|  | /* | 
|  | * kexec: kexec_file_load system call | 
|  | * | 
|  | * Copyright (C) 2014 Red Hat Inc. | 
|  | * Authors: | 
|  | *      Vivek Goyal <vgoyal@redhat.com> | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/ima.h> | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/sha.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include "kexec_internal.h" | 
|  |  | 
|  | static int kexec_calculate_store_digests(struct kimage *image); | 
|  |  | 
|  | /* | 
|  | * Currently this is the only default function that is exported as some | 
|  | * architectures need it to do additional handlings. | 
|  | * In the future, other default functions may be exported too if required. | 
|  | */ | 
|  | int kexec_image_probe_default(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | const struct kexec_file_ops * const *fops; | 
|  | int ret = -ENOEXEC; | 
|  |  | 
|  | for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { | 
|  | ret = (*fops)->probe(buf, buf_len); | 
|  | if (!ret) { | 
|  | image->fops = *fops; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Architectures can provide this probe function */ | 
|  | int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | return kexec_image_probe_default(image, buf, buf_len); | 
|  | } | 
|  |  | 
|  | static void *kexec_image_load_default(struct kimage *image) | 
|  | { | 
|  | if (!image->fops || !image->fops->load) | 
|  | return ERR_PTR(-ENOEXEC); | 
|  |  | 
|  | return image->fops->load(image, image->kernel_buf, | 
|  | image->kernel_buf_len, image->initrd_buf, | 
|  | image->initrd_buf_len, image->cmdline_buf, | 
|  | image->cmdline_buf_len); | 
|  | } | 
|  |  | 
|  | void * __weak arch_kexec_kernel_image_load(struct kimage *image) | 
|  | { | 
|  | return kexec_image_load_default(image); | 
|  | } | 
|  |  | 
|  | static int kexec_image_post_load_cleanup_default(struct kimage *image) | 
|  | { | 
|  | if (!image->fops || !image->fops->cleanup) | 
|  | return 0; | 
|  |  | 
|  | return image->fops->cleanup(image->image_loader_data); | 
|  | } | 
|  |  | 
|  | int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | return kexec_image_post_load_cleanup_default(image); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
|  | static int kexec_image_verify_sig_default(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | if (!image->fops || !image->fops->verify_sig) { | 
|  | pr_debug("kernel loader does not support signature verification.\n"); | 
|  | return -EKEYREJECTED; | 
|  | } | 
|  |  | 
|  | return image->fops->verify_sig(buf, buf_len); | 
|  | } | 
|  |  | 
|  | int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | return kexec_image_verify_sig_default(image, buf, buf_len); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * arch_kexec_apply_relocations_add - apply relocations of type RELA | 
|  | * @pi:		Purgatory to be relocated. | 
|  | * @section:	Section relocations applying to. | 
|  | * @relsec:	Section containing RELAs. | 
|  | * @symtab:	Corresponding symtab. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int __weak | 
|  | arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, | 
|  | const Elf_Shdr *relsec, const Elf_Shdr *symtab) | 
|  | { | 
|  | pr_err("RELA relocation unsupported.\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * arch_kexec_apply_relocations - apply relocations of type REL | 
|  | * @pi:		Purgatory to be relocated. | 
|  | * @section:	Section relocations applying to. | 
|  | * @relsec:	Section containing RELs. | 
|  | * @symtab:	Corresponding symtab. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int __weak | 
|  | arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, | 
|  | const Elf_Shdr *relsec, const Elf_Shdr *symtab) | 
|  | { | 
|  | pr_err("REL relocation unsupported.\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up memory used by kernel, initrd, and command line. This is temporary | 
|  | * memory allocation which is not needed any more after these buffers have | 
|  | * been loaded into separate segments and have been copied elsewhere. | 
|  | */ | 
|  | void kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  |  | 
|  | vfree(image->kernel_buf); | 
|  | image->kernel_buf = NULL; | 
|  |  | 
|  | vfree(image->initrd_buf); | 
|  | image->initrd_buf = NULL; | 
|  |  | 
|  | kfree(image->cmdline_buf); | 
|  | image->cmdline_buf = NULL; | 
|  |  | 
|  | vfree(pi->purgatory_buf); | 
|  | pi->purgatory_buf = NULL; | 
