| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * ipmi_si.c |
| * |
| * The interface to the IPMI driver for the system interfaces (KCS, SMIC, |
| * BT). |
| * |
| * Author: MontaVista Software, Inc. |
| * Corey Minyard <minyard@mvista.com> |
| * source@mvista.com |
| * |
| * Copyright 2002 MontaVista Software Inc. |
| * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> |
| */ |
| |
| /* |
| * This file holds the "policy" for the interface to the SMI state |
| * machine. It does the configuration, handles timers and interrupts, |
| * and drives the real SMI state machine. |
| */ |
| |
| #define pr_fmt(fmt) "ipmi_si: " fmt |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/notifier.h> |
| #include <linux/mutex.h> |
| #include <linux/kthread.h> |
| #include <asm/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/rcupdate.h> |
| #include <linux/ipmi.h> |
| #include <linux/ipmi_smi.h> |
| #include "ipmi_si.h" |
| #include "ipmi_si_sm.h" |
| #include <linux/string.h> |
| #include <linux/ctype.h> |
| |
| /* Measure times between events in the driver. */ |
| #undef DEBUG_TIMING |
| |
| /* Call every 10 ms. */ |
| #define SI_TIMEOUT_TIME_USEC 10000 |
| #define SI_USEC_PER_JIFFY (1000000/HZ) |
| #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) |
| #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a |
| short timeout */ |
| |
| enum si_intf_state { |
| SI_NORMAL, |
| SI_GETTING_FLAGS, |
| SI_GETTING_EVENTS, |
| SI_CLEARING_FLAGS, |
| SI_GETTING_MESSAGES, |
| SI_CHECKING_ENABLES, |
| SI_SETTING_ENABLES |
| /* FIXME - add watchdog stuff. */ |
| }; |
| |
| /* Some BT-specific defines we need here. */ |
| #define IPMI_BT_INTMASK_REG 2 |
| #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 |
| #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 |
| |
| /* 'invalid' to allow a firmware-specified interface to be disabled */ |
| const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL }; |
| |
| static bool initialized; |
| |
| /* |
| * Indexes into stats[] in smi_info below. |
| */ |
| enum si_stat_indexes { |
| /* |
| * Number of times the driver requested a timer while an operation |
| * was in progress. |
| */ |
| SI_STAT_short_timeouts = 0, |
| |
| /* |
| * Number of times the driver requested a timer while nothing was in |
| * progress. |
| */ |
| SI_STAT_long_timeouts, |
| |
| /* Number of times the interface was idle while being polled. */ |
| SI_STAT_idles, |
| |
| /* Number of interrupts the driver handled. */ |
| SI_STAT_interrupts, |
| |
| /* Number of time the driver got an ATTN from the hardware. */ |
| SI_STAT_attentions, |
| |
| /* Number of times the driver requested flags from the hardware. */ |
| SI_STAT_flag_fetches, |
| |
| /* Number of times the hardware didn't follow the state machine. */ |
| SI_STAT_hosed_count, |
| |
| /* Number of completed messages. */ |
| SI_STAT_complete_transactions, |
| |
| /* Number of IPMI events received from the hardware. */ |
| SI_STAT_events, |
| |
| /* Number of watchdog pretimeouts. */ |
| SI_STAT_watchdog_pretimeouts, |
| |
| /* Number of asynchronous messages received. */ |
| SI_STAT_incoming_messages, |
| |
| |
| /* This *must* remain last, add new values above this. */ |
| SI_NUM_STATS |
| }; |
| |
| struct smi_info { |
| int si_num; |
| struct ipmi_smi *intf; |
| struct si_sm_data *si_sm; |
| const struct si_sm_handlers *handlers; |
| spinlock_t si_lock; |
| struct ipmi_smi_msg *waiting_msg; |
| struct ipmi_smi_msg *curr_msg; |
| enum si_intf_state si_state; |
| |
| /* |
| * Used to handle the various types of I/O that can occur with |
| * IPMI |
| */ |
| struct si_sm_io io; |
| |
| /* |
| * Per-OEM handler, called from handle_flags(). Returns 1 |
| * when handle_flags() needs to be re-run or 0 indicating it |
| * set si_state itself. |
| */ |
| int (*oem_data_avail_handler)(struct smi_info *smi_info); |
| |
| /* |
| * Flags from the last GET_MSG_FLAGS command, used when an ATTN |
| * is set to hold the flags until we are done handling everything |
| * from the flags. |
| */ |
| #define RECEIVE_MSG_AVAIL 0x01 |
| #define EVENT_MSG_BUFFER_FULL 0x02 |
| #define WDT_PRE_TIMEOUT_INT 0x08 |
| #define OEM0_DATA_AVAIL 0x20 |
| #define OEM1_DATA_AVAIL 0x40 |
| #define OEM2_DATA_AVAIL 0x80 |
| #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ |
| OEM1_DATA_AVAIL | \ |
| OEM2_DATA_AVAIL) |
| unsigned char msg_flags; |
| |
| /* Does the BMC have an event buffer? */ |
| bool has_event_buffer; |
| |
| /* |
| * If set to true, this will request events the next time the |
| * state machine is idle. |
| */ |
| atomic_t req_events; |
| |
| /* |
| * If true, run the state machine to completion on every send |
| * call. Generally used after a panic to make sure stuff goes |
| * out. |
| */ |
| bool run_to_completion; |
| |
| /* The timer for this si. */ |
| struct timer_list si_timer; |
| |
| /* This flag is set, if the timer can be set */ |
| bool timer_can_start; |
| |
| /* This flag is set, if the timer is running (timer_pending() isn't enough) */ |
| bool timer_running; |
| |
| /* The time (in jiffies) the last timeout occurred at. */ |
| unsigned long last_timeout_jiffies; |
| |
| /* Are we waiting for the events, pretimeouts, received msgs? */ |
| atomic_t need_watch; |
| |
| /* |
| * The driver will disable interrupts when it gets into a |
| * situation where it cannot handle messages due to lack of |
| * memory. Once that situation clears up, it will re-enable |
| * interrupts. |
| */ |
| bool interrupt_disabled; |
| |
| /* |
| * Does the BMC support events? |
| */ |
| bool supports_event_msg_buff; |
| |
| /* |
| * Can we disable interrupts the global enables receive irq |
| * bit? There are currently two forms of brokenness, some |
| * systems cannot disable the bit (which is technically within |
| * the spec but a bad idea) and some systems have the bit |
| * forced to zero even though interrupts work (which is |
| * clearly outside the spec). The next bool tells which form |
| * of brokenness is present. |
| */ |
| bool cannot_disable_irq; |
| |
| /* |
| * Some systems are broken and cannot set the irq enable |
| * bit, even if they support interrupts. |
| */ |
| bool irq_enable_broken; |
| |
| /* Is the driver in maintenance mode? */ |
| bool in_maintenance_mode; |
| |
| /* |
| * Did we get an attention that we did not handle? |
| */ |
| bool got_attn; |
| |
| /* From the get device id response... */ |
| struct ipmi_device_id device_id; |
| |
| /* Have we added the device group to the device? */ |
| bool dev_group_added; |
| |
| /* Counters and things for the proc filesystem. */ |
| atomic_t stats[SI_NUM_STATS]; |
| |
| struct task_struct *thread; |
| |
| struct list_head link; |
| }; |
| |
| #define smi_inc_stat(smi, stat) \ |
| atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) |
| #define smi_get_stat(smi, stat) \ |
| ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) |
| |
| #define IPMI_MAX_INTFS 4 |
| static int force_kipmid[IPMI_MAX_INTFS]; |
| static int num_force_kipmid; |
| |
| static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS]; |
| static int num_max_busy_us; |
| |
| static bool unload_when_empty = true; |
| |
| static int try_smi_init(struct smi_info *smi); |
| static void cleanup_one_si(struct smi_info *smi_info); |
| static void cleanup_ipmi_si(void); |
| |
| #ifdef DEBUG_TIMING |
| void debug_timestamp(char *msg) |
| { |
| struct timespec64 t; |
| |
| ktime_get_ts64(&t); |
| pr_debug("**%s: %lld.%9.9ld\n", msg, t.tv_sec, t.tv_nsec); |
| } |
| #else |
| #define debug_timestamp(x) |
| #endif |
| |
