blob: 48f02dcc81c1b7ed2f0fd4bedeb51444b0b0c385 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* Inspired from: fsl-imx25-tsadc
*
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdesc.h>
#include <linux/irqdomain.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/units.h>
#include "stm32-adc-core.h"
#define STM32_ADC_CORE_SLEEP_DELAY_MS 2000
/* SYSCFG registers */
#define STM32MP1_SYSCFG_PMCSETR 0x04
#define STM32MP1_SYSCFG_PMCCLRR 0x44
/* SYSCFG bit fields */
#define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9)
/* SYSCFG capability flags */
#define HAS_VBOOSTER BIT(0)
#define HAS_ANASWVDD BIT(1)
/**
* struct stm32_adc_common_regs - stm32 common registers
* @csr: common status register offset
* @ccr: common control register offset
* @eoc_msk: array of eoc (end of conversion flag) masks in csr for adc1..n
* @ovr_msk: array of ovr (overrun flag) masks in csr for adc1..n
* @ier: interrupt enable register offset for each adc
* @eocie_msk: end of conversion interrupt enable mask in @ier
*/
struct stm32_adc_common_regs {
u32 csr;
u32 ccr;
u32 eoc_msk[STM32_ADC_MAX_ADCS];
u32 ovr_msk[STM32_ADC_MAX_ADCS];
u32 ier;
u32 eocie_msk;
};
struct stm32_adc_priv;
/**
* struct stm32_adc_priv_cfg - stm32 core compatible configuration data
* @regs: common registers for all instances
* @clk_sel: clock selection routine
* @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
* @ipid: adc identification number
* @has_syscfg: SYSCFG capability flags
* @num_irqs: number of interrupt lines
* @num_adcs: maximum number of ADC instances in the common registers
*/
struct stm32_adc_priv_cfg {
const struct stm32_adc_common_regs *regs;
int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
u32 max_clk_rate_hz;
u32 ipid;
unsigned int has_syscfg;
unsigned int num_irqs;
unsigned int num_adcs;
};
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq(s) for ADC block
* @nb_adc_max: actual maximum number of instance per ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @bclk: bus clock common for all ADCs, depends on part used
* @max_clk_rate: desired maximum clock rate
* @booster: booster supply reference
* @vdd: vdd supply reference
* @vdda: vdda analog supply reference
* @vref: regulator reference
* @vdd_uv: vdd supply voltage (microvolts)
* @vdda_uv: vdda supply voltage (microvolts)
* @cfg: compatible configuration data
* @common: common data for all ADC instances
* @ccr_bak: backup CCR in low power mode
* @syscfg: reference to syscon, system control registers
*/
struct stm32_adc_priv {
int irq[STM32_ADC_MAX_ADCS];
unsigned int nb_adc_max;
struct irq_domain *domain;
struct clk *aclk;
struct clk *bclk;
u32 max_clk_rate;
struct regulator *booster;
struct regulator *vdd;
struct regulator *vdda;
struct regulator *vref;
int vdd_uv;
int vdda_uv;
const struct stm32_adc_priv_cfg *cfg;
struct stm32_adc_common common;
u32 ccr_bak;
struct regmap *syscfg;
};
static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
{
return container_of(com, struct stm32_adc_priv, common);
}
/* STM32F4 ADC internal common clock prescaler division ratios */
static int stm32f4_pclk_div[] = {2, 4, 6, 8};
/**
* stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
* @pdev: platform device
* @priv: stm32 ADC core private data
* Select clock prescaler used for analog conversions, before using ADC.
*/
static int stm32f4_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
unsigned long rate;
u32 val;
int i;
/* stm32f4 has one clk input for analog (mandatory), enforce it here */
if (!priv->aclk) {
dev_err(&pdev->dev, "No 'adc' clock found\n");
return -ENOENT;
}
rate = clk_get_rate(priv->aclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid clock rate: 0\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
break;
}
if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
dev_err(&pdev->dev, "adc clk selection failed\n");
return -EINVAL;
}
priv->common.rate = rate / stm32f4_pclk_div[i];
val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
val &= ~STM32F4_ADC_ADCPRE_MASK;
val |= i << STM32F4_ADC_ADCPRE_SHIFT;
writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
priv->common.rate / 1000);
return 0;
}
/**
* struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
* @ckmode: ADC clock mode, Async or sync with prescaler.
