(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| unsigned int len = 0; |
| unsigned int slice = 0; |
| do { |
| int err = 0; |
| unsigned int chunk = 0; |
| slice = ((buflen - len) / drbg_max_request_bytes(drbg)); |
| chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len); |
| mutex_lock(&drbg->drbg_mutex); |
| err = drbg_generate(drbg, buf + len, chunk, addtl); |
| mutex_unlock(&drbg->drbg_mutex); |
| if (0 > err) |
| return err; |
| len += chunk; |
| } while (slice > 0 && (len < buflen)); |
| return 0; |
| } |
| |
| static void drbg_schedule_async_seed(struct random_ready_callback *rdy) |
| { |
| struct drbg_state *drbg = container_of(rdy, struct drbg_state, |
| random_ready); |
| |
| schedule_work(&drbg->seed_work); |
| } |
| |
| static int drbg_prepare_hrng(struct drbg_state *drbg) |
| { |
| int err; |
| |
| /* We do not need an HRNG in test mode. */ |
| if (list_empty(&drbg->test_data.list)) |
| return 0; |
| |
| INIT_WORK(&drbg->seed_work, drbg_async_seed); |
| |
| drbg->random_ready.owner = THIS_MODULE; |
| drbg->random_ready.func = drbg_schedule_async_seed; |
| |
| err = add_random_ready_callback(&drbg->random_ready); |
| |
| switch (err) { |
| case 0: |
| break; |
| |
| case -EALREADY: |
| err = 0; |
| /* fall through */ |
| |
| default: |
| drbg->random_ready.func = NULL; |
| return err; |
| } |
| |
| drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0); |
| |
| /* |
| * Require frequent reseeds until the seed source is fully |
| * initialized. |
| */ |
| drbg->reseed_threshold = 50; |
| |
| return err; |
| } |
| |
| /* |
| * DRBG instantiation function as required by SP800-90A - this function |
| * sets up the DRBG handle, performs the initial seeding and all sanity |
| * checks required by SP800-90A |
| * |
| * @drbg memory of state -- if NULL, new memory is allocated |
| * @pers Personalization string that is mixed into state, may be NULL -- note |
| * the entropy is pulled by the DRBG internally unconditionally |
| * as defined in SP800-90A. The additional input is mixed into |
| * the state in addition to the pulled entropy. |
| * @coreref reference to core |
| * @pr prediction resistance enabled |
| * |
| * return |
| * 0 on success |
| * error value otherwise |
| */ |
| static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers, |
| int coreref, bool pr) |
| { |
| int ret; |
| bool reseed = true; |
| |
| pr_devel("DRBG: Initializing DRBG core %d with prediction resistance " |
| "%s\n", coreref, pr ? "enabled" : "disabled"); |
| mutex_lock(&drbg->drbg_mutex); |
| |
| /* 9.1 step 1 is implicit with the selected DRBG type */ |
| |
| /* |
| * 9.1 step 2 is implicit as caller can select prediction resistance |
| * and the flag is copied into drbg->flags -- |
| * all DRBG types support prediction resistance |
| */ |
| |
| /* 9.1 step 4 is implicit in drbg_sec_strength */ |
| |
| if (!drbg->core) { |
| drbg->core = &drbg_cores[coreref]; |
| drbg->pr = pr; |
| drbg->seeded = false; |
| drbg->reseed_threshold = drbg_max_requests(drbg); |
| |
| ret = drbg_alloc_state(drbg); |
| if (ret) |
| goto unlock; |
| |
| ret = drbg_prepare_hrng(drbg); |
| if (ret) |
| goto free_everything; |
| |
| if (IS_ERR(drbg->jent)) { |
| ret = PTR_ERR(drbg->jent); |
| drbg->jent = NULL; |
| if (fips_enabled || ret != -ENOENT) |
| goto free_everything; |
| pr_info("DRBG: Continuing without Jitter RNG\n"); |
| } |
| |
| reseed = false; |
| } |
| |
| ret = drbg_seed(drbg, pers, reseed); |
| |
| if (ret && !reseed) |
| goto free_everything; |
| |
| mutex_unlock(&drbg->drbg_mutex); |
| return ret; |
| |
| unlock: |
| mutex_unlock(&drbg->drbg_mutex); |
| return ret; |
| |
| free_everything: |
| mutex_unlock(&drbg->drbg_mutex); |
| drbg_uninstantiate(drbg); |
| return ret; |
| } |
| |
| /* |
| * DRBG uninstantiate function as required by SP800-90A - this function |
| * frees all buffers and the DRBG handle |
| * |
| * @drbg DRBG state handle |
| * |
| * return |
| * 0 on success |
| */ |
| static int drbg_uninstantiate(struct drbg_state *drbg) |