| static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); |
| static int register_xaction_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&xaction_notifier_list, nb); |
| } |
| |
| static void deliver_recv_msg(struct smi_info *smi_info, |
| struct ipmi_smi_msg *msg) |
| { |
| /* Deliver the message to the upper layer. */ |
| ipmi_smi_msg_received(smi_info->intf, msg); |
| } |
| |
| static void return_hosed_msg(struct smi_info *smi_info, int cCode) |
| { |
| struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| |
| if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) |
| cCode = IPMI_ERR_UNSPECIFIED; |
| /* else use it as is */ |
| |
| /* Make it a response */ |
| msg->rsp[0] = msg->data[0] | 4; |
| msg->rsp[1] = msg->data[1]; |
| msg->rsp[2] = cCode; |
| msg->rsp_size = 3; |
| |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| } |
| |
| static enum si_sm_result start_next_msg(struct smi_info *smi_info) |
| { |
| int rv; |
| |
| if (!smi_info->waiting_msg) { |
| smi_info->curr_msg = NULL; |
| rv = SI_SM_IDLE; |
| } else { |
| int err; |
| |
| smi_info->curr_msg = smi_info->waiting_msg; |
| smi_info->waiting_msg = NULL; |
| debug_timestamp("Start2"); |
| err = atomic_notifier_call_chain(&xaction_notifier_list, |
| 0, smi_info); |
| if (err & NOTIFY_STOP_MASK) { |
| rv = SI_SM_CALL_WITHOUT_DELAY; |
| goto out; |
| } |
| err = smi_info->handlers->start_transaction( |
| smi_info->si_sm, |
| smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| if (err) |
| return_hosed_msg(smi_info, err); |
| |
| rv = SI_SM_CALL_WITHOUT_DELAY; |
| } |
| out: |
| return rv; |
| } |
| |
| static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) |
| { |
| if (!smi_info->timer_can_start) |
| return; |
| smi_info->last_timeout_jiffies = jiffies; |
| mod_timer(&smi_info->si_timer, new_val); |
| smi_info->timer_running = true; |
| } |
| |
| /* |
| * Start a new message and (re)start the timer and thread. |
| */ |
| static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, |
| unsigned int size) |
| { |
| smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| if (smi_info->thread) |
| wake_up_process(smi_info->thread); |
| |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); |
| } |
| |
| static void start_check_enables(struct smi_info *smi_info) |
| { |
| unsigned char msg[2]; |
| |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| |
| start_new_msg(smi_info, msg, 2); |
| smi_info->si_state = SI_CHECKING_ENABLES; |
| } |
| |
| static void start_clear_flags(struct smi_info *smi_info) |
| { |
| unsigned char msg[3]; |
| |
| /* Make sure the watchdog pre-timeout flag is not set at startup. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; |
| msg[2] = WDT_PRE_TIMEOUT_INT; |
| |
| start_new_msg(smi_info, msg, 3); |
| smi_info->si_state = SI_CLEARING_FLAGS; |
| } |
| |
| static void start_getting_msg_queue(struct smi_info *smi_info) |
| { |
| smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; |
| smi_info->curr_msg->data_size = 2; |
| |
| start_new_msg(smi_info, smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| smi_info->si_state = SI_GETTING_MESSAGES; |
| } |
| |
| static void start_getting_events(struct smi_info *smi_info) |
| { |
| smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; |
| smi_info->curr_msg->data_size = 2; |
| |
| start_new_msg(smi_info, smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| smi_info->si_state = SI_GETTING_EVENTS; |
| } |
| |
| /* |
| * When we have a situtaion where we run out of memory and cannot |
| * allocate messages, we just leave them in the BMC and run the system |
| * polled until we can allocate some memory. Once we have some |
| * memory, we will re-enable the interrupt. |
| * |
| * Note that we cannot just use disable_irq(), since the interrupt may |
| * be shared. |
| */ |
| static inline bool disable_si_irq(struct smi_info *smi_info) |
| { |
| if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { |
| smi_info->interrupt_disabled = true; |
| start_check_enables(smi_info); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool enable_si_irq(struct smi_info *smi_info) |
| { |
| if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) { |
| smi_info->interrupt_disabled = false; |
| start_check_enables(smi_info); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Allocate a message. If unable to allocate, start the interrupt |
| * disable process and return NULL. If able to allocate but |
| * interrupts are disabled, free the message and return NULL after |
| * starting the interrupt enable process. |
| */ |
| static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg; |
| |
| msg = ipmi_alloc_smi_msg(); |
| if (!msg) { |
| if (!disable_si_irq(smi_info)) |
| smi_info->si_state = SI_NORMAL; |
| } else if (enable_si_irq(smi_info)) { |
| ipmi_free_smi_msg(msg); |
| msg = NULL; |
| } |
| return msg; |
| } |
| |
| static void handle_flags(struct smi_info *smi_info) |
| { |
| retry: |
| if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { |
| /* Watchdog pre-timeout */ |
| smi_inc_stat(smi_info, watchdog_pretimeouts); |
| |
| start_clear_flags(smi_info); |
| smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; |
| ipmi_smi_watchdog_pretimeout(smi_info->intf); |
| } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { |
| /* Messages available. */ |
| smi_info->curr_msg = alloc_msg_handle_irq(smi_info); |
| if (!smi_info->curr_msg) |
| return; |
| |
| start_getting_msg_queue(smi_info); |
| } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { |
| /* Events available. */ |
| smi_info->curr_msg = alloc_msg_handle_irq(smi_info); |
| if (!smi_info->curr_msg) |
| return; |
| |
| start_getting_events(smi_info); |
| } else if (smi_info->msg_flags & OEM_DATA_AVAIL && |
| smi_info->oem_data_avail_handler) { |
| if (smi_info->oem_data_avail_handler(smi_info)) |
| goto retry; |
| } else |
| smi_info->si_state = SI_NORMAL; |
| } |
| |
| /* |
| * Global enables we care about. |
| */ |
| #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ |
| IPMI_BMC_EVT_MSG_INTR) |
| |
| static u8 current_global_enables(struct smi_info *smi_info, u8 base, |
| bool *irq_on) |
| { |
| u8 enables = 0; |
| |
| if (smi_info->supports_event_msg_buff) |
| enables |= IPMI_BMC_EVT_MSG_BUFF; |
| |
| if (((smi_info->io.irq && !smi_info->interrupt_disabled) || |
| smi_info->cannot_disable_irq) && |
| !smi_info->irq_enable_broken) |
| enables |= IPMI_BMC_RCV_MSG_INTR; |
| |
| if (smi_info->supports_event_msg_buff && |
| smi_info->io.irq && !smi_info->interrupt_disabled && |
| !smi_info->irq_enable_broken) |
| enables |= IPMI_BMC_EVT_MSG_INTR; |
| |
| *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); |
| |
| return enables; |
| } |
| |
| static void check_bt_irq(struct smi_info *smi_info, bool irq_on) |
| { |
| u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); |
| |
| irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; |
| |
| if ((bool)irqstate == irq_on) |
| return; |
| |
| if (irq_on) |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| else |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); |
| } |
| |
| static void handle_transaction_done(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg; |
| |
| debug_timestamp("Done"); |
| switch (smi_info->si_state) { |
| case SI_NORMAL: |
| if (!smi_info->curr_msg) |
| break; |
| |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* |
| * Do this here becase deliver_recv_msg() releases the |
| * lock, and a new message can be put in during the |
| * time the lock is released. |