* @presc: prescaler bitfield for async clock mode
* @div: prescaler division ratio
*/
struct stm32h7_adc_ck_spec {
u32 ckmode;
u32 presc;
int div;
};
static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
/* 00: CK_ADC[1..3]: Asynchronous clock modes */
{ 0, 0, 1 },
{ 0, 1, 2 },
{ 0, 2, 4 },
{ 0, 3, 6 },
{ 0, 4, 8 },
{ 0, 5, 10 },
{ 0, 6, 12 },
{ 0, 7, 16 },
{ 0, 8, 32 },
{ 0, 9, 64 },
{ 0, 10, 128 },
{ 0, 11, 256 },
/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
{ 1, 0, 1 },
{ 2, 0, 2 },
{ 3, 0, 4 },
};
static int stm32h7_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
u32 ckmode, presc, val;
unsigned long rate;
int i, div, duty;
/* stm32h7 bus clock is common for all ADC instances (mandatory) */
if (!priv->bclk) {
dev_err(&pdev->dev, "No 'bus' clock found\n");
return -ENOENT;
}
/*
* stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
* So, choice is to have bus clock mandatory and adc clock optional.
* If optional 'adc' clock has been found, then try to use it first.
*/
if (priv->aclk) {
/*
* Asynchronous clock modes (e.g. ckmode == 0)
* From spec: PLL output musn't exceed max rate
*/
rate = clk_get_rate(priv->aclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
return -EINVAL;
}
/* If duty is an error, kindly use at least /2 divider */
duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
if (duty < 0)
dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
presc = stm32h7_adc_ckmodes_spec[i].presc;
div = stm32h7_adc_ckmodes_spec[i].div;
if (ckmode)
continue;
/*
* For proper operation, clock duty cycle range is 49%
* to 51%. Apply at least /2 prescaler otherwise.
*/
if (div == 1 && (duty < 49 || duty > 51))
continue;
if ((rate / div) <= priv->max_clk_rate)
goto out;
}
}
/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
rate = clk_get_rate(priv->bclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
return -EINVAL;
}
duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
if (duty < 0)
dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
presc = stm32h7_adc_ckmodes_spec[i].presc;
div = stm32h7_adc_ckmodes_spec[i].div;
if (!ckmode)
continue;
if (div == 1 && (duty < 49 || duty > 51))
continue;
if ((rate / div) <= priv->max_clk_rate)
goto out;
}
dev_err(&pdev->dev, "adc clk selection failed\n");
return -EINVAL;
out:
/* rate used later by each ADC instance to control BOOST mode */
priv->common.rate = rate / div;
/* Set common clock mode and prescaler */
val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
val |= ckmode << STM32H7_CKMODE_SHIFT;
val |= presc << STM32H7_PRESC_SHIFT;
writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
return 0;
}
/* STM32F4 common registers definitions */
static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
.csr = STM32F4_ADC_CSR,
.ccr = STM32F4_ADC_CCR,
.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3 },
.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3 },
.ier = STM32F4_ADC_CR1,
.eocie_msk = STM32F4_EOCIE,
};
/* STM32H7 common registers definitions */
static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
.csr = STM32H7_ADC_CSR,
.ccr = STM32H7_ADC_CCR,
.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV },
.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV },
.ier = STM32H7_ADC_IER,
.eocie_msk = STM32H7_EOCIE,
};
/* STM32MP13 common registers definitions */
static const struct stm32_adc_common_regs stm32mp13_adc_common_regs = {
.csr = STM32H7_ADC_CSR,
.ccr = STM32H7_ADC_CCR,
.eoc_msk = { STM32H7_EOC_MST },
.ovr_msk = { STM32H7_OVR_MST },
.ier = STM32H7_ADC_IER,
.eocie_msk = STM32H7_EOCIE,
};
static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
};
static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
unsigned int adc)
{
u32 ier, offset = stm32_adc_offset[adc];
ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
return ier & priv->cfg->regs->eocie_msk;
}
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
int i;
u32 status;
chained_irq_enter(chip, desc);
status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
/*
* End of conversion may be handled by using IRQ or DMA. There may be a
* race here when two conversions complete at the same time on several
* ADCs. EOC may be read 'set' for several ADCs, with:
* - an ADC configured to use DMA (EOC triggers the DMA request, and
* is then automatically cleared by DR read in hardware)
* - an ADC configured to use IRQs (EOCIE bit is set. The handler must
* be called in this case)
* So both EOC status bit in CSR and EOCIE control bit must be checked
* before invoking the interrupt handler (e.g. call ISR only for
* IRQ-enabled ADCs).