| { |
| if (drbg->random_ready.func) { |
| del_random_ready_callback(&drbg->random_ready); |
| cancel_work_sync(&drbg->seed_work); |
| crypto_free_rng(drbg->jent); |
| drbg->jent = NULL; |
| } |
| |
| if (drbg->d_ops) |
| drbg->d_ops->crypto_fini(drbg); |
| drbg_dealloc_state(drbg); |
| /* no scrubbing of test_data -- this shall survive an uninstantiate */ |
| return 0; |
| } |
| |
| /* |
| * Helper function for setting the test data in the DRBG |
| * |
| * @drbg DRBG state handle |
| * @data test data |
| * @len test data length |
| */ |
| static void drbg_kcapi_set_entropy(struct crypto_rng *tfm, |
| const u8 *data, unsigned int len) |
| { |
| struct drbg_state *drbg = crypto_rng_ctx(tfm); |
| |
| mutex_lock(&drbg->drbg_mutex); |
| drbg_string_fill(&drbg->test_data, data, len); |
| mutex_unlock(&drbg->drbg_mutex); |
| } |
| |
| /*************************************************************** |
| * Kernel crypto API cipher invocations requested by DRBG |
| ***************************************************************/ |
| |
| #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC) |
| struct sdesc { |
| struct shash_desc shash; |
| char ctx[]; |
| }; |
| |
| static int drbg_init_hash_kernel(struct drbg_state *drbg) |
| { |
| struct sdesc *sdesc; |
| struct crypto_shash *tfm; |
| |
| tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_info("DRBG: could not allocate digest TFM handle: %s\n", |
| drbg->core->backend_cra_name); |
| return PTR_ERR(tfm); |
| } |
| BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm)); |
| sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm), |
| GFP_KERNEL); |
| if (!sdesc) { |
| crypto_free_shash(tfm); |
| return -ENOMEM; |
| } |
| |
| sdesc->shash.tfm = tfm; |
| sdesc->shash.flags = 0; |
| drbg->priv_data = sdesc; |
| |
| return crypto_shash_alignmask(tfm); |
| } |
| |
| static int drbg_fini_hash_kernel(struct drbg_state *drbg) |
| { |
| struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; |
| if (sdesc) { |
| crypto_free_shash(sdesc->shash.tfm); |
| kzfree(sdesc); |
| } |
| drbg->priv_data = NULL; |
| return 0; |
| } |
| |
| static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg, |
| const unsigned char *key) |
| { |
| struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; |
| |
| crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg)); |
| } |
| |
| static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval, |
| const struct list_head *in) |
| { |
| struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; |
| struct drbg_string *input = NULL; |
| |
| crypto_shash_init(&sdesc->shash); |
| list_for_each_entry(input, in, list) |
| crypto_shash_update(&sdesc->shash, input->buf, input->len); |
| return crypto_shash_final(&sdesc->shash, outval); |
| } |
| #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| static int drbg_fini_sym_kernel(struct drbg_state *drbg) |
| { |
| struct crypto_cipher *tfm = |
| (struct crypto_cipher *)drbg->priv_data; |
| if (tfm) |
| crypto_free_cipher(tfm); |
| drbg->priv_data = NULL; |
| |
| if (drbg->ctr_handle) |
| crypto_free_skcipher(drbg->ctr_handle); |
| drbg->ctr_handle = NULL; |
| |
| if (drbg->ctr_req) |
| skcipher_request_free(drbg->ctr_req); |
| drbg->ctr_req = NULL; |
| |
| kfree(drbg->ctr_null_value_buf); |
| drbg->ctr_null_value = NULL; |
| |
| kfree(drbg->outscratchpadbuf); |
| drbg->outscratchpadbuf = NULL; |
| |
| return 0; |
| } |
| |
| static void drbg_skcipher_cb(struct crypto_async_request *req, int error) |
| { |
| struct drbg_state *drbg = req->data; |
| |
| if (error == -EINPROGRESS) |
| return; |
| drbg->ctr_async_err = error; |
| complete(&drbg->ctr_completion); |
| } |
| |
| static int drbg_init_sym_kernel(struct drbg_state *drbg) |
| { |
| struct crypto_cipher *tfm; |
| struct crypto_skcipher *sk_tfm; |
| struct skcipher_request *req; |
| unsigned int alignmask; |
| char ctr_name[CRYPTO_MAX_ALG_NAME]; |
| |
| tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_info("DRBG: could not allocate cipher TFM handle: %s\n", |
| drbg->core->backend_cra_name); |
| return PTR_ERR(tfm); |
| } |
| BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm)); |
| drbg->priv_data = tfm; |
| |
| if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)", |
| drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) { |
| drbg_fini_sym_kernel(drbg); |
| return -EINVAL; |
| } |
| sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0); |
| if (IS_ERR(sk_tfm)) { |
| pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n", |
| ctr_name); |
| drbg_fini_sym_kernel(drbg); |
| return PTR_ERR(sk_tfm); |
| } |
| drbg->ctr_handle = sk_tfm; |
| init_completion(&drbg->ctr_completion); |
| |
| req = skcipher_request_alloc(sk_tfm, GFP_KERNEL); |
| if (!req) { |
| pr_info("DRBG: could not allocate request queue\n"); |
| drbg_fini_sym_kernel(drbg); |
| return -ENOMEM; |
| } |
| drbg->ctr_req = req; |
| skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| drbg_skcipher_cb, drbg); |
| |
| alignmask = crypto_skcipher_alignmask(sk_tfm); |
| drbg->ctr_null_value_buf = kzalloc(DRBG_CTR_NULL_LEN + alignmask, |
| GFP_KERNEL); |
| if (!drbg->ctr_null_value_buf) { |
| drbg_fini_sym_kernel(drbg); |
| return -ENOMEM; |
| } |
| drbg->ctr_null_value = (u8 *)PTR_ALIGN(drbg->ctr_null_value_buf, |
| alignmask + 1); |
| |
| drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask, |
| GFP_KERNEL); |
| if (!drbg->outscratchpadbuf) { |
| drbg_fini_sym_kernel(drbg); |
| return -ENOMEM; |
| } |
| drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf, |
| alignmask + 1); |
| |
| return alignmask; |
| } |
| |
| static void drbg_kcapi_symsetkey(struct drbg_state *drbg, |
| const unsigned char *key) |
| { |
| struct crypto_cipher *tfm = |
| (struct crypto_cipher *)drbg->priv_data; |
| |
| crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg))); |
| } |
| |
| static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval, |
| const struct drbg_string *in) |
| { |
| struct crypto_cipher *tfm = |
| (struct crypto_cipher *)drbg->priv_data; |
| |
| /* there is only component in *in */ |
| BUG_ON(in->len < drbg_blocklen(drbg)); |
| crypto_cipher_encrypt_one(tfm, outval, in->buf); |
| return 0; |
| } |
| |
| static int drbg_kcapi_sym_ctr(struct drbg_state *drbg, |
| u8 *inbuf, u32 inlen, |
| u8 *outbuf, u32 outlen) |
| { |
| struct scatterlist sg_in, sg_out; |
| int ret; |
| |
| sg_init_one(&sg_in, inbuf, inlen); |
| sg_init_one(&sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN); |
| |
| while (outlen) { |
| u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN); |
| |
| /* Output buffer may not be valid for SGL, use scratchpad */ |
| skcipher_request_set_crypt(drbg->ctr_req, &sg_in, &sg_out, |
| cryptlen, drbg->V); |
| ret = crypto_skcipher_encrypt(drbg->ctr_req); |
| switch (ret) { |
| case 0: |
| break; |
| case -EINPROGRESS: |
| case -EBUSY: |
| ret = wait_for_completion_interruptible( |
| &drbg->ctr_completion); |
| if (!ret && !drbg->ctr_async_err) { |
| reinit_completion(&drbg->ctr_completion); |
| break; |
| } |
| default: |
| goto out; |
| } |
| init_completion(&drbg->ctr_completion); |
| |
| memcpy(outbuf, drbg->outscratchpad, cryptlen); |
| |
| outlen -= cryptlen; |
| outbuf += cryptlen; |
| } |
| ret = 0; |
| |
| out: |
| memzero_explicit(drbg->outscratchpad, DRBG_OUTSCRATCHLEN); |
| return ret; |
| } |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| |
| /*************************************************************** |
| * Kernel crypto API interface to register DRBG |
| ***************************************************************/ |
| |
| /* |
| * Look up the DRBG flags by given kernel crypto API cra_name |
| * The code uses the drbg_cores definition to do this |
| * |
| * @cra_name kernel crypto API cra_name |
| * @coreref reference to integer which is filled with the pointer to |
| * the applicable core |
| * @pr reference for setting prediction resistance |
| * |
| * return: flags |
| */ |
| static inline void drbg_convert_tfm_core(const char *cra_driver_name, |
| int *coreref, bool *pr) |
| { |
| int i = 0; |
| size_t start = 0; |
| int len = 0; |
| |
| *pr = true; |
| /* disassemble the names */ |
| if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) { |
| start = 10; |
| *pr = false; |
| } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) { |
| start = 8; |
| } else { |
| return; |
| } |
| |
| /* remove the first part */ |
| len = strlen(cra_driver_name) - start; |
| for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) { |
| if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name, |
| len)) { |
| *coreref = i; |
| return; |
| } |
| } |
| } |
| |
| static int drbg_kcapi_init(struct crypto_tfm *tfm) |
| { |
| struct drbg_state *drbg = crypto_tfm_ctx(tfm); |
| |
| mutex_init(&drbg->drbg_mutex); |
| |
| return 0; |
| } |
| |
| static void drbg_kcapi_cleanup(struct crypto_tfm *tfm) |
| { |
| drbg_uninstantiate(crypto_tfm_ctx(tfm)); |
| } |
| |
| /* |
| * Generate random numbers invoked by the kernel crypto API: |
| * The API of the kernel crypto API is extended as follows: |
| * |
| * src is additional input supplied to the RNG. |
| * slen is the length of src. |
| * dst is the output buffer where random data is to be stored. |
| * dlen is the length of dst. |
| */ |
| static int drbg_kcapi_random(struct crypto_rng *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int dlen) |
| { |
| struct drbg_state *drbg = crypto_rng_ctx(tfm); |
| struct drbg_string *addtl = NULL; |
| struct drbg_string string; |
| |
| if (slen) { |
| /* linked list variable is now local to allow modification */ |
| drbg_string_fill(&string, src, slen); |
| addtl = &string; |
| } |
| |
| return drbg_generate_long(drbg, dst, dlen, addtl); |
| } |
| |
| /* |
| * Seed the DRBG invoked by the kernel crypto API |
| */ |
| static int drbg_kcapi_seed(struct crypto_rng *tfm, |
| const u8 *seed, unsigned int slen) |
| { |
| struct drbg_state *drbg = crypto_rng_ctx(tfm); |
| struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm); |
| bool pr = false; |
| struct drbg_string string; |
| struct drbg_string *seed_string = NULL; |
| int coreref = 0; |
| |
| drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref, |
| &pr); |
| if (0 < slen) { |
| drbg_string_fill(&string, seed, slen); |
| seed_string = &string; |
| } |
| |
| return drbg_instantiate(drbg, seed_string, coreref, pr); |
| } |
| |
| /*************************************************************** |
| * Kernel module: code to load the module |
| ***************************************************************/ |
| |
| /* |
| * Tests as defined in 11.3.2 in addition to the cipher tests: testing |
| * of the error handling. |
| * |
| * Note: testing of failing seed source as defined in 11.3.2 is not applicable |
| * as seed source of get_random_bytes does not fail. |
| * |
| * Note 2: There is no sensible way of testing the reseed counter |
| * enforcement, so skip it. |
| */ |
| static inline int __init drbg_healthcheck_sanity(void) |
| { |
| int len = 0; |
| #define OUTBUFLEN 16 |
| unsigned char buf[OUTBUFLEN]; |
| struct drbg_state *drbg = NULL; |
| int ret = -EFAULT; |
| int rc = -EFAULT; |
| bool pr = false; |
| int coreref = 0; |
| struct drbg_string addtl; |
| size_t max_addtllen, max_request_bytes; |
| |
| /* only perform test in FIPS mode */ |
| if (!fips_enabled) |
| return 0; |
| |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr); |
| #elif defined CONFIG_CRYPTO_DRBG_HASH |
| drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr); |
| #else |
| drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr); |
| #endif |
| |
| drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL); |
| if (!drbg) |
| return -ENOMEM; |
| |
| mutex_init(&drbg->drbg_mutex); |
| drbg->core = &drbg_cores[coreref]; |
| drbg->reseed_threshold = drbg_max_requests(drbg); |
| |
| /* |
| * if the following tests fail, it is likely that there is a buffer |
| * overflow as buf is much smaller than the requested or provided |
| * string lengths -- in case the error handling does not succeed |
| * we may get an OOPS. And we want to get an OOPS as this is a |
| * grave bug. |
| */ |
| |
| max_addtllen = drbg_max_addtl(drbg); |
| max_request_bytes = drbg_max_request_bytes(drbg); |
| drbg_string_fill(&addtl, buf, max_addtllen + 1); |
| /* overflow addtllen with additonal info string */ |
| len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl); |
| BUG_ON(0 < len); |
| /* overflow max_bits */ |
| len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL); |
| BUG_ON(0 < len); |
| |
| /* overflow max addtllen with personalization string */ |
| ret = drbg_seed(drbg, &addtl, false); |
| BUG_ON(0 == ret); |
| /* all tests passed */ |
| rc = 0; |
| |
| pr_devel("DRBG: Sanity tests for failure code paths successfully " |
| "completed\n"); |
| |
| kfree(drbg); |
| return rc; |
| } |
| |
| static struct rng_alg drbg_algs[22]; |
| |
| /* |
| * Fill the array drbg_algs used to register the different DRBGs |
| * with the kernel crypto API. To fill the array, the information |
| * from drbg_cores[] is used. |
| */ |
| static inline void __init drbg_fill_array(struct rng_alg *alg, |
| const struct drbg_core *core, int pr) |
| { |
| int pos = 0; |
| static int priority = 200; |
| |
| memcpy(alg->base.cra_name, "stdrng", 6); |
| if (pr) { |
| memcpy(alg->base.cra_driver_name, "drbg_pr_", 8); |
| pos = 8; |
| } else { |
| memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10); |
| pos = 10; |
| } |
| memcpy(alg->base.cra_driver_name + pos, core->cra_name, |
| strlen(core->cra_name)); |
| |
| alg->base.cra_priority = priority; |
| priority++; |
| /* |
| * If FIPS mode enabled, the selected DRBG shall have the |
| * highest cra_priority over other stdrng instances to ensure |
| * it is selected. |
| */ |
| if (fips_enabled) |
| alg->base.cra_priority += 200; |
| |
| alg->base.cra_ctxsize = sizeof(struct drbg_state); |
| alg->base.cra_module = THIS_MODULE; |
| alg->base.cra_init = drbg_kcapi_init; |
| alg->base.cra_exit = drbg_kcapi_cleanup; |
| alg->generate = drbg_kcapi_random; |
| alg->seed = drbg_kcapi_seed; |
| alg->set_ent = drbg_kcapi_set_entropy; |
| alg->seedsize = 0; |
| } |
| |
| static int __init drbg_init(void) |
| { |
| unsigned int i = 0; /* pointer to drbg_algs */ |
| unsigned int j = 0; /* pointer to drbg_cores */ |
| int ret; |
| |
| ret = drbg_healthcheck_sanity(); |
| if (ret) |
| return ret; |
| |
| if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) { |
| pr_info("DRBG: Cannot register all DRBG types" |
| "(slots needed: %zu, slots available: %zu)\n", |
| ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs)); |
| return -EFAULT; |
| } |
| |
| /* |
| * each DRBG definition can be used with PR and without PR, thus |
| * we instantiate each DRBG in drbg_cores[] twice. |
| * |
| * As the order of placing them into the drbg_algs array matters |
| * (the later DRBGs receive a higher cra_priority) we register the |
| * prediction resistance DRBGs first as the should not be too |
| * interesting. |
| */ |
| for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++) |
| drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1); |
| for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++) |
| drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0); |
| return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2)); |
| } |
| |
| static void __exit drbg_exit(void) |
| { |
| crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2)); |
| } |
| |
| module_init(drbg_init); |
| module_exit(drbg_exit); |
| #ifndef CRYPTO_DRBG_HASH_STRING |
| #define CRYPTO_DRBG_HASH_STRING "" |
| #endif |
| #ifndef CRYPTO_DRBG_HMAC_STRING |
| #define CRYPTO_DRBG_HMAC_STRING "" |
| #endif |
| #ifndef CRYPTO_DRBG_CTR_STRING |
| #define CRYPTO_DRBG_CTR_STRING "" |
| #endif |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); |
| MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) " |
| "using following cores: " |
| CRYPTO_DRBG_HASH_STRING |
| CRYPTO_DRBG_HMAC_STRING |
| CRYPTO_DRBG_CTR_STRING); |
| MODULE_ALIAS_CRYPTO("stdrng"); |