| */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| break; |
| |
| case SI_GETTING_FLAGS: |
| { |
| unsigned char msg[4]; |
| unsigned int len; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| /* Error fetching flags, just give up for now. */ |
| smi_info->si_state = SI_NORMAL; |
| } else if (len < 4) { |
| /* |
| * Hmm, no flags. That's technically illegal, but |
| * don't use uninitialized data. |
| */ |
| smi_info->si_state = SI_NORMAL; |
| } else { |
| smi_info->msg_flags = msg[3]; |
| handle_flags(smi_info); |
| } |
| break; |
| } |
| |
| case SI_CLEARING_FLAGS: |
| { |
| unsigned char msg[3]; |
| |
| /* We cleared the flags. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 3); |
| if (msg[2] != 0) { |
| /* Error clearing flags */ |
| dev_warn(smi_info->io.dev, |
| "Error clearing flags: %2.2x\n", msg[2]); |
| } |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| |
| case SI_GETTING_EVENTS: |
| { |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* |
| * Do this here becase deliver_recv_msg() releases the |
| * lock, and a new message can be put in during the |
| * time the lock is released. |
| */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| if (msg->rsp[2] != 0) { |
| /* Error getting event, probably done. */ |
| msg->done(msg); |
| |
| /* Take off the event flag. */ |
| smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; |
| handle_flags(smi_info); |
| } else { |
| smi_inc_stat(smi_info, events); |
| |
| /* |
| * Do this before we deliver the message |
| * because delivering the message releases the |
| * lock and something else can mess with the |
| * state. |
| */ |
| handle_flags(smi_info); |
| |
| deliver_recv_msg(smi_info, msg); |
| } |
| break; |
| } |
| |
| case SI_GETTING_MESSAGES: |
| { |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* |
| * Do this here becase deliver_recv_msg() releases the |
| * lock, and a new message can be put in during the |
| * time the lock is released. |
| */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| if (msg->rsp[2] != 0) { |
| /* Error getting event, probably done. */ |
| msg->done(msg); |
| |
| /* Take off the msg flag. */ |
| smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; |
| handle_flags(smi_info); |
| } else { |
| smi_inc_stat(smi_info, incoming_messages); |
| |
| /* |
| * Do this before we deliver the message |
| * because delivering the message releases the |
| * lock and something else can mess with the |
| * state. |
| */ |
| handle_flags(smi_info); |
| |
| deliver_recv_msg(smi_info, msg); |
| } |
| break; |
| } |
| |
| case SI_CHECKING_ENABLES: |
| { |
| unsigned char msg[4]; |
| u8 enables; |
| bool irq_on; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| dev_warn(smi_info->io.dev, |
| "Couldn't get irq info: %x.\n", msg[2]); |
| dev_warn(smi_info->io.dev, |
| "Maybe ok, but ipmi might run very slowly.\n"); |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| enables = current_global_enables(smi_info, 0, &irq_on); |
| if (smi_info->io.si_type == SI_BT) |
| /* BT has its own interrupt enable bit. */ |
| check_bt_irq(smi_info, irq_on); |
| if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { |
| /* Enables are not correct, fix them. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, msg, 3); |
| smi_info->si_state = SI_SETTING_ENABLES; |
| } else if (smi_info->supports_event_msg_buff) { |
| smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| if (!smi_info->curr_msg) { |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| start_getting_events(smi_info); |
| } else { |
| smi_info->si_state = SI_NORMAL; |
| } |
| break; |
| } |
| |
| case SI_SETTING_ENABLES: |
| { |
| unsigned char msg[4]; |
| |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) |
| dev_warn(smi_info->io.dev, |
| "Could not set the global enables: 0x%x.\n", |
| msg[2]); |
| |
| if (smi_info->supports_event_msg_buff) { |
| smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| if (!smi_info->curr_msg) { |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| start_getting_events(smi_info); |
| } else { |
| smi_info->si_state = SI_NORMAL; |
| } |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Called on timeouts and events. Timeouts should pass the elapsed |
| * time, interrupts should pass in zero. Must be called with |
| * si_lock held and interrupts disabled. |
| */ |
| static enum si_sm_result smi_event_handler(struct smi_info *smi_info, |
| int time) |
| { |
| enum si_sm_result si_sm_result; |
| |
| restart: |
| /* |
| * There used to be a loop here that waited a little while |
| * (around 25us) before giving up. That turned out to be |
| * pointless, the minimum delays I was seeing were in the 300us |
| * range, which is far too long to wait in an interrupt. So |
| * we just run until the state machine tells us something |
| * happened or it needs a delay. |
| */ |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); |
| time = 0; |
| while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| |
| if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { |
| smi_inc_stat(smi_info, complete_transactions); |
| |
| handle_transaction_done(smi_info); |
| goto restart; |
| } else if (si_sm_result == SI_SM_HOSED) { |
| smi_inc_stat(smi_info, hosed_count); |
| |
| /* |
| * Do the before return_hosed_msg, because that |
| * releases the lock. |
| */ |
| smi_info->si_state = SI_NORMAL; |
| if (smi_info->curr_msg != NULL) { |
| /* |
| * If we were handling a user message, format |
| * a response to send to the upper layer to |
| * tell it about the error. |
| */ |
| return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); |
| } |
| goto restart; |
| } |
| |
| /* |
| * We prefer handling attn over new messages. But don't do |
| * this if there is not yet an upper layer to handle anything. |
| */ |
| if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) { |
| unsigned char msg[2]; |
| |
| if (smi_info->si_state != SI_NORMAL) { |
| /* |
| * We got an ATTN, but we are doing something else. |
| * Handle the ATTN later. |
| */ |
| smi_info->got_attn = true; |
| } else { |
| smi_info->got_attn = false; |
| smi_inc_stat(smi_info, attentions); |
| |
| /* |
| * Got a attn, send down a get message flags to see |
| * what's causing it. It would be better to handle |
| * this in the upper layer, but due to the way |
| * interrupts work with the SMI, that's not really |
| * possible. |
| */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_MSG_FLAGS_CMD; |
| |
| start_new_msg(smi_info, msg, 2); |
| smi_info->si_state = SI_GETTING_FLAGS; |
| goto restart; |
| } |
| } |
| |
| /* If we are currently idle, try to start the next message. */ |
| if (si_sm_result == SI_SM_IDLE) { |
| smi_inc_stat(smi_info, idles); |
| |
| si_sm_result = start_next_msg(smi_info); |
| if (si_sm_result != SI_SM_IDLE) |
| goto restart; |
| } |
| |
| if ((si_sm_result == SI_SM_IDLE) |
| && (atomic_read(&smi_info->req_events))) { |
| /* |
| * We are idle and the upper layer requested that I fetch |
| * events, so do so. |
| */ |
| atomic_set(&smi_info->req_events, 0); |
| |
| /* |
| * Take this opportunity to check the interrupt and |
| * message enable state for the BMC. The BMC can be |
| * asynchronously reset, and may thus get interrupts |
| * disable and messages disabled. |
| */ |
| if (smi_info->supports_event_msg_buff || smi_info->io.irq) { |
| start_check_enables(smi_info); |
| } else { |
| smi_info->curr_msg = alloc_msg_handle_irq(smi_info); |
| if (!smi_info->curr_msg) |
| goto out; |
| |
| start_getting_events(smi_info); |
| } |
| goto restart; |
| } |
| |
| if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { |
| /* Ok it if fails, the timer will just go off. */ |
| if (del_timer(&smi_info->si_timer)) |
| smi_info->timer_running = false; |
| } |
| |
| out: |
| return si_sm_result; |
| } |
| |
| static void check_start_timer_thread(struct smi_info *smi_info) |
| { |
| if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { |
| smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| if (smi_info->thread) |
| wake_up_process(smi_info->thread); |
| |
| start_next_msg(smi_info); |
| smi_event_handler(smi_info, 0); |
| } |
| } |
| |
| static void flush_messages(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| enum si_sm_result result; |
| |
| /* |
| * Currently, this function is called only in run-to-completion |
| * mode. This means we are single-threaded, no need for locks. |
| */ |
| result = smi_event_handler(smi_info, 0); |
| while (result != SI_SM_IDLE) { |
| udelay(SI_SHORT_TIMEOUT_USEC); |
| result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); |
| } |
| } |
| |
| static void sender(void *send_info, |
| struct ipmi_smi_msg *msg) |
| { |
| struct smi_info *smi_info = send_info; |
| unsigned long flags; |
| |
| debug_timestamp("Enqueue"); |
| |
| if (smi_info->run_to_completion) { |
| /* |
| * If we are running to completion, start it. Upper |
| * layer will call flush_messages to clear it out. |
| */ |
| smi_info->waiting_msg = msg; |
| return; |
| } |
| |
| spin_lock_irqsave(&smi_info->si_lock, flags); |
| /* |
| * The following two lines don't need to be under the lock for |
| * the lock's sake, but they do need SMP memory barriers to |
| * avoid getting things out of order. We are already claiming |
| * the lock, anyway, so just do it under the lock to avoid the |
| * ordering problem. |
| */ |
| BUG_ON(smi_info->waiting_msg); |
| smi_info->waiting_msg = msg; |
| check_start_timer_thread(smi_info); |
| spin_unlock_irqrestore(&smi_info->si_lock, flags); |
| } |
| |
| static void set_run_to_completion(void *send_info, bool i_run_to_completion) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| smi_info->run_to_completion = i_run_to_completion; |
| if (i_run_to_completion) |
| flush_messages(smi_info); |
| } |
| |
| /* |
| * Use -1 as a special constant to tell that we are spinning in kipmid |
| * looking for something and not delaying between checks |
| */ |
| #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull) |
| static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result, |
| const struct smi_info *smi_info, |
| ktime_t *busy_until) |
| { |
| unsigned int max_busy_us = 0; |
| |
| if (smi_info->si_num < num_max_busy_us) |
| max_busy_us = kipmid_max_busy_us[smi_info->si_num]; |
| if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) |
| *busy_until = IPMI_TIME_NOT_BUSY; |
| else if (*busy_until == IPMI_TIME_NOT_BUSY) { |
| *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC; |
| } else { |
| if (unlikely(ktime_get() > *busy_until)) { |
| *busy_until = IPMI_TIME_NOT_BUSY; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /* |
| * A busy-waiting loop for speeding up IPMI operation. |
| * |
| * Lousy hardware makes this hard. This is only enabled for systems |
| * that are not BT and do not have interrupts. It starts spinning |
| * when an operation is complete or until max_busy tells it to stop |
| * (if that is enabled). See the paragraph on kimid_max_busy_us in |
| * Documentation/driver-api/ipmi.rst for details. |
| */ |
| static int ipmi_thread(void *data) |
| { |
| struct smi_info *smi_info = data; |
| unsigned long flags; |
| enum si_sm_result smi_result; |
| ktime_t busy_until = IPMI_TIME_NOT_BUSY; |
| |
| set_user_nice(current, MAX_NICE); |
| while (!kthread_should_stop()) { |
| int busy_wait; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| smi_result = smi_event_handler(smi_info, 0); |
| |
| /* |
| * If the driver is doing something, there is a possible |
| * race with the timer. If the timer handler see idle, |
| * and the thread here sees something else, the timer |
| * handler won't restart the timer even though it is |
| * required. So start it here if necessary. |
| */ |
| if (smi_result != SI_SM_IDLE && !smi_info->timer_running) |
| smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, |
| &busy_until); |
| if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { |
| ; /* do nothing */ |
| } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) { |
| /* |
| * In maintenance mode we run as fast as |
| * possible to allow firmware updates to |
| * complete as fast as possible, but normally |
| * don't bang on the scheduler. |
| */ |
| if (smi_info->in_maintenance_mode) |
| schedule(); |
| else |
| usleep_range(100, 200); |
| } else if (smi_result == SI_SM_IDLE) { |
| if (atomic_read(&smi_info->need_watch)) { |
| schedule_timeout_interruptible(100); |
| } else { |
| /* Wait to be woken up when we are needed. */ |
| __set_current_state(TASK_INTERRUPTIBLE); |
| schedule(); |
| } |
| } else { |
| schedule_timeout_interruptible(1); |
| } |
| } |
| return 0; |
| } |
| |
| |
| static void poll(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| unsigned long flags = 0; |
| bool run_to_completion = smi_info->run_to_completion; |
| |
| /* |
| * Make sure there is some delay in the poll loop so we can |
| * drive time forward and timeout things. |
| */ |
| udelay(10); |
| if (!run_to_completion) |
| spin_lock_irqsave(&smi_info->si_lock, flags); |
| smi_event_handler(smi_info, 10); |
| if (!run_to_completion) |
| spin_unlock_irqrestore(&smi_info->si_lock, flags); |
| } |
| |
| static void request_events(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| if (!smi_info->has_event_buffer) |
| return; |
| |
| atomic_set(&smi_info->req_events, 1); |
| } |
| |
| static void set_need_watch(void *send_info, unsigned int watch_mask) |
| { |
| struct smi_info *smi_info = send_info; |
| unsigned long flags; |
| int enable; |
| |
| enable = !!watch_mask; |
| |
| atomic_set(&smi_info->need_watch, enable); |
| spin_lock_irqsave(&smi_info->si_lock, flags); |
| check_start_timer_thread(smi_info); |
| spin_unlock_irqrestore(&smi_info->si_lock, flags); |
| } |
| |
| static void smi_timeout(struct timer_list *t) |
| { |
| struct smi_info *smi_info = from_timer(smi_info, t, si_timer); |
| enum si_sm_result smi_result; |
| unsigned long flags; |
| unsigned long jiffies_now; |
| long time_diff; |
| long timeout; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| debug_timestamp("Timer"); |
| |
| jiffies_now = jiffies; |
| time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) |
| * SI_USEC_PER_JIFFY); |
| smi_result = smi_event_handler(smi_info, time_diff); |
| |
| if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { |
| /* Running with interrupts, only do long timeouts. */ |
| timeout = jiffies + SI_TIMEOUT_JIFFIES; |
| smi_inc_stat(smi_info, long_timeouts); |
| goto do_mod_timer; |
| } |
| |
| /* |
| * If the state machine asks for a short delay, then shorten |
| * the timer timeout. |
| */ |
| if (smi_result == SI_SM_CALL_WITH_DELAY) { |
| smi_inc_stat(smi_info, short_timeouts); |
| timeout = jiffies + 1; |
| } else { |
| smi_inc_stat(smi_info, long_timeouts); |
| timeout = jiffies + SI_TIMEOUT_JIFFIES; |
| } |
| |
| do_mod_timer: |
| if (smi_result != SI_SM_IDLE) |
| smi_mod_timer(smi_info, timeout); |
| else |
| smi_info->timer_running = false; |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| } |
| |
| irqreturn_t ipmi_si_irq_handler(int irq, void *data) |
| { |
| struct smi_info *smi_info = data; |
| unsigned long flags; |
| |
| if (smi_info->io.si_type == SI_BT) |
| /* We need to clear the IRQ flag for the BT interface. */ |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_CLEAR_IRQ_BIT |
| | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| |
| smi_inc_stat(smi_info, interrupts); |
| |
| debug_timestamp("Interrupt"); |
| |
| smi_event_handler(smi_info, 0); |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| return IRQ_HANDLED; |
| } |
| |
| static int smi_start_processing(void *send_info, |
| struct ipmi_smi *intf) |
| { |
| struct smi_info *new_smi = send_info; |
| int enable = 0; |
| |
| new_smi->intf = intf; |
| |
| /* Set up the timer that drives the interface. */ |
| timer_setup(&new_smi->si_timer, smi_timeout, 0); |
| new_smi->timer_can_start = true; |
| smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| /* Try to claim any interrupts. */ |
| if (new_smi->io.irq_setup) { |
| new_smi->io.irq_handler_data = new_smi; |
| new_smi->io.irq_setup(&new_smi->io); |
| } |
| |
| /* |
| * Check if the user forcefully enabled the daemon. |
| */ |
| if (new_smi->si_num < num_force_kipmid) |
| enable = force_kipmid[new_smi->si_num]; |
| /* |
| * The BT interface is efficient enough to not need a thread, |
| * and there is no need for a thread if we have interrupts. |
| */ |
| else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq)) |
| enable = 1; |
| |
| if (enable) { |
| new_smi->thread = kthread_run(ipmi_thread, new_smi, |
| "kipmi%d", new_smi->si_num); |
| if (IS_ERR(new_smi->thread)) { |
| dev_notice(new_smi->io.dev, |
| "Could not start kernel thread due to error %ld, only using timers to drive the interface\n", |
| PTR_ERR(new_smi->thread)); |
| new_smi->thread = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int get_smi_info(void *send_info, struct ipmi_smi_info *data) |
| { |
| struct smi_info *smi = send_info; |
| |
| data->addr_src = smi->io.addr_source; |
| data->dev = smi->io.dev; |
| data->addr_info = smi->io.addr_info; |
| get_device(smi->io.dev); |
| |
| return 0; |
| } |
| |
| static void set_maintenance_mode(void *send_info, bool enable) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| if (!enable) |
| atomic_set(&smi_info->req_events, 0); |
| smi_info->in_maintenance_mode = enable; |
| } |
| |
| static void shutdown_smi(void *send_info); |
| static const struct ipmi_smi_handlers handlers = { |
| .owner = THIS_MODULE, |
| .start_processing = smi_start_processing, |
| .shutdown = shutdown_smi, |
| .get_smi_info = get_smi_info, |
| .sender = sender, |
| .request_events = request_events, |
| .set_need_watch = set_need_watch, |
| .set_maintenance_mode = set_maintenance_mode, |
| .set_run_to_completion = set_run_to_completion, |
| .flush_messages = flush_messages, |
| .poll = poll, |
| }; |
| |
| static LIST_HEAD(smi_infos); |
| static DEFINE_MUTEX(smi_infos_lock); |
| static int smi_num; /* Used to sequence the SMIs */ |
| |
| static const char * const addr_space_to_str[] = { "i/o", "mem" }; |
| |
| module_param_array(force_kipmid, int, &num_force_kipmid, 0); |
| MODULE_PARM_DESC(force_kipmid, |
| "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm."); |
| module_param(unload_when_empty, bool, 0); |
| MODULE_PARM_DESC(unload_when_empty, |
| "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod."); |
| module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); |
| MODULE_PARM_DESC(kipmid_max_busy_us, |
| "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time."); |
| |
| void ipmi_irq_finish_setup(struct si_sm_io *io) |
| { |
| if (io->si_type == SI_BT) |
| /* Enable the interrupt in the BT interface. */ |
| io->outputb(io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| } |
| |
| void ipmi_irq_start_cleanup(struct si_sm_io *io) |
| { |
| if (io->si_type == SI_BT) |
| /* Disable the interrupt in the BT interface. */ |
| io->outputb(io, IPMI_BT_INTMASK_REG, 0); |
| } |
| |
| static void std_irq_cleanup(struct si_sm_io *io) |
| { |
| ipmi_irq_start_cleanup(io); |
| free_irq(io->irq, io->irq_handler_data); |
| } |
| |
| int ipmi_std_irq_setup(struct si_sm_io *io) |
| { |
| int rv; |
| |
| if (!io->irq) |
| return 0; |
| |
| rv = request_irq(io->irq, |
| ipmi_si_irq_handler, |
| IRQF_SHARED, |
| SI_DEVICE_NAME, |
| io->irq_handler_data); |
| if (rv) { |
| dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n", |
| SI_DEVICE_NAME, io->irq); |
| io->irq = 0; |
| } else { |
| io->irq_cleanup = std_irq_cleanup; |
| ipmi_irq_finish_setup(io); |
| dev_info(io->dev, "Using irq %d\n", io->irq); |
| } |
| |
| return rv; |
| } |
| |
| static int wait_for_msg_done(struct smi_info *smi_info) |
| { |
| enum si_sm_result smi_result; |
| |
| smi_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| for (;;) { |
| if (smi_result == SI_SM_CALL_WITH_DELAY || |
| smi_result == SI_SM_CALL_WITH_TICK_DELAY) { |
| schedule_timeout_uninterruptible(1); |
| smi_result = smi_info->handlers->event( |
| smi_info->si_sm, jiffies_to_usecs(1)); |
| } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { |
| smi_result = smi_info->handlers->event( |
| smi_info->si_sm, 0); |
| } else |
| break; |
| } |
| if (smi_result == SI_SM_HOSED) |
| /* |
| * We couldn't get the state machine to run, so whatever's at |
| * the port is probably not an IPMI SMI interface. |
| */ |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static int try_get_dev_id(struct smi_info *smi_info) |
| { |
| unsigned char msg[2]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv = 0; |
| unsigned int retry_count = 0; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| /* |
| * Do a Get Device ID command, since it comes back with some |
| * useful info. |
| */ |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_DEVICE_ID_CMD; |
| |
| retry: |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) |
| goto out; |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| /* Check and record info from the get device id, in case we need it. */ |
| rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], |
| resp + 2, resp_len - 2, &smi_info->device_id); |
| if (rv) { |
| /* record completion code */ |
| unsigned char cc = *(resp + 2); |
| |
| if (cc != IPMI_CC_NO_ERROR && |
| ++retry_count <= GET_DEVICE_ID_MAX_RETRY) { |
| dev_warn(smi_info->io.dev, |
| "BMC returned 0x%2.2x, retry get bmc device id\n", |
| cc); |
| goto retry; |
| } |
| } |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| static int get_global_enables(struct smi_info *smi_info, u8 *enables) |
| { |
| unsigned char msg[3]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| dev_warn(smi_info->io.dev, |
| "Error getting response from get global enables command: %d\n", |
| rv); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 4 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || |
| resp[2] != 0) { |
| dev_warn(smi_info->io.dev, |
| "Invalid return from get global enables command: %ld %x %x %x\n", |
| resp_len, resp[0], resp[1], resp[2]); |
| rv = -EINVAL; |
| goto out; |
| } else { |
| *enables = resp[3]; |
| } |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| /* |
| * Returns 1 if it gets an error from the command. |
| */ |
| static int set_global_enables(struct smi_info *smi_info, u8 enables) |
| { |
| unsigned char msg[3]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = enables; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| dev_warn(smi_info->io.dev, |
| "Error getting response from set global enables command: %d\n", |
| rv); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 3 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { |
| dev_warn(smi_info->io.dev, |
| "Invalid return from set global enables command: %ld %x %x\n", |
| resp_len, resp[0], resp[1]); |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if (resp[2] != 0) |
| rv = 1; |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| /* |
| * Some BMCs do not support clearing the receive irq bit in the global |
| * enables (even if they don't support interrupts on the BMC). Check |
| * for this and handle it properly. |
| */ |
| static void check_clr_rcv_irq(struct smi_info *smi_info) |
| { |
| u8 enables = 0; |
| int rv; |
| |
| rv = get_global_enables(smi_info, &enables); |
| if (!rv) { |
| if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) |
| /* Already clear, should work ok. */ |
| return; |
| |
| enables &= ~IPMI_BMC_RCV_MSG_INTR; |
| rv = set_global_enables(smi_info, enables); |
| } |
| |
| if (rv < 0) { |
| dev_err(smi_info->io.dev, |
| "Cannot check clearing the rcv irq: %d\n", rv); |
| return; |
| } |
| |
| if (rv) { |
| /* |
| * An error when setting the event buffer bit means |
| * clearing the bit is not supported. |
| */ |
| dev_warn(smi_info->io.dev, |
| "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); |
| smi_info->cannot_disable_irq = true; |
| } |
| } |
| |
| /* |
| * Some BMCs do not support setting the interrupt bits in the global |
| * enables even if they support interrupts. Clearly bad, but we can |
| * compensate. |
| */ |
| static void check_set_rcv_irq(struct smi_info *smi_info) |
| { |
| u8 enables = 0; |
| int rv; |
| |
| if (!smi_info->io.irq) |
| return; |
| |
| rv = get_global_enables(smi_info, &enables); |
| if (!rv) { |
| enables |= IPMI_BMC_RCV_MSG_INTR; |
| rv = set_global_enables(smi_info, enables); |
| } |
| |
| if (rv < 0) { |
| dev_err(smi_info->io.dev, |
| "Cannot check setting the rcv irq: %d\n", rv); |
| return; |
| } |
| |
| if (rv) { |
| /* |
| * An error when setting the event buffer bit means |
| * setting the bit is not supported. |
| */ |
| dev_warn(smi_info->io.dev, |
| "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); |
| smi_info->cannot_disable_irq = true; |
| smi_info->irq_enable_broken = true; |
| } |
| } |
| |
| static int try_enable_event_buffer(struct smi_info *smi_info) |
| { |
| unsigned char msg[3]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv = 0; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n"); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 4 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || |
| resp[2] != 0) { |
| pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n"); |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { |
| /* buffer is already enabled, nothing to do. */ |
| smi_info->supports_event_msg_buff = true; |
| goto out; |
| } |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n"); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 3 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { |
| pr_warn("Invalid return from get global, enables command, not enable the event buffer\n"); |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if (resp[2] != 0) |
| /* |
| * An error when setting the event buffer bit means |
| * that the event buffer is not supported. |
| */ |
| rv = -ENOENT; |
| else |
| smi_info->supports_event_msg_buff = true; |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| #define IPMI_SI_ATTR(name) \ |
| static ssize_t name##_show(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| struct smi_info *smi_info = dev_get_drvdata(dev); \ |
| \ |
| return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \ |
| } \ |
| static DEVICE_ATTR(name, 0444, name##_show, NULL) |
| |
| static ssize_t type_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct smi_info *smi_info = dev_get_drvdata(dev); |
| |
| return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]); |
| } |
| static DEVICE_ATTR(type, 0444, type_show, NULL); |
| |
| static ssize_t interrupts_enabled_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct smi_info *smi_info = dev_get_drvdata(dev); |
| int enabled = smi_info->io.irq && !smi_info->interrupt_disabled; |
| |
| return snprintf(buf, 10, "%d\n", enabled); |
| } |
| static DEVICE_ATTR(interrupts_enabled, 0444, |
| interrupts_enabled_show, NULL); |
| |
| IPMI_SI_ATTR(short_timeouts); |
| IPMI_SI_ATTR(long_timeouts); |
| IPMI_SI_ATTR(idles); |
| IPMI_SI_ATTR(interrupts); |
| IPMI_SI_ATTR(attentions); |
| IPMI_SI_ATTR(flag_fetches); |
| IPMI_SI_ATTR(hosed_count); |
| IPMI_SI_ATTR(complete_transactions); |
| IPMI_SI_ATTR(events); |
| IPMI_SI_ATTR(watchdog_pretimeouts); |
| IPMI_SI_ATTR(incoming_messages); |
| |
| static ssize_t params_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct smi_info *smi_info = dev_get_drvdata(dev); |
| |
| return snprintf(buf, 200, |
| "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", |
| si_to_str[smi_info->io.si_type], |
| addr_space_to_str[smi_info->io.addr_space], |
| smi_info->io.addr_data, |
| smi_info->io.regspacing, |
| smi_info->io.regsize, |
| smi_info->io.regshift, |
| smi_info->io.irq, |
| smi_info->io.slave_addr); |
| } |
| static DEVICE_ATTR(params, 0444, params_show, NULL); |
| |
| static struct attribute *ipmi_si_dev_attrs[] = { |
| &dev_attr_type.attr, |
| &dev_attr_interrupts_enabled.attr, |
| &dev_attr_short_timeouts.attr, |
| &dev_attr_long_timeouts.attr, |
| &dev_attr_idles.attr, |
| &dev_attr_interrupts.attr, |
| &dev_attr_attentions.attr, |
| &dev_attr_flag_fetches.attr, |
| &dev_attr_hosed_count.attr, |
| &dev_attr_complete_transactions.attr, |
| &dev_attr_events.attr, |
| &dev_attr_watchdog_pretimeouts.attr, |
| &dev_attr_incoming_messages.attr, |
| &dev_attr_params.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group ipmi_si_dev_attr_group = { |
| .attrs = ipmi_si_dev_attrs, |
| }; |
| |
| /* |
| * oem_data_avail_to_receive_msg_avail |
| * @info - smi_info structure with msg_flags set |
| * |
| * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL |
| * Returns 1 indicating need to re-run handle_flags(). |
| */ |
| static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) |
| { |
| smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | |
| RECEIVE_MSG_AVAIL); |
| return 1; |
| } |
| |
| /* |
| * setup_dell_poweredge_oem_data_handler |
| * @info - smi_info.device_id must be populated |
| * |
| * Systems that match, but have firmware version < 1.40 may assert |
| * OEM0_DATA_AVAIL on their own, without being told via Set Flags that |
| * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL |
| * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags |
| * as RECEIVE_MSG_AVAIL instead. |
| * |
| * As Dell has no plans to release IPMI 1.5 firmware that *ever* |
| * assert the OEM[012] bits, and if it did, the driver would have to |
| * change to handle that properly, we don't actually check for the |
| * firmware version. |
| * Device ID = 0x20 BMC on PowerEdge 8G servers |
| * Device Revision = 0x80 |
| * Firmware Revision1 = 0x01 BMC version 1.40 |
| * Firmware Revision2 = 0x40 BCD encoded |
| * IPMI Version = 0x51 IPMI 1.5 |
| * Manufacturer ID = A2 02 00 Dell IANA |
| * |
| * Additionally, PowerEdge systems with IPMI < 1.5 may also assert |
| * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. |
| * |
| */ |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 |
| #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 |
| #define DELL_IANA_MFR_ID 0x0002a2 |
| static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) |
| { |
| struct ipmi_device_id *id = &smi_info->device_id; |
| if (id->manufacturer_id == DELL_IANA_MFR_ID) { |
| if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && |
| id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && |
| id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { |
| smi_info->oem_data_avail_handler = |
| oem_data_avail_to_receive_msg_avail; |
| } else if (ipmi_version_major(id) < 1 || |
| (ipmi_version_major(id) == 1 && |
| ipmi_version_minor(id) < 5)) { |
| smi_info->oem_data_avail_handler = |
| oem_data_avail_to_receive_msg_avail; |
| } |
| } |
| } |
| |
| #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA |
| static void return_hosed_msg_badsize(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| |
| /* Make it a response */ |
| msg->rsp[0] = msg->data[0] | 4; |
| msg->rsp[1] = msg->data[1]; |
| msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; |
| msg->rsp_size = 3; |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| } |
| |
| /* |
| * dell_poweredge_bt_xaction_handler |
| * @info - smi_info.device_id must be populated |
| * |
| * Dell PowerEdge servers with the BT interface (x6xx and 1750) will |
| * not respond to a Get SDR command if the length of the data |
| * requested is exactly 0x3A, which leads to command timeouts and no |
| * data returned. This intercepts such commands, and causes userspace |
| * callers to try again with a different-sized buffer, which succeeds. |
| */ |
| |
| #define STORAGE_NETFN 0x0A |
| #define STORAGE_CMD_GET_SDR 0x23 |
| static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, |
| unsigned long unused, |
| void *in) |
| { |
| struct smi_info *smi_info = in; |
| unsigned char *data = smi_info->curr_msg->data; |
| unsigned int size = smi_info->curr_msg->data_size; |
| if (size >= 8 && |
| (data[0]>>2) == STORAGE_NETFN && |
| data[1] == STORAGE_CMD_GET_SDR && |
| data[7] == 0x3A) { |
| return_hosed_msg_badsize(smi_info); |
| return NOTIFY_STOP; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block dell_poweredge_bt_xaction_notifier = { |
| .notifier_call = dell_poweredge_bt_xaction_handler, |
| }; |
| |
| /* |
| * setup_dell_poweredge_bt_xaction_handler |
| * @info - smi_info.device_id must be filled in already |
| * |
| * Fills in smi_info.device_id.start_transaction_pre_hook |
| * when we know what function to use there. |
| */ |
| static void |
| setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) |
| { |
| struct ipmi_device_id *id = &smi_info->device_id; |
| if (id->manufacturer_id == DELL_IANA_MFR_ID && |
| smi_info->io.si_type == SI_BT) |
| register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); |
| } |
| |
| /* |
| * setup_oem_data_handler |
| * @info - smi_info.device_id must be filled in already |
| * |
| * Fills in smi_info.device_id.oem_data_available_handler |
| * when we know what function to use there. |
| */ |
| |
| static void setup_oem_data_handler(struct smi_info *smi_info) |
| { |
| setup_dell_poweredge_oem_data_handler(smi_info); |
| } |
| |
| static void setup_xaction_handlers(struct smi_info *smi_info) |
| { |
| setup_dell_poweredge_bt_xaction_handler(smi_info); |
| } |
| |
| static void check_for_broken_irqs(struct smi_info *smi_info) |
| { |
| check_clr_rcv_irq(smi_info); |
| check_set_rcv_irq(smi_info); |
| } |
| |
| static inline void stop_timer_and_thread(struct smi_info *smi_info) |
| { |
| if (smi_info->thread != NULL) { |
| kthread_stop(smi_info->thread); |
| smi_info->thread = NULL; |
| } |
| |
| smi_info->timer_can_start = false; |
| del_timer_sync(&smi_info->si_timer); |
| } |
| |
| static struct smi_info *find_dup_si(struct smi_info *info) |
| { |
| struct smi_info *e; |
| |
| list_for_each_entry(e, &smi_infos, link) { |
| if (e->io.addr_space != info->io.addr_space) |
| continue; |
| if (e->io.addr_data == info->io.addr_data) { |
| /* |
| * This is a cheap hack, ACPI doesn't have a defined |
| * slave address but SMBIOS does. Pick it up from |
| * any source that has it available. |
| */ |
| if (info->io.slave_addr && !e->io.slave_addr) |
| e->io.slave_addr = info->io.slave_addr; |
| return e; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| int ipmi_si_add_smi(struct si_sm_io *io) |
| { |
| int rv = 0; |
| struct smi_info *new_smi, *dup; |
| |
| /* |
| * If the user gave us a hard-coded device at the same |
| * address, they presumably want us to use it and not what is |
| * in the firmware. |
| */ |
| if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD && |
| ipmi_si_hardcode_match(io->addr_space, io->addr_data)) { |
| dev_info(io->dev, |
| "Hard-coded device at this address already exists"); |
| return -ENODEV; |
| } |
| |
| if (!io->io_setup) { |
| if (io->addr_space == IPMI_IO_ADDR_SPACE) { |
| io->io_setup = ipmi_si_port_setup; |
| } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) { |
| io->io_setup = ipmi_si_mem_setup; |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL); |
| if (!new_smi) |
| return -ENOMEM; |
| spin_lock_init(&new_smi->si_lock); |
| |
| new_smi->io = *io; |
| |
| mutex_lock(&smi_infos_lock); |
| dup = find_dup_si(new_smi); |
| if (dup) { |
| if (new_smi->io.addr_source == SI_ACPI && |
| dup->io.addr_source == SI_SMBIOS) { |
| /* We prefer ACPI over SMBIOS. */ |
| dev_info(dup->io.dev, |
| "Removing SMBIOS-specified %s state machine in favor of ACPI\n", |
| si_to_str[new_smi->io.si_type]); |
| cleanup_one_si(dup); |
| } else { |
| dev_info(new_smi->io.dev, |
| "%s-specified %s state machine: duplicate\n", |
| ipmi_addr_src_to_str(new_smi->io.addr_source), |
| si_to_str[new_smi->io.si_type]); |
| rv = -EBUSY; |
| kfree(new_smi); |
| goto out_err; |
| } |
| } |
| |
| pr_info("Adding %s-specified %s state machine\n", |
| ipmi_addr_src_to_str(new_smi->io.addr_source), |
| si_to_str[new_smi->io.si_type]); |
| |
| list_add_tail(&new_smi->link, &smi_infos); |
| |
| if (initialized) |
| rv = try_smi_init(new_smi); |
| out_err: |
| mutex_unlock(&smi_infos_lock); |
| return rv; |
| } |
| |
| /* |
| * Try to start up an interface. Must be called with smi_infos_lock |
| * held, primarily to keep smi_num consistent, we only one to do these |
| * one at a time. |
| */ |
| static int try_smi_init(struct smi_info *new_smi) |
| { |
| int rv = 0; |
| int i; |
| |
| pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", |
| ipmi_addr_src_to_str(new_smi->io.addr_source), |
| si_to_str[new_smi->io.si_type], |
| addr_space_to_str[new_smi->io.addr_space], |
| new_smi->io.addr_data, |
| new_smi->io.slave_addr, new_smi->io.irq); |
| |
| switch (new_smi->io.si_type) { |
| case SI_KCS: |
| new_smi->handlers = &kcs_smi_handlers; |
| break; |
| |
| case SI_SMIC: |
| new_smi->handlers = &smic_smi_handlers; |
| break; |
| |
| case SI_BT: |
| new_smi->handlers = &bt_smi_handlers; |
| break; |
| |
| default: |
| /* No support for anything else yet. */ |
| rv = -EIO; |
| goto out_err; |
| } |
| |
| new_smi->si_num = smi_num; |
| |
| /* Do this early so it's available for logs. */ |
| if (!new_smi->io.dev) { |
| pr_err("IPMI interface added with no device\n"); |
| rv = -EIO; |
| goto out_err; |
| } |
| |
| /* Allocate the state machine's data and initialize it. */ |
| new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); |
| if (!new_smi->si_sm) { |
| rv = -ENOMEM; |
| goto out_err; |
| } |
| new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm, |
| &new_smi->io); |
| |
| /* Now that we know the I/O size, we can set up the I/O. */ |
| rv = new_smi->io.io_setup(&new_smi->io); |
| if (rv) { |
| dev_err(new_smi->io.dev, "Could not set up I/O space\n"); |
| goto out_err; |
| } |
| |
| /* Do low-level detection first. */ |
| if (new_smi->handlers->detect(new_smi->si_sm)) { |
| if (new_smi->io.addr_source) |
| dev_err(new_smi->io.dev, |
| "Interface detection failed\n"); |
| rv = -ENODEV; |
| goto out_err; |
| } |
| |
| /* |
| * Attempt a get device id command. If it fails, we probably |
| * don't have a BMC here. |
| */ |
| rv = try_get_dev_id(new_smi); |
| if (rv) { |
| if (new_smi->io.addr_source) |
| dev_err(new_smi->io.dev, |
| "There appears to be no BMC at this location\n"); |
| goto out_err; |
| } |
| |
| setup_oem_data_handler(new_smi); |
| setup_xaction_handlers(new_smi); |
| check_for_broken_irqs(new_smi); |
| |
| new_smi->waiting_msg = NULL; |
| new_smi->curr_msg = NULL; |
| atomic_set(&new_smi->req_events, 0); |
| new_smi->run_to_completion = false; |
| for (i = 0; i < SI_NUM_STATS; i++) |
| atomic_set(&new_smi->stats[i], 0); |
| |
| new_smi->interrupt_disabled = true; |
| atomic_set(&new_smi->need_watch, 0); |
| |
| rv = try_enable_event_buffer(new_smi); |
| if (rv == 0) |
| new_smi->has_event_buffer = true; |
| |
| /* |
| * Start clearing the flags before we enable interrupts or the |
| * timer to avoid racing with the timer. |
| */ |
| start_clear_flags(new_smi); |
| |
| /* |
| * IRQ is defined to be set when non-zero. req_events will |
| * cause a global flags check that will enable interrupts. |
| */ |
| if (new_smi->io.irq) { |
| new_smi->interrupt_disabled = false; |
| atomic_set(&new_smi->req_events, 1); |
| } |
| |
| dev_set_drvdata(new_smi->io.dev, new_smi); |
| rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group); |
| if (rv) { |
| dev_err(new_smi->io.dev, |
| "Unable to add device attributes: error %d\n", |
| rv); |
| goto out_err; |
| } |
| new_smi->dev_group_added = true; |
| |
| rv = ipmi_register_smi(&handlers, |
| new_smi, |
| new_smi->io.dev, |
| new_smi->io.slave_addr); |
| if (rv) { |
| dev_err(new_smi->io.dev, |
| "Unable to register device: error %d\n", |
| rv); |
| goto out_err; |
| } |
| |
| /* Don't increment till we know we have succeeded. */ |
| smi_num++; |
| |
| dev_info(new_smi->io.dev, "IPMI %s interface initialized\n", |
| si_to_str[new_smi->io.si_type]); |
| |
| WARN_ON(new_smi->io.dev->init_name != NULL); |
| |
| out_err: |
| if (rv && new_smi->io.io_cleanup) { |
| new_smi->io.io_cleanup(&new_smi->io); |
| new_smi->io.io_cleanup = NULL; |
| } |
| |
| return rv; |
| } |
| |
| static int __init init_ipmi_si(void) |
| { |
| struct smi_info *e; |
| enum ipmi_addr_src type = SI_INVALID; |
| |
| if (initialized) |
| return 0; |
| |
| ipmi_hardcode_init(); |
| |
| pr_info("IPMI System Interface driver\n"); |
| |
| ipmi_si_platform_init(); |
| |
| ipmi_si_pci_init(); |
| |
| ipmi_si_parisc_init(); |
| |
| /* We prefer devices with interrupts, but in the case of a machine |
| with multiple BMCs we assume that there will be several instances |
| of a given type so if we succeed in registering a type then also |
| try to register everything else of the same type */ |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry(e, &smi_infos, link) { |
| /* Try to register a device if it has an IRQ and we either |
| haven't successfully registered a device yet or this |
| device has the same type as one we successfully registered */ |
| if (e->io.irq && (!type || e->io.addr_source == type)) { |
| if (!try_smi_init(e)) { |
| type = e->io.addr_source; |
| } |
| } |
| } |
| |
| /* type will only have been set if we successfully registered an si */ |
| if (type) |
| goto skip_fallback_noirq; |
| |
| /* Fall back to the preferred device */ |
| |
| list_for_each_entry(e, &smi_infos, link) { |
| if (!e->io.irq && (!type || e->io.addr_source == type)) { |
| if (!try_smi_init(e)) { |
| type = e->io.addr_source; |
| } |
| } |
| } |
| |
| skip_fallback_noirq: |
| initialized = true; |
| mutex_unlock(&smi_infos_lock); |
| |
| if (type) |
| return 0; |
| |
| mutex_lock(&smi_infos_lock); |
| if (unload_when_empty && list_empty(&smi_infos)) { |
| mutex_unlock(&smi_infos_lock); |
| cleanup_ipmi_si(); |
| pr_warn("Unable to find any System Interface(s)\n"); |
| return -ENODEV; |
| } else { |
| mutex_unlock(&smi_infos_lock); |
| return 0; |
| } |
| } |
| module_init(init_ipmi_si); |
| |
| static void shutdown_smi(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| if (smi_info->dev_group_added) { |
| device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group); |
| smi_info->dev_group_added = false; |
| } |
| if (smi_info->io.dev) |
| dev_set_drvdata(smi_info->io.dev, NULL); |
| |
| /* |
| * Make sure that interrupts, the timer and the thread are |
| * stopped and will not run again. |
| */ |
| smi_info->interrupt_disabled = true; |
| if (smi_info->io.irq_cleanup) { |
| smi_info->io.irq_cleanup(&smi_info->io); |
| smi_info->io.irq_cleanup = NULL; |
| } |
| stop_timer_and_thread(smi_info); |
| |
| /* |
| * Wait until we know that we are out of any interrupt |
| * handlers might have been running before we freed the |
| * interrupt. |
| */ |
| synchronize_rcu(); |
| |
| /* |
| * Timeouts are stopped, now make sure the interrupts are off |
| * in the BMC. Note that timers and CPU interrupts are off, |
| * so no need for locks. |
| */ |
| while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { |
| poll(smi_info); |
| schedule_timeout_uninterruptible(1); |
| } |
| if (smi_info->handlers) |
| disable_si_irq(smi_info); |
| while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { |
| poll(smi_info); |
| schedule_timeout_uninterruptible(1); |
| } |
| if (smi_info->handlers) |
| smi_info->handlers->cleanup(smi_info->si_sm); |
| |
| if (smi_info->io.io_cleanup) { |
| smi_info->io.io_cleanup(&smi_info->io); |
| smi_info->io.io_cleanup = NULL; |
| } |
| |
| kfree(smi_info->si_sm); |
| smi_info->si_sm = NULL; |
| |
| smi_info->intf = NULL; |
| } |
| |
| /* |
| * Must be called with smi_infos_lock held, to serialize the |
| * smi_info->intf check. |
| */ |
| static void cleanup_one_si(struct smi_info *smi_info) |
| { |
| if (!smi_info) |
| return; |
| |
| list_del(&smi_info->link); |
| |
| if (smi_info->intf) |
| ipmi_unregister_smi(smi_info->intf); |
| |
| kfree(smi_info); |
| } |
| |
| int ipmi_si_remove_by_dev(struct device *dev) |
| { |
| struct smi_info *e; |
| int rv = -ENOENT; |
| |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry(e, &smi_infos, link) { |
| if (e->io.dev == dev) { |
| cleanup_one_si(e); |
| rv = 0; |
| break; |
| } |
| } |
| mutex_unlock(&smi_infos_lock); |
| |
| return rv; |
| } |
| |
| struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type, |
| unsigned long addr) |
| { |
| /* remove */ |
| struct smi_info *e, *tmp_e; |
| struct device *dev = NULL; |
| |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { |
| if (e->io.addr_space != addr_space) |
| continue; |
| if (e->io.si_type != si_type) |
| continue; |
| if (e->io.addr_data == addr) { |
| dev = get_device(e->io.dev); |
| cleanup_one_si(e); |
| } |
| } |
| mutex_unlock(&smi_infos_lock); |
| |
| return dev; |
| } |
| |
| static void cleanup_ipmi_si(void) |
| { |
| struct smi_info *e, *tmp_e; |
| |
| if (!initialized) |
| return; |
| |
| ipmi_si_pci_shutdown(); |
| |
| ipmi_si_parisc_shutdown(); |
| |
| ipmi_si_platform_shutdown(); |
| |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry_safe(e, tmp_e, &smi_infos, link) |
| cleanup_one_si(e); |
| mutex_unlock(&smi_infos_lock); |
| |
| ipmi_si_hardcode_exit(); |
| ipmi_si_hotmod_exit(); |
| } |
| module_exit(cleanup_ipmi_si); |
| |
| MODULE_ALIAS("platform:dmi-ipmi-si"); |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); |
| MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); |