*/
for (i = 0; i < priv->nb_adc_max; i++) {
if ((status & priv->cfg->regs->eoc_msk[i] &&
stm32_adc_eoc_enabled(priv, i)) ||
(status & priv->cfg->regs->ovr_msk[i]))
generic_handle_domain_irq(priv->domain, i);
}
chained_irq_exit(chip, desc);
};
static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, d->host_data);
irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
return 0;
}
static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops stm32_adc_domain_ops = {
.map = stm32_adc_domain_map,
.unmap = stm32_adc_domain_unmap,
.xlate = irq_domain_xlate_onecell,
};
static int stm32_adc_irq_probe(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
struct device_node *np = pdev->dev.of_node;
unsigned int i;
/*
* Interrupt(s) must be provided, depending on the compatible:
* - stm32f4/h7 shares a common interrupt line.
* - stm32mp1, has one line per ADC
*/
for (i = 0; i < priv->cfg->num_irqs; i++) {
priv->irq[i] = platform_get_irq(pdev, i);
if (priv->irq[i] < 0)
return priv->irq[i];
}
priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
&stm32_adc_domain_ops,
priv);
if (!priv->domain) {
dev_err(&pdev->dev, "Failed to add irq domain\n");
return -ENOMEM;
}
for (i = 0; i < priv->cfg->num_irqs; i++) {
irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
irq_set_handler_data(priv->irq[i], priv);
}
return 0;
}
static void stm32_adc_irq_remove(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
int hwirq;
unsigned int i;
for (hwirq = 0; hwirq < priv->nb_adc_max; hwirq++)
irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
irq_domain_remove(priv->domain);
for (i = 0; i < priv->cfg->num_irqs; i++)
irq_set_chained_handler(priv->irq[i], NULL);
}
static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
struct device *dev)
{
int ret;
/*
* On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
* switches (via PCSEL) which have reduced performances when their
* supply is below 2.7V (vdda by default):
* - Voltage booster can be used, to get full ADC performances
* (increases power consumption).
* - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
*
* Recommended settings for ANASWVDD and EN_BOOSTER:
* - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
* - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
* - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default)
*/
if (priv->vdda_uv < 2700000) {
if (priv->syscfg && priv->vdd_uv > 2700000) {
ret = regulator_enable(priv->vdd);
if (ret < 0) {
dev_err(dev, "vdd enable failed %d\n", ret);
return ret;
}
ret = regmap_write(priv->syscfg,
STM32MP1_SYSCFG_PMCSETR,
STM32MP1_SYSCFG_ANASWVDD_MASK);
if (ret < 0) {
regulator_disable(priv->vdd);
dev_err(dev, "vdd select failed, %d\n", ret);
return ret;
}
dev_dbg(dev, "analog switches supplied by vdd\n");
return 0;
}
if (priv->booster) {
/*
* This is optional, as this is a trade-off between
* analog performance and power consumption.