|  |  | 
|  | vfree(pi->sechdrs); | 
|  | pi->sechdrs = NULL; | 
|  |  | 
|  | /* See if architecture has anything to cleanup post load */ | 
|  | arch_kimage_file_post_load_cleanup(image); | 
|  |  | 
|  | /* | 
|  | * Above call should have called into bootloader to free up | 
|  | * any data stored in kimage->image_loader_data. It should | 
|  | * be ok now to free it up. | 
|  | */ | 
|  | kfree(image->image_loader_data); | 
|  | image->image_loader_data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In file mode list of segments is prepared by kernel. Copy relevant | 
|  | * data from user space, do error checking, prepare segment list | 
|  | */ | 
|  | static int | 
|  | kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, | 
|  | const char __user *cmdline_ptr, | 
|  | unsigned long cmdline_len, unsigned flags) | 
|  | { | 
|  | int ret = 0; | 
|  | void *ldata; | 
|  | loff_t size; | 
|  |  | 
|  | ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, | 
|  | &size, INT_MAX, READING_KEXEC_IMAGE); | 
|  | if (ret) | 
|  | return ret; | 
|  | image->kernel_buf_len = size; | 
|  |  | 
|  | /* IMA needs to pass the measurement list to the next kernel. */ | 
|  | ima_add_kexec_buffer(image); | 
|  |  | 
|  | /* Call arch image probe handlers */ | 
|  | ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, | 
|  | image->kernel_buf_len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
|  | ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, | 
|  | image->kernel_buf_len); | 
|  | if (ret) { | 
|  | pr_debug("kernel signature verification failed.\n"); | 
|  | goto out; | 
|  | } | 
|  | pr_debug("kernel signature verification successful.\n"); | 
|  | #endif | 
|  | /* It is possible that there no initramfs is being loaded */ | 
|  | if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { | 
|  | ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, | 
|  | &size, INT_MAX, | 
|  | READING_KEXEC_INITRAMFS); | 
|  | if (ret) | 
|  | goto out; | 
|  | image->initrd_buf_len = size; | 
|  | } | 
|  |  | 
|  | if (cmdline_len) { | 
|  | image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); | 
|  | if (IS_ERR(image->cmdline_buf)) { | 
|  | ret = PTR_ERR(image->cmdline_buf); | 
|  | image->cmdline_buf = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->cmdline_buf_len = cmdline_len; | 
|  |  | 
|  | /* command line should be a string with last byte null */ | 
|  | if (image->cmdline_buf[cmdline_len - 1] != '\0') { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Call arch image load handlers */ | 
|  | ldata = arch_kexec_kernel_image_load(image); | 
|  |  | 
|  | if (IS_ERR(ldata)) { | 
|  | ret = PTR_ERR(ldata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->image_loader_data = ldata; | 
|  | out: | 
|  | /* In case of error, free up all allocated memory in this function */ | 
|  | if (ret) | 
|  | kimage_file_post_load_cleanup(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, | 
|  | int initrd_fd, const char __user *cmdline_ptr, | 
|  | unsigned long cmdline_len, unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  | struct kimage *image; | 
|  | bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; | 
|  |  | 
|  | image = do_kimage_alloc_init(); | 
|  | if (!image) | 
|  | return -ENOMEM; | 
|  |  | 
|  | image->file_mode = 1; | 
|  |  | 
|  | if (kexec_on_panic) { | 
|  | /* Enable special crash kernel control page alloc policy. */ | 
|  | image->control_page = crashk_res.start; | 
|  | image->type = KEXEC_TYPE_CRASH; | 
|  | } | 
|  |  | 
|  | ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, | 
|  | cmdline_ptr, cmdline_len, flags); | 
|  | if (ret) | 
|  | goto out_free_image; | 
|  |  | 
|  | ret = sanity_check_segment_list(image); | 
|  | if (ret) | 
|  | goto out_free_post_load_bufs; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | if (!image->control_code_page) { | 
|  | pr_err("Could not allocate control_code_buffer\n"); | 
|  | goto out_free_post_load_bufs; | 
|  | } | 
|  |  | 
|  | if (!kexec_on_panic) { | 
|  | image->swap_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!image->swap_page) { | 
|  | pr_err("Could not allocate swap buffer\n"); | 
|  | goto out_free_control_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | *rimage = image; | 
|  | return 0; | 
|  | out_free_control_pages: | 
|  | kimage_free_page_list(&image->control_pages); | 
|  | out_free_post_load_bufs: | 
