blob: ac66d05a7c01ce62f348e73294a2b351bafb5580 [file] [log] [blame]
#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
/*
* Common bits between hash and Radix page table
*/
#define _PAGE_BIT_SWAP_TYPE 0
#define _PAGE_RO 0
#define _PAGE_EXEC 0x00001 /* execute permission */
#define _PAGE_WRITE 0x00002 /* write access allowed */
#define _PAGE_READ 0x00004 /* read access allowed */
#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
#define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
#define _PAGE_SAO 0x00010 /* Strong access order */
#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
#define _PAGE_DIRTY 0x00080 /* C: page changed */
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
/*
* Software bits
*/
#define _RPAGE_SW0 0x2000000000000000UL
#define _RPAGE_SW1 0x00800
#define _RPAGE_SW2 0x00400
#define _RPAGE_SW3 0x00200
#define _RPAGE_RSV1 0x1000000000000000UL
#define _RPAGE_RSV2 0x0800000000000000UL
#define _RPAGE_RSV3 0x0400000000000000UL
#define _RPAGE_RSV4 0x0200000000000000UL
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
#else
#define _PAGE_SOFT_DIRTY 0x00000
#endif
#define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
/*
* For P9 DD1 only, we need to track whether the pte's huge.
*/
#define _PAGE_LARGE _RPAGE_RSV1
#define _PAGE_PTE (1ul << 62) /* distinguishes PTEs from pointers */
#define _PAGE_PRESENT (1ul << 63) /* pte contains a translation */
/*
* Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
* Instead of fixing all of them, add an alternate define which
* maps CI pte mapping.
*/
#define _PAGE_NO_CACHE _PAGE_TOLERANT
/*
* We support 57 bit real address in pte. Clear everything above 57, and
* every thing below PAGE_SHIFT;
*/
#define PTE_RPN_MASK (((1UL << 57) - 1) & (PAGE_MASK))
/*
* set of bits not changed in pmd_modify. Even though we have hash specific bits
* in here, on radix we expect them to be zero.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
_PAGE_SOFT_DIRTY)
/*
* user access blocked by key
*/
#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
_PAGE_RW | _PAGE_EXEC)
/*
* No page size encoding in the linux PTE
*/
#define _PAGE_PSIZE 0
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
_PAGE_SOFT_DIRTY)
/*
* Mask of bits returned by pte_pgprot()
*/
#define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
_PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
_PAGE_SOFT_DIRTY)
/*
* We define 2 sets of base prot bits, one for basic pages (ie,
* cacheable kernel and user pages) and one for non cacheable
* pages. We always set _PAGE_COHERENT when SMP is enabled or
* the processor might need it for DMA coherency.
*/
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
#define _PAGE_BASE (_PAGE_BASE_NC)
/* Permission masks used to generate the __P and __S table,
*
* Note:__pgprot is defined in arch/powerpc/include/asm/page.h
*
* Write permissions imply read permissions for now (we could make write-only
* pages on BookE but we don't bother for now). Execute permission control is
* possible on platforms that define _PAGE_EXEC
*
* Note due to the way vm flags are laid out, the bits are XWR
*/
#define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY_X
#define __P101 PAGE_READONLY_X
#define __P110 PAGE_COPY_X
#define __P111 PAGE_COPY_X
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY_X
#define __S101 PAGE_READONLY_X
#define __S110 PAGE_SHARED_X
#define __S111 PAGE_SHARED_X
/* Permission masks used for kernel mappings */
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_TOLERANT)
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_NON_IDEMPOTENT)
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
/*
* Protection used for kernel text. We want the debuggers to be able to
* set breakpoints anywhere, so don't write protect the kernel text
* on platforms where such control is possible.
*/
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
#else
#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
#endif
/* Make modules code happy. We don't set RO yet */
#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
#define PAGE_AGP (PAGE_KERNEL_NC)
#ifndef __ASSEMBLY__
/*
* page table defines
*/
extern unsigned long __pte_index_size;
extern unsigned long __pmd_index_size;
extern unsigned long __pud_index_size;
extern unsigned long __pgd_index_size;
extern unsigned long __pmd_cache_index;
#define PTE_INDEX_SIZE __pte_index_size
#define PMD_INDEX_SIZE __pmd_index_size
#define PUD_INDEX_SIZE __pud_index_size
#define PGD_INDEX_SIZE __pgd_index_size
#define PMD_CACHE_INDEX __pmd_cache_index
/*
* Because of use of pte fragments and THP, size of page table
* are not always derived out of index size above.