*/
ret = regulator_enable(priv->booster);
if (ret < 0) {
dev_err(dev, "booster enable failed %d\n", ret);
return ret;
}
dev_dbg(dev, "analog switches supplied by booster\n");
return 0;
}
}
/* Fallback using vdda (default), nothing to do */
dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
priv->vdda_uv);
return 0;
}
static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
{
if (priv->vdda_uv < 2700000) {
if (priv->syscfg && priv->vdd_uv > 2700000) {
regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
STM32MP1_SYSCFG_ANASWVDD_MASK);
regulator_disable(priv->vdd);
return;
}
if (priv->booster)
regulator_disable(priv->booster);
}
}
static int stm32_adc_core_hw_start(struct device *dev)
{
struct stm32_adc_common *common = dev_get_drvdata(dev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
int ret;
ret = regulator_enable(priv->vdda);
if (ret < 0) {
dev_err(dev, "vdda enable failed %d\n", ret);
return ret;
}
ret = regulator_get_voltage(priv->vdda);
if (ret < 0) {
dev_err(dev, "vdda get voltage failed, %d\n", ret);
goto err_vdda_disable;
}
priv->vdda_uv = ret;
ret = stm32_adc_core_switches_supply_en(priv, dev);
if (ret < 0)
goto err_vdda_disable;
ret = regulator_enable(priv->vref);
if (ret < 0) {
dev_err(dev, "vref enable failed\n");
goto err_switches_dis;
}
ret = clk_prepare_enable(priv->bclk);
if (ret < 0) {
dev_err(dev, "bus clk enable failed\n");
goto err_regulator_disable;
}
ret = clk_prepare_enable(priv->aclk);
if (ret < 0) {
dev_err(dev, "adc clk enable failed\n");
goto err_bclk_disable;
}
writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
return 0;
err_bclk_disable:
clk_disable_unprepare(priv->bclk);
err_regulator_disable:
regulator_disable(priv->vref);
err_switches_dis:
stm32_adc_core_switches_supply_dis(priv);
err_vdda_disable:
regulator_disable(priv->vdda);
return ret;
}
static void stm32_adc_core_hw_stop(struct device *dev)
{
struct stm32_adc_common *common = dev_get_drvdata(dev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
/* Backup CCR that may be lost (depends on power state to achieve) */
priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
clk_disable_unprepare(priv->aclk);
clk_disable_unprepare(priv->bclk);
regulator_disable(priv->vref);
stm32_adc_core_switches_supply_dis(priv);
regulator_disable(priv->vdda);
}
static int stm32_adc_core_switches_probe(struct device *dev,
struct stm32_adc_priv *priv)
{
struct device_node *np = dev->of_node;
int ret;
/* Analog switches supply can be controlled by syscfg (optional) */
priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(priv->syscfg)) {
ret = PTR_ERR(priv->syscfg);
if (ret != -ENODEV)
return dev_err_probe(dev, ret, "Can't probe syscfg\n");
priv->syscfg = NULL;
}
/* Booster can be used to supply analog switches (optional) */
if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
of_property_read_bool(np, "booster-supply")) {
priv->booster = devm_regulator_get_optional(dev, "booster");
if (IS_ERR(priv->booster)) {
ret = PTR_ERR(priv->booster);
if (ret != -ENODEV)
return dev_err_probe(dev, ret, "can't get booster\n");
priv->booster = NULL;
}
}
/* Vdd can be used to supply analog switches (optional) */
if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
of_property_read_bool(np, "vdd-supply")) {
priv->vdd = devm_regulator_get_optional(dev, "vdd");
if (IS_ERR(priv->vdd)) {
ret = PTR_ERR(priv->vdd);
if (ret != -ENODEV)
return dev_err_probe(dev, ret, "can't get vdd\n");
priv->vdd = NULL;
}
}
if (priv->vdd) {
ret = regulator_enable(priv->vdd);
if (ret < 0) {
dev_err(dev, "vdd enable failed %d\n", ret);
return ret;
}
ret = regulator_get_voltage(priv->vdd);
if (ret < 0) {
dev_err(dev, "vdd get voltage failed %d\n", ret);
regulator_disable(priv->vdd);
return ret;
}
priv->vdd_uv = ret;
regulator_disable(priv->vdd);
}
return 0;
}
static int stm32_adc_probe_identification(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *child;
const char *compat;
int ret, count = 0;
u32 id, val;
if (!priv->cfg->ipid)
return 0;
id = FIELD_GET(STM32MP1_IPIDR_MASK,
readl_relaxed(priv->common.base + STM32MP1_ADC_IPDR));
if (id != priv->cfg->ipid) {
dev_err(&pdev->dev, "Unexpected IP version: 0x%x", id);
return -EINVAL;
}
for_each_child_of_node(np, child) {
ret = of_property_read_string(child, "compatible", &compat);
if (ret)
continue;
/* Count child nodes with stm32 adc compatible */
if (strstr(compat, "st,stm32") && strstr(compat, "adc"))
count++;
}
val = readl_relaxed(priv->common.base + STM32MP1_ADC_HWCFGR0);
priv->nb_adc_max = FIELD_GET(STM32MP1_ADCNUM_MASK, val);
if (count > priv->nb_adc_max) {
dev_err(&pdev->dev, "Unexpected child number: %d", count);
return -EINVAL;
}
val = readl_relaxed(priv->common.base + STM32MP1_ADC_VERR);