|  | kimage_file_post_load_cleanup(image); | 
|  | out_free_image: | 
|  | kfree(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, | 
|  | unsigned long, cmdline_len, const char __user *, cmdline_ptr, | 
|  | unsigned long, flags) | 
|  | { | 
|  | int ret = 0, i; | 
|  | struct kimage **dest_image, *image; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Make sure we have a legal set of flags */ | 
|  | if (flags != (flags & KEXEC_FILE_FLAGS)) | 
|  | return -EINVAL; | 
|  |  | 
|  | image = NULL; | 
|  |  | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  |  | 
|  | dest_image = &kexec_image; | 
|  | if (flags & KEXEC_FILE_ON_CRASH) { | 
|  | dest_image = &kexec_crash_image; | 
|  | if (kexec_crash_image) | 
|  | arch_kexec_unprotect_crashkres(); | 
|  | } | 
|  |  | 
|  | if (flags & KEXEC_FILE_UNLOAD) | 
|  | goto exchange; | 
|  |  | 
|  | /* | 
|  | * In case of crash, new kernel gets loaded in reserved region. It is | 
|  | * same memory where old crash kernel might be loaded. Free any | 
|  | * current crash dump kernel before we corrupt it. | 
|  | */ | 
|  | if (flags & KEXEC_FILE_ON_CRASH) | 
|  | kimage_free(xchg(&kexec_crash_image, NULL)); | 
|  |  | 
|  | ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, | 
|  | cmdline_len, flags); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = machine_kexec_prepare(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Some architecture(like S390) may touch the crash memory before | 
|  | * machine_kexec_prepare(), we must copy vmcoreinfo data after it. | 
|  | */ | 
|  | ret = kimage_crash_copy_vmcoreinfo(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = kexec_calculate_store_digests(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | struct kexec_segment *ksegment; | 
|  |  | 
|  | ksegment = &image->segment[i]; | 
|  | pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", | 
|  | i, ksegment->buf, ksegment->bufsz, ksegment->mem, | 
|  | ksegment->memsz); | 
|  |  | 
|  | ret = kimage_load_segment(image, &image->segment[i]); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kimage_terminate(image); | 
|  |  | 
|  | /* | 
|  | * Free up any temporary buffers allocated which are not needed | 
|  | * after image has been loaded | 
|  | */ | 
|  | kimage_file_post_load_cleanup(image); | 
|  | exchange: | 
|  | image = xchg(dest_image, image); | 
|  | out: | 
|  | if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) | 
|  | arch_kexec_protect_crashkres(); | 
|  |  | 
|  | mutex_unlock(&kexec_mutex); | 
|  | kimage_free(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_top_down(unsigned long start, unsigned long end, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | struct kimage *image = kbuf->image; | 
|  | unsigned long temp_start, temp_end; | 
|  |  | 
|  | temp_end = min(end, kbuf->buf_max); | 
|  | temp_start = temp_end - kbuf->memsz; | 
|  |  | 
|  | do { | 
|  | /* align down start */ | 
|  | temp_start = temp_start & (~(kbuf->buf_align - 1)); | 
|  |  | 
|  | if (temp_start < start || temp_start < kbuf->buf_min) | 
|  | return 0; | 
|  |  | 
|  | temp_end = temp_start + kbuf->memsz - 1; | 
|  |  | 
|  | /* | 
|  | * Make sure this does not conflict with any of existing | 
|  | * segments | 
|  | */ | 
|  | if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
|  | temp_start = temp_start - PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We found a suitable memory range */ | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* If we are here, we found a suitable memory range */ | 
|  | kbuf->mem = temp_start; | 
|  |  | 
|  | /* Success, stop navigating through remaining System RAM ranges */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | struct kimage *image = kbuf->image; | 
|  | unsigned long temp_start, temp_end; | 
|  |  | 
|  | temp_start = max(start, kbuf->buf_min); | 
|  |  | 
|  | do { | 
|  | temp_start = ALIGN(temp_start, kbuf->buf_align); | 
|  | temp_end = temp_start + kbuf->memsz - 1; | 
|  |  | 
|  | if (temp_end > end || temp_end > kbuf->buf_max) | 
|  | return 0; | 
|  | /* | 
|  | * Make sure this does not conflict with any of existing | 
|  | * segments | 
|  | */ | 
|  | if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
|  | temp_start = temp_start + PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We found a suitable memory range */ | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* If we are here, we found a suitable memory range */ | 
|  | kbuf->mem = temp_start; | 
|  |  | 
|  | /* Success, stop navigating through remaining System RAM ranges */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_callback(struct resource *res, void *arg) | 
|  | { | 
|  | struct kexec_buf *kbuf = (struct kexec_buf *)arg; | 
|  | u64 start = res->start, end = res->end; | 
|  | unsigned long sz = end - start + 1; | 
|  |  | 
|  | /* Returning 0 will take to next memory range */ | 
|  | if (sz < kbuf->memsz) | 
|  | return 0; | 
|  |  | 
|  | if (end < kbuf->buf_min || start > kbuf->buf_max) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Allocate memory top down with-in ram range. Otherwise bottom up | 
|  | * allocation. | 
|  | */ | 
|  | if (kbuf->top_down) | 
|  | return locate_mem_hole_top_down(start, end, kbuf); | 
|  | return locate_mem_hole_bottom_up(start, end, kbuf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arch_kexec_walk_mem - call func(data) on free memory regions | 
|  | * @kbuf:	Context info for the search. Also passed to @func. | 
|  | * @func:	Function to call for each memory region. | 
|  | * | 
|  | * Return: The memory walk will stop when func returns a non-zero value | 
|  | * and that value will be returned. If all free regions are visited without | 
|  | * func returning non-zero, then zero will be returned. | 
|  | */ | 
|  | int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf, | 
|  | int (*func)(struct resource *, void *)) | 
|  | { | 
|  | if (kbuf->image->type == KEXEC_TYPE_CRASH) | 
|  | return walk_iomem_res_desc(crashk_res.desc, | 
|  | IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, | 
|  | crashk_res.start, crashk_res.end, | 
|  | kbuf, func); | 
|  | else | 
|  | return walk_system_ram_res(0, ULONG_MAX, kbuf, func); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel | 
|  | * @kbuf:	Parameters for the memory search. | 
|  | * | 
|  | * On success, kbuf->mem will have the start address of the memory region found. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int kexec_locate_mem_hole(struct kexec_buf *kbuf) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback); | 
|  |  | 
|  | return ret == 1 ? 0 : -EADDRNOTAVAIL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kexec_add_buffer - place a buffer in a kexec segment | 
|  | * @kbuf:	Buffer contents and memory parameters. | 
|  | * | 
|  | * This function assumes that kexec_mutex is held. | 
|  | * On successful return, @kbuf->mem will have the physical address of | 
|  | * the buffer in memory. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int kexec_add_buffer(struct kexec_buf *kbuf) | 
|  | { | 
|  |  | 
|  | struct kexec_segment *ksegment; | 
|  | int ret; | 
|  |  | 
|  | /* Currently adding segment this way is allowed only in file mode */ | 
|  | if (!kbuf->image->file_mode) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Make sure we are not trying to add buffer after allocating | 
|  | * control pages. All segments need to be placed first before | 
|  | * any control pages are allocated. As control page allocation | 
|  | * logic goes through list of segments to make sure there are | 
|  | * no destination overlaps. | 
|  | */ | 
|  | if (!list_empty(&kbuf->image->control_pages)) { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Ensure minimum alignment needed for segments. */ | 
|  | kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); | 
|  | kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); | 
|  |  | 
|  | /* Walk the RAM ranges and allocate a suitable range for the buffer */ | 
|  | ret = kexec_locate_mem_hole(kbuf); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Found a suitable memory range */ | 
|  | ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; | 
|  | ksegment->kbuf = kbuf->buffer; | 
|  | ksegment->bufsz = kbuf->bufsz; | 
|  | ksegment->mem = kbuf->mem; | 
|  | ksegment->memsz = kbuf->memsz; | 
|  | kbuf->image->nr_segments++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Calculate and store the digest of segments */ | 
|  | static int kexec_calculate_store_digests(struct kimage *image) | 
|  | { | 
|  | struct crypto_shash *tfm; | 
|  | struct shash_desc *desc; | 
|  | int ret = 0, i, j, zero_buf_sz, sha_region_sz; | 
|  | size_t desc_size, nullsz; | 
|  | char *digest; | 
|  | void *zero_buf; | 
|  | struct kexec_sha_region *sha_regions; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) | 
|  | return 0; | 
|  |  | 
|  | zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); | 
|  | zero_buf_sz = PAGE_SIZE; | 
|  |  | 
|  | tfm = crypto_alloc_shash("sha256", 0, 0); | 
|  | if (IS_ERR(tfm)) { | 
|  | ret = PTR_ERR(tfm); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); | 
|  | desc = kzalloc(desc_size, GFP_KERNEL); | 
|  | if (!desc) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_tfm; | 
|  | } | 
|  |  | 
|  | sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); | 
|  | sha_regions = vzalloc(sha_region_sz); | 
|  | if (!sha_regions) | 
|  | goto out_free_desc; | 
|  |  | 
|  | desc->tfm   = tfm; | 
|  | desc->flags = 0; | 
|  |  | 
|  | ret = crypto_shash_init(desc); | 
|  | if (ret < 0) | 
|  | goto out_free_sha_regions; | 
|  |  | 
|  | digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); | 
|  | if (!digest) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_sha_regions; | 
|  | } | 
|  |  | 
|  | for (j = i = 0; i < image->nr_segments; i++) { | 
|  | struct kexec_segment *ksegment; | 
|  |  | 
|  | ksegment = &image->segment[i]; | 
|  | /* | 
|  | * Skip purgatory as it will be modified once we put digest | 
|  | * info in purgatory. | 
|  | */ | 
|  | if (ksegment->kbuf == pi->purgatory_buf) | 
|  | continue; | 
|  |  | 
|  | ret = crypto_shash_update(desc, ksegment->kbuf, | 
|  | ksegment->bufsz); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Assume rest of the buffer is filled with zero and | 
|  | * update digest accordingly. | 
|  | */ | 
|  | nullsz = ksegment->memsz - ksegment->bufsz; | 
|  | while (nullsz) { | 
|  | unsigned long bytes = nullsz; | 
|  |  | 
|  | if (bytes > zero_buf_sz) | 
|  | bytes = zero_buf_sz; | 
|  | ret = crypto_shash_update(desc, zero_buf, bytes); | 
|  | if (ret) | 
|  | break; | 
|  | nullsz -= bytes; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | sha_regions[j].start = ksegment->mem; | 
|  | sha_regions[j].len = ksegment->memsz; | 
|  | j++; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | ret = crypto_shash_final(desc, digest); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  | ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", | 
|  | sha_regions, sha_region_sz, 0); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  |  | 
|  | ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", | 
|  | digest, SHA256_DIGEST_SIZE, 0); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  | } | 
|  |  | 
|  | out_free_digest: | 
|  | kfree(digest); | 
|  | out_free_sha_regions: | 
|  | vfree(sha_regions); | 
|  | out_free_desc: | 
|  | kfree(desc); | 
|  | out_free_tfm: | 
|  | kfree(tfm); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY | 
|  | /* | 
|  | * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. | 
|  | * @pi:		Purgatory to be loaded. | 
|  | * @kbuf:	Buffer to setup. | 
|  | * | 
|  | * Allocates the memory needed for the buffer. Caller is responsible to free | 
|  | * the memory after use. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | const Elf_Shdr *sechdrs; | 
|  | unsigned long bss_align; | 
|  | unsigned long bss_sz; | 
|  | unsigned long align; | 
|  | int i, ret; | 
|  |  | 
|  | sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
|  | kbuf->buf_align = bss_align = 1; | 
|  | kbuf->bufsz = bss_sz = 0; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | align = sechdrs[i].sh_addralign; | 
|  | if (sechdrs[i].sh_type != SHT_NOBITS) { | 
|  | if (kbuf->buf_align < align) | 
|  | kbuf->buf_align = align; | 
|  | kbuf->bufsz = ALIGN(kbuf->bufsz, align); | 
|  | kbuf->bufsz += sechdrs[i].sh_size; | 
|  | } else { | 
|  | if (bss_align < align) | 
|  | bss_align = align; | 
|  | bss_sz = ALIGN(bss_sz, align); | 
|  | bss_sz += sechdrs[i].sh_size; | 
|  | } | 
|  | } | 
|  | kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); | 
|  | kbuf->memsz = kbuf->bufsz + bss_sz; | 
|  | if (kbuf->buf_align < bss_align) | 
|  | kbuf->buf_align = bss_align; | 
|  |  | 
|  | kbuf->buffer = vzalloc(kbuf->bufsz); | 
|  | if (!kbuf->buffer) | 
|  | return -ENOMEM; | 
|  | pi->purgatory_buf = kbuf->buffer; | 
|  |  | 
|  | ret = kexec_add_buffer(kbuf); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | vfree(pi->purgatory_buf); | 
|  | pi->purgatory_buf = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. | 
|  | * @pi:		Purgatory to be loaded. | 
|  | * @kbuf:	Buffer prepared to store purgatory. | 
|  | * | 
|  | * Allocates the memory needed for the buffer. Caller is responsible to free | 
|  | * the memory after use. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | unsigned long bss_addr; | 
|  | unsigned long offset; | 
|  | Elf_Shdr *sechdrs; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * The section headers in kexec_purgatory are read-only. In order to | 
|  | * have them modifiable make a temporary copy. | 
|  | */ | 
|  | sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum)); | 
|  | if (!sechdrs) | 
|  | return -ENOMEM; | 
|  | memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, | 
|  | pi->ehdr->e_shnum * sizeof(Elf_Shdr)); | 
|  | pi->sechdrs = sechdrs; | 
|  |  | 
|  | offset = 0; | 
|  | bss_addr = kbuf->mem + kbuf->bufsz; | 
|  | kbuf->image->start = pi->ehdr->e_entry; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | unsigned long align; | 
|  | void *src, *dst; | 
|  |  | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | align = sechdrs[i].sh_addralign; | 
|  | if (sechdrs[i].sh_type == SHT_NOBITS) { | 
|  | bss_addr = ALIGN(bss_addr, align); | 
|  | sechdrs[i].sh_addr = bss_addr; | 
|  | bss_addr += sechdrs[i].sh_size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | offset = ALIGN(offset, align); | 
|  | if (sechdrs[i].sh_flags & SHF_EXECINSTR && | 
|  | pi->ehdr->e_entry >= sechdrs[i].sh_addr && | 
|  | pi->ehdr->e_entry < (sechdrs[i].sh_addr | 
|  | + sechdrs[i].sh_size)) { | 
|  | kbuf->image->start -= sechdrs[i].sh_addr; | 
|  | kbuf->image->start += kbuf->mem + offset; | 
|  | } | 
|  |  | 
|  | src = (void *)pi->ehdr + sechdrs[i].sh_offset; | 
|  | dst = pi->purgatory_buf + offset; | 
|  | memcpy(dst, src, sechdrs[i].sh_size); | 
|  |  | 
|  | sechdrs[i].sh_addr = kbuf->mem + offset; | 
|  | sechdrs[i].sh_offset = offset; | 
|  | offset += sechdrs[i].sh_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kexec_apply_relocations(struct kimage *image) | 
|  | { | 
|  | int i, ret; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | const Elf_Shdr *sechdrs; | 
|  |  | 
|  | sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | const Elf_Shdr *relsec; | 
|  | const Elf_Shdr *symtab; | 
|  | Elf_Shdr *section; | 
|  |  | 
|  | relsec = sechdrs + i; | 
|  |  | 
|  | if (relsec->sh_type != SHT_RELA && | 
|  | relsec->sh_type != SHT_REL) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * For section of type SHT_RELA/SHT_REL, | 
|  | * ->sh_link contains section header index of associated | 
|  | * symbol table. And ->sh_info contains section header | 
|  | * index of section to which relocations apply. | 
|  | */ | 
|  | if (relsec->sh_info >= pi->ehdr->e_shnum || | 
|  | relsec->sh_link >= pi->ehdr->e_shnum) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | section = pi->sechdrs + relsec->sh_info; | 
|  | symtab = sechdrs + relsec->sh_link; | 
|  |  | 
|  | if (!(section->sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * symtab->sh_link contain section header index of associated | 
|  | * string table. | 
|  | */ | 
|  | if (symtab->sh_link >= pi->ehdr->e_shnum) | 
|  | /* Invalid section number? */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Respective architecture needs to provide support for applying | 
|  | * relocations of type SHT_RELA/SHT_REL. | 
|  | */ | 
|  | if (relsec->sh_type == SHT_RELA) | 
|  | ret = arch_kexec_apply_relocations_add(pi, section, | 
|  | relsec, symtab); | 
|  | else if (relsec->sh_type == SHT_REL) | 
|  | ret = arch_kexec_apply_relocations(pi, section, | 
|  | relsec, symtab); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kexec_load_purgatory - Load and relocate the purgatory object. | 
|  | * @image:	Image to add the purgatory to. | 
|  | * @kbuf:	Memory parameters to use. | 
|  | * | 
|  | * Allocates the memory needed for image->purgatory_info.sechdrs and | 
|  | * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible | 
|  | * to free the memory after use. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | int ret; | 
|  |  | 
|  | if (kexec_purgatory_size <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; | 
|  |  | 
|  | ret = kexec_purgatory_setup_kbuf(pi, kbuf); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kexec_purgatory_setup_sechdrs(pi, kbuf); | 
|  | if (ret) | 
|  | goto out_free_kbuf; | 
|  |  | 
|  | ret = kexec_apply_relocations(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | vfree(pi->sechdrs); | 
|  | pi->sechdrs = NULL; | 
|  | out_free_kbuf: | 
|  | vfree(pi->purgatory_buf); | 
|  | pi->purgatory_buf = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kexec_purgatory_find_symbol - find a symbol in the purgatory | 
|  | * @pi:		Purgatory to search in. | 
|  | * @name:	Name of the symbol. | 
|  | * | 
|  | * Return: pointer to symbol in read-only symtab on success, NULL on error. | 
|  | */ | 
|  | static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, | 
|  | const char *name) | 
|  | { | 
|  | const Elf_Shdr *sechdrs; | 
|  | const Elf_Ehdr *ehdr; | 
|  | const Elf_Sym *syms; | 
|  | const char *strtab; | 
|  | int i, k; | 
|  |  | 
|  | if (!pi->ehdr) | 
|  | return NULL; | 
|  |  | 
|  | ehdr = pi->ehdr; | 
|  | sechdrs = (void *)ehdr + ehdr->e_shoff; | 
|  |  | 
|  | for (i = 0; i < ehdr->e_shnum; i++) { | 
|  | if (sechdrs[i].sh_type != SHT_SYMTAB) | 
|  | continue; | 
|  |  | 
|  | if (sechdrs[i].sh_link >= ehdr->e_shnum) | 
|  | /* Invalid strtab section number */ | 
|  | continue; | 
|  | strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; | 
|  | syms = (void *)ehdr + sechdrs[i].sh_offset; | 
|  |  | 
|  | /* Go through symbols for a match */ | 
|  | for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { | 
|  | if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(strtab + syms[k].st_name, name) != 0) | 
|  | continue; | 
|  |  | 
|  | if (syms[k].st_shndx == SHN_UNDEF || | 
|  | syms[k].st_shndx >= ehdr->e_shnum) { | 
|  | pr_debug("Symbol: %s has bad section index %d.\n", | 
|  | name, syms[k].st_shndx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Found the symbol we are looking for */ | 
|  | return &syms[k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | const Elf_Sym *sym; | 
|  | Elf_Shdr *sechdr; | 
|  |  | 
|  | sym = kexec_purgatory_find_symbol(pi, name); | 
|  | if (!sym) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | sechdr = &pi->sechdrs[sym->st_shndx]; | 
|  |  | 
|  | /* | 
|  | * Returns the address where symbol will finally be loaded after | 
|  | * kexec_load_segment() | 
|  | */ | 
|  | return (void *)(sechdr->sh_addr + sym->st_value); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get or set value of a symbol. If "get_value" is true, symbol value is | 
|  | * returned in buf otherwise symbol value is set based on value in buf. | 
|  | */ | 
|  | int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, | 
|  | void *buf, unsigned int size, bool get_value) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | const Elf_Sym *sym; | 
|  | Elf_Shdr *sec; | 
|  | char *sym_buf; | 
|  |  | 
|  | sym = kexec_purgatory_find_symbol(pi, name); | 
|  | if (!sym) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sym->st_size != size) { | 
|  | pr_err("symbol %s size mismatch: expected %lu actual %u\n", | 
|  | name, (unsigned long)sym->st_size, size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sec = pi->sechdrs + sym->st_shndx; | 
|  |  | 
|  | if (sec->sh_type == SHT_NOBITS) { | 
|  | pr_err("symbol %s is in a bss section. Cannot %s\n", name, | 
|  | get_value ? "get" : "set"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; | 
|  |  | 
|  | if (get_value) | 
|  | memcpy((void *)buf, sym_buf, size); | 
|  | else | 
|  | memcpy((void *)sym_buf, buf, size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ | 
|  |  | 
|  | int crash_exclude_mem_range(struct crash_mem *mem, | 
|  | unsigned long long mstart, unsigned long long mend) | 
|  | { | 
|  | int i, j; | 
|  | unsigned long long start, end; | 
|  | struct crash_mem_range temp_range = {0, 0}; | 
|  |  | 
|  | for (i = 0; i < mem->nr_ranges; i++) { | 
|  | start = mem->ranges[i].start; | 
|  | end = mem->ranges[i].end; | 
|  |  | 
|  | if (mstart > end || mend < start) | 
|  | continue; | 
|  |  | 
|  | /* Truncate any area outside of range */ | 
|  | if (mstart < start) | 
|  | mstart = start; | 
|  | if (mend > end) | 
|  | mend = end; | 
|  |  | 
|  | /* Found completely overlapping range */ | 
|  | if (mstart == start && mend == end) { | 
|  | mem->ranges[i].start = 0; | 
|  | mem->ranges[i].end = 0; | 
|  | if (i < mem->nr_ranges - 1) { | 
|  | /* Shift rest of the ranges to left */ | 
|  | for (j = i; j < mem->nr_ranges - 1; j++) { | 
|  | mem->ranges[j].start = | 
|  | mem->ranges[j+1].start; | 
|  | mem->ranges[j].end = | 
|  | mem->ranges[j+1].end; | 
|  | } | 
|  | } | 
|  | mem->nr_ranges--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mstart > start && mend < end) { | 
|  | /* Split original range */ | 
|  | mem->ranges[i].end = mstart - 1; | 
|  | temp_range.start = mend + 1; | 
|  | temp_range.end = end; | 
|  | } else if (mstart != start) | 
|  | mem->ranges[i].end = mstart - 1; | 
|  | else | 
|  | mem->ranges[i].start = mend + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If a split happened, add the split to array */ | 
|  | if (!temp_range.end) | 
|  | return 0; | 
|  |  | 
|  | /* Split happened */ | 
|  | if (i == mem->max_nr_ranges - 1) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Location where new range should go */ | 
|  | j = i + 1; | 
|  | if (j < mem->nr_ranges) { | 
|  | /* Move over all ranges one slot towards the end */ | 
|  | for (i = mem->nr_ranges - 1; i >= j; i--) | 
|  | mem->ranges[i + 1] = mem->ranges[i]; | 
|  | } | 
|  |  | 
|  | mem->ranges[j].start = temp_range.start; | 
|  | mem->ranges[j].end = temp_range.end; | 
|  | mem->nr_ranges++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, | 
|  | void **addr, unsigned long *sz) | 
|  | { | 
|  | Elf64_Ehdr *ehdr; | 
|  | Elf64_Phdr *phdr; | 
|  | unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; | 
|  | unsigned char *buf; | 
|  | unsigned int cpu, i; | 
|  | unsigned long long notes_addr; | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | /* extra phdr for vmcoreinfo elf note */ | 
|  | nr_phdr = nr_cpus + 1; | 
|  | nr_phdr += mem->nr_ranges; | 
|  |  | 
|  | /* | 
|  | * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping | 
|  | * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). | 
|  | * I think this is required by tools like gdb. So same physical | 
|  | * memory will be mapped in two elf headers. One will contain kernel | 
|  | * text virtual addresses and other will have __va(physical) addresses. | 
|  | */ | 
|  |  | 
|  | nr_phdr++; | 
|  | elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); | 
|  | elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); | 
|  |  | 
|  | buf = vzalloc(elf_sz); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ehdr = (Elf64_Ehdr *)buf; | 
|  | phdr = (Elf64_Phdr *)(ehdr + 1); | 
|  | memcpy(ehdr->e_ident, ELFMAG, SELFMAG); | 
|  | ehdr->e_ident[EI_CLASS] = ELFCLASS64; | 
|  | ehdr->e_ident[EI_DATA] = ELFDATA2LSB; | 
|  | ehdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | ehdr->e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); | 
|  | ehdr->e_type = ET_CORE; | 
|  | ehdr->e_machine = ELF_ARCH; | 
|  | ehdr->e_version = EV_CURRENT; | 
|  | ehdr->e_phoff = sizeof(Elf64_Ehdr); | 
|  | ehdr->e_ehsize = sizeof(Elf64_Ehdr); | 
|  | ehdr->e_phentsize = sizeof(Elf64_Phdr); | 
|  |  | 
|  | /* Prepare one phdr of type PT_NOTE for each present cpu */ | 
|  | for_each_present_cpu(cpu) { | 
|  | phdr->p_type = PT_NOTE; | 
|  | notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); | 
|  | phdr->p_offset = phdr->p_paddr = notes_addr; | 
|  | phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); | 
|  | (ehdr->e_phnum)++; | 
|  | phdr++; | 
|  | } | 
|  |  | 
|  | /* Prepare one PT_NOTE header for vmcoreinfo */ | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); | 
|  | phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; | 
|  | (ehdr->e_phnum)++; | 
|  | phdr++; | 
|  |  | 
|  | /* Prepare PT_LOAD type program header for kernel text region */ | 
|  | if (kernel_map) { | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_flags = PF_R|PF_W|PF_X; | 
|  | phdr->p_vaddr = (Elf64_Addr)_text; | 
|  | phdr->p_filesz = phdr->p_memsz = _end - _text; | 
|  | phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); | 
|  | ehdr->e_phnum++; | 
|  | phdr++; | 
|  | } | 
|  |  | 
|  | /* Go through all the ranges in mem->ranges[] and prepare phdr */ | 
|  | for (i = 0; i < mem->nr_ranges; i++) { | 
|  | mstart = mem->ranges[i].start; | 
|  | mend = mem->ranges[i].end; | 
|  |  | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_flags = PF_R|PF_W|PF_X; | 
|  | phdr->p_offset  = mstart; | 
|  |  | 
|  | phdr->p_paddr = mstart; | 
|  | phdr->p_vaddr = (unsigned long long) __va(mstart); | 
|  | phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; | 
|  | phdr->p_align = 0; | 
|  | ehdr->e_phnum++; | 
|  | phdr++; | 
|  | pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", | 
|  | phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, | 
|  | ehdr->e_phnum, phdr->p_offset); | 
|  | } | 
|  |  | 
|  | *addr = buf; | 
|  | *sz = elf_sz; | 
|  | return 0; | 
|  | } |