*/
extern unsigned long __pte_table_size;
extern unsigned long __pmd_table_size;
extern unsigned long __pud_table_size;
extern unsigned long __pgd_table_size;
#define PTE_TABLE_SIZE __pte_table_size
#define PMD_TABLE_SIZE __pmd_table_size
#define PUD_TABLE_SIZE __pud_table_size
#define PGD_TABLE_SIZE __pgd_table_size
extern unsigned long __pmd_val_bits;
extern unsigned long __pud_val_bits;
extern unsigned long __pgd_val_bits;
#define PMD_VAL_BITS __pmd_val_bits
#define PUD_VAL_BITS __pud_val_bits
#define PGD_VAL_BITS __pgd_val_bits
extern unsigned long __pte_frag_nr;
#define PTE_FRAG_NR __pte_frag_nr
extern unsigned long __pte_frag_size_shift;
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
/*
* Pgtable size used by swapper, init in asm code
*/
#define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PUD_SHIFT determines what a third-level page table entry can map */
#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/* Bits to mask out from a PMD to get to the PTE page */
#define PMD_MASKED_BITS 0xc0000000000000ffUL
/* Bits to mask out from a PUD to get to the PMD page */
#define PUD_MASKED_BITS 0xc0000000000000ffUL
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS 0xc0000000000000ffUL
extern unsigned long __vmalloc_start;
extern unsigned long __vmalloc_end;
#define VMALLOC_START __vmalloc_start
#define VMALLOC_END __vmalloc_end
extern unsigned long __kernel_virt_start;
extern unsigned long __kernel_virt_size;
#define KERN_VIRT_START __kernel_virt_start
#define KERN_VIRT_SIZE __kernel_virt_size
extern struct page *vmemmap;
extern unsigned long ioremap_bot;
extern unsigned long pci_io_base;
#endif /* __ASSEMBLY__ */
#include <asm/book3s/64/hash.h>
#include <asm/book3s/64/radix.h>
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/pgtable-64k.h>
#else
#include <asm/book3s/64/pgtable-4k.h>
#endif
#include <asm/barrier.h>
/*
* The second half of the kernel virtual space is used for IO mappings,
* it's itself carved into the PIO region (ISA and PHB IO space) and
* the ioremap space
*
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
*/
#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
#define FULL_IO_SIZE 0x80000000ul
#define ISA_IO_BASE (KERN_IO_START)
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
#define PHB_IO_BASE (ISA_IO_END)
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE (PHB_IO_END)
#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
/* Advertise special mapping type for AGP */
#define HAVE_PAGE_AGP
/* Advertise support for _PAGE_SPECIAL */
#define __HAVE_ARCH_PTE_SPECIAL
#ifndef __ASSEMBLY__
/*
* This is the default implementation of various PTE accessors, it's
* used in all cases except Book3S with 64K pages where we have a
* concept of sub-pages
*/
#ifndef __real_pte
#define __real_pte(e,p) ((real_pte_t){(e)})
#define __rpte_to_pte(r) ((r).pte)
#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
do { \
index = 0; \
shift = mmu_psize_defs[psize].shift; \
#define pte_iterate_hashed_end() } while(0)
/*
* We expect this to be called only for user addresses or kernel virtual
* addresses other than the linear mapping.
*/
#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
#endif /* __real_pte */
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set, int huge)
{
if (radix_enabled())
return radix__pte_update(mm, addr, ptep, clr, set, huge);
return hash__pte_update(mm, addr, ptep, clr, set, huge);
}
/*
* For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
* We currently remove entries from the hashtable regardless of whether
* the entry was young or dirty.
*
* We should be more intelligent about this but for the moment we override
* these functions and force a tlb flush unconditionally
* For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
* function for both hash and radix.
*/
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
return 0;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
return __pte(old);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
static inline int pte_write(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
}
static inline int pte_dirty(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
}
static inline int pte_young(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
}
static inline int pte_special(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
}
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline bool pte_soft_dirty(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
#ifdef CONFIG_NUMA_BALANCING
/*
* These work without NUMA balancing but the kernel does not care. See the
* comment in include/asm-generic/pgtable.h . On powerpc, this will only
* work for user pages and always return true for kernel pages.