dev_dbg(&pdev->dev, "ADC version: %lu.%lu\n",
FIELD_GET(STM32MP1_MAJREV_MASK, val),
FIELD_GET(STM32MP1_MINREV_MASK, val));
return 0;
}
static int stm32_adc_probe(struct platform_device *pdev)
{
struct stm32_adc_priv *priv;
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
u32 max_rate;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, &priv->common);
priv->cfg = (const struct stm32_adc_priv_cfg *)
of_match_device(dev->driver->of_match_table, dev)->data;
priv->nb_adc_max = priv->cfg->num_adcs;
spin_lock_init(&priv->common.lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->common.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->common.base))
return PTR_ERR(priv->common.base);
priv->common.phys_base = res->start;
priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
if (IS_ERR(priv->vdda))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
"vdda get failed\n");
priv->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(priv->vref))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
"vref get failed\n");
priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
if (IS_ERR(priv->aclk))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
"Can't get 'adc' clock\n");
priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
if (IS_ERR(priv->bclk))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
"Can't get 'bus' clock\n");
ret = stm32_adc_core_switches_probe(dev, priv);
if (ret)
return ret;
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
ret = stm32_adc_core_hw_start(dev);
if (ret)
goto err_pm_stop;
ret = stm32_adc_probe_identification(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = regulator_get_voltage(priv->vref);
if (ret < 0) {
dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
goto err_hw_stop;
}
priv->common.vref_mv = ret / 1000;
dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
&max_rate);
if (!ret)
priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
else
priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
ret = priv->cfg->clk_sel(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = stm32_adc_irq_probe(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to populate DT children\n");
goto err_irq_remove;
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_irq_remove:
stm32_adc_irq_remove(pdev, priv);
err_hw_stop:
stm32_adc_core_hw_stop(dev);
err_pm_stop:
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
struct stm32_adc_common *common = platform_get_drvdata(pdev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
pm_runtime_get_sync(&pdev->dev);
of_platform_depopulate(&pdev->dev);
stm32_adc_irq_remove(pdev, priv);
stm32_adc_core_hw_stop(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
return 0;
}
static int stm32_adc_core_runtime_suspend(struct device *dev)
{
stm32_adc_core_hw_stop(dev);
return 0;
}
static int stm32_adc_core_runtime_resume(struct device *dev)
{
return stm32_adc_core_hw_start(dev);
}
static int stm32_adc_core_runtime_idle(struct device *dev)
{
pm_runtime_mark_last_busy(dev);
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(stm32_adc_core_pm_ops,
stm32_adc_core_runtime_suspend,
stm32_adc_core_runtime_resume,
stm32_adc_core_runtime_idle);
static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
.regs = &stm32f4_adc_common_regs,
.clk_sel = stm32f4_adc_clk_sel,
.max_clk_rate_hz = 36000000,
.num_irqs = 1,
.num_adcs = 3,
};
static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
.regs = &stm32h7_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 36000000,
.has_syscfg = HAS_VBOOSTER,
.num_irqs = 1,
.num_adcs = 2,
};
static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
.regs = &stm32h7_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 36000000,
.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
.ipid = STM32MP15_IPIDR_NUMBER,
.num_irqs = 2,
};
static const struct stm32_adc_priv_cfg stm32mp13_adc_priv_cfg = {
.regs = &stm32mp13_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 75 * HZ_PER_MHZ,
.ipid = STM32MP13_IPIDR_NUMBER,
.num_irqs = 1,
};
static const struct of_device_id stm32_adc_of_match[] = {
{
.compatible = "st,stm32f4-adc-core",
.data = (void *)&stm32f4_adc_priv_cfg
}, {
.compatible = "st,stm32h7-adc-core",
.data = (void *)&stm32h7_adc_priv_cfg
}, {
.compatible = "st,stm32mp1-adc-core",
.data = (void *)&stm32mp1_adc_priv_cfg
}, {
.compatible = "st,stm32mp13-adc-core",
.data = (void *)&stm32mp13_adc_priv_cfg
}, {
},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
.probe = stm32_adc_probe,
.remove = stm32_adc_remove,
.driver = {
.name = "stm32-adc-core",
.of_match_table = stm32_adc_of_match,
.pm = pm_ptr(&stm32_adc_core_pm_ops),
},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc-core");