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)) ==
cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED);
}
#endif /* CONFIG_NUMA_BALANCING */
static inline int pte_present(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
pgprot_val(pgprot));
}
static inline unsigned long pte_pfn(pte_t pte)
{
return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
}
/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_WRITE);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
/*
* write implies read, hence set both
*/
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
/* FIXME!! check whether this need to be a conditional */
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
static inline bool pte_user(pte_t pte)
{
return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
}
/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
/* \
* Don't have overlapping bits with _PAGE_HPTEFLAGS \
* We filter HPTEFLAGS on set_pte. \
*/ \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
} while (0)
/*
* on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
*/
#define SWP_TYPE_BITS 5
#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) { \
((type) << _PAGE_BIT_SWAP_TYPE) \
| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
/*
* swp_entry_t must be independent of pte bits. We build a swp_entry_t from
* swap type and offset we get from swap and convert that to pte to find a
* matching pte in linux page table.
* Clear bits not found in swap entries here.
*/
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
#else
#define _PAGE_SWP_SOFT_DIRTY 0UL
#endif /* CONFIG_MEM_SOFT_DIRTY */
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
}
static inline bool pte_swp_soft_dirty(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
static inline bool check_pte_access(unsigned long access, unsigned long ptev)
{
/*
* This check for _PAGE_RWX and _PAGE_PRESENT bits
*/
if (access & ~ptev)
return false;
/*
* This check for access to privilege space
*/
if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
return false;
return true;
}
/*
* Generic functions with hash/radix callbacks
*/
static inline void __ptep_set_access_flags(struct mm_struct *mm,
pte_t *ptep, pte_t entry)
{
if (radix_enabled())
return radix__ptep_set_access_flags(mm, ptep, entry);
return hash__ptep_set_access_flags(ptep, entry);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
if (radix_enabled())
return radix__pte_same(pte_a, pte_b);
return hash__pte_same(pte_a, pte_b);
}
static inline int pte_none(pte_t pte)
{
if (radix_enabled())
return radix__pte_none(pte);
return hash__pte_none(pte);
}
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
if (radix_enabled())
return radix__set_pte_at(mm, addr, ptep, pte, percpu);
return hash__set_pte_at(mm, addr, ptep, pte, percpu);
}
#define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NON_IDEMPOTENT);
}
#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_TOLERANT);
}
#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
return pgprot_noncached_wc(prot);
}
/*
* check a pte mapping have cache inhibited property
*/
static inline bool pte_ci(pte_t pte)
{
unsigned long pte_v = pte_val(pte);
if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
return true;
return false;
}
static inline void pmd_set(pmd_t *pmdp, unsigned long val)
{
*pmdp = __pmd(val);
}
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
static inline int pmd_none(pmd_t pmd)
{
return !pmd_raw(pmd);
}
static inline int pmd_present(pmd_t pmd)
{
return !pmd_none(pmd);
}
static inline int pmd_bad(pmd_t pmd)
{
if (radix_enabled())
return radix__pmd_bad(pmd);
return hash__pmd_bad(pmd);
}
static inline void pud_set(pud_t *pudp, unsigned long val)
{
*pudp = __pud(val);
}
static inline void pud_clear(pud_t *pudp)
{
*pudp = __pud(0);
}
static inline int pud_none(pud_t pud)
{
return !pud_raw(pud);
}
static inline int pud_present(pud_t pud)
{
return !pud_none(pud);
}
extern struct page *pud_page(pud_t pud);
extern struct page *pmd_page(pmd_t pmd);
static inline pte_t pud_pte(pud_t pud)
{
return __pte_raw(pud_raw(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud_raw(pte_raw(pte));
}
#define pud_write(pud) pte_write(pud_pte(pud))
static inline int pud_bad(pud_t pud)
{
if (radix_enabled())
return radix__pud_bad(pud);
return hash__pud_bad(pud);
}
#define pgd_write(pgd) pte_write(pgd_pte(pgd))
static inline void pgd_set(pgd_t *pgdp, unsigned long val)
{
*pgdp = __pgd(val);
}
static inline void pgd_clear(pgd_t *pgdp)
{
*pgdp = __pgd(0);
}
static inline int pgd_none(pgd_t pgd)
{
return !pgd_raw(pgd);
}
static inline int pgd_present(pgd_t pgd)
{
return !pgd_none(pgd);
}
static inline pte_t pgd_pte(pgd_t pgd)
{
return __pte_raw(pgd_raw(pgd));
}
static inline pgd_t pte_pgd(pte_t pte)
{
return __pgd_raw(pte_raw(pte));
}
static inline int pgd_bad(pgd_t pgd)
{
if (radix_enabled())
return radix__pgd_bad(pgd);
return hash__pgd_bad(pgd);
}
extern struct page *pgd_page(pgd_t pgd);
/* Pointers in the page table tree are physical addresses */
#define __pgtable_ptr_val(ptr) __pa(ptr)
#define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
#define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
#define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pud_offset(pgdp, addr) \
(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while(0)
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pud_ERROR(e) \
pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
void pgtable_cache_init(void);
static inline int map_kernel_page(unsigned long ea, unsigned long pa,
unsigned long flags)
{
if (radix_enabled()) {
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
#endif
return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
}
return hash__map_kernel_page(ea, pa, flags);
}
static inline int __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
if (radix_enabled())
return radix__vmemmap_create_mapping(start, page_size, phys);
return hash__vmemmap_create_mapping(start, page_size, phys);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static inline void vmemmap_remove_mapping(unsigned long start,
unsigned long page_size)
{
if (radix_enabled())
return radix__vmemmap_remove_mapping(start, page_size);
return hash__vmemmap_remove_mapping(start, page_size);
}
#endif
struct page *realmode_pfn_to_page(unsigned long pfn);
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte_raw(pmd_raw(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd_raw(pte_raw(pte));
}
static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
return (pte_t *)pmd;
}
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
#ifdef CONFIG_NUMA_BALANCING
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif /* CONFIG_NUMA_BALANCING */
#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
extern int hash__has_transparent_hugepage(void);
static inline int has_transparent_hugepage(void)
{
if (radix_enabled())
return radix__has_transparent_hugepage();
return hash__has_transparent_hugepage();
}
#define has_transparent_hugepage has_transparent_hugepage
static inline unsigned long
pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
unsigned long clr, unsigned long set)
{
if (radix_enabled())
return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
}
static inline int pmd_large(pmd_t pmd)
{
return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
/*
* For radix we should always find H_PAGE_HASHPTE zero. Hence
* the below will work for radix too
*/
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_WRITE)) == 0)
return;
pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
}
static inline int pmd_trans_huge(pmd_t pmd)
{
if (radix_enabled())
return radix__pmd_trans_huge(pmd);
return hash__pmd_trans_huge(pmd);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
if (radix_enabled())
return radix__pmd_same(pmd_a, pmd_b);
return hash__pmd_same(pmd_a, pmd_b);
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
if (radix_enabled())
return radix__pmd_mkhuge(pmd);
return hash__pmd_mkhuge(pmd);
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
if (radix_enabled())
return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
}
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
if (radix_enabled())
return radix__pmdp_collapse_flush(vma, address, pmdp);
return hash__pmdp_collapse_flush(vma, address, pmdp);
}
#define pmdp_collapse_flush pmdp_collapse_flush
#define __HAVE_ARCH_PGTABLE_DEPOSIT
static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
pmd_t *pmdp, pgtable_t pgtable)
{
if (radix_enabled())
return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
}
#define __HAVE_ARCH_PGTABLE_WITHDRAW
static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
pmd_t *pmdp)
{
if (radix_enabled())
return radix__pgtable_trans_huge_withdraw(mm, pmdp);
return hash__pgtable_trans_huge_withdraw(mm, pmdp);
}
#define __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
if (radix_enabled())
return radix__pmdp_huge_split_prepare(vma, address, pmdp);
return hash__pmdp_huge_split_prepare(vma, address, pmdp);
}
#define pmd_move_must_withdraw pmd_move_must_withdraw
struct spinlock;
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
struct spinlock *old_pmd_ptl)
{
if (radix_enabled())
return false;
/*
* Archs like ppc64 use pgtable to store per pmd
* specific information. So when we switch the pmd,
* we should also withdraw and deposit the pgtable
*/
return true;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */