| /* SPDX-License-Identifier: GPL-2.0 */ |
| |
| #ifndef _BCACHE_UTIL_H |
| #define _BCACHE_UTIL_H |
| |
| #include <linux/blkdev.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/clock.h> |
| #include <linux/llist.h> |
| #include <linux/ratelimit.h> |
| #include <linux/vmalloc.h> |
| #include <linux/workqueue.h> |
| #include <linux/crc64.h> |
| |
| #include "closure.h" |
| |
| #define PAGE_SECTORS (PAGE_SIZE / 512) |
| |
| struct closure; |
| |
| #ifdef CONFIG_BCACHE_DEBUG |
| |
| #define EBUG_ON(cond) BUG_ON(cond) |
| #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) |
| #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) |
| |
| #else /* DEBUG */ |
| |
| #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0) |
| #define atomic_dec_bug(v) atomic_dec(v) |
| #define atomic_inc_bug(v, i) atomic_inc(v) |
| |
| #endif |
| |
| #define DECLARE_HEAP(type, name) \ |
| struct { \ |
| size_t size, used; \ |
| type *data; \ |
| } name |
| |
| #define init_heap(heap, _size, gfp) \ |
| ({ \ |
| size_t _bytes; \ |
| (heap)->used = 0; \ |
| (heap)->size = (_size); \ |
| _bytes = (heap)->size * sizeof(*(heap)->data); \ |
| (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ |
| (heap)->data; \ |
| }) |
| |
| #define free_heap(heap) \ |
| do { \ |
| kvfree((heap)->data); \ |
| (heap)->data = NULL; \ |
| } while (0) |
| |
| #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) |
| |
| #define heap_sift(h, i, cmp) \ |
| do { \ |
| size_t _r, _j = i; \ |
| \ |
| for (; _j * 2 + 1 < (h)->used; _j = _r) { \ |
| _r = _j * 2 + 1; \ |
| if (_r + 1 < (h)->used && \ |
| cmp((h)->data[_r], (h)->data[_r + 1])) \ |
| _r++; \ |
| \ |
| if (cmp((h)->data[_r], (h)->data[_j])) \ |
| break; \ |
| heap_swap(h, _r, _j); \ |
| } \ |
| } while (0) |
| |
| #define heap_sift_down(h, i, cmp) \ |
| do { \ |
| while (i) { \ |
| size_t p = (i - 1) / 2; \ |
| if (cmp((h)->data[i], (h)->data[p])) \ |
| break; \ |
| heap_swap(h, i, p); \ |
| i = p; \ |
| } \ |
| } while (0) |
| |
| #define heap_add(h, d, cmp) \ |
| ({ \ |
| bool _r = !heap_full(h); \ |
| if (_r) { \ |
| size_t _i = (h)->used++; \ |
| (h)->data[_i] = d; \ |
| \ |
| heap_sift_down(h, _i, cmp); \ |
| heap_sift(h, _i, cmp); \ |
| } \ |
| _r; \ |
| }) |
| |
| #define heap_pop(h, d, cmp) \ |
| ({ \ |
| bool _r = (h)->used; \ |
| if (_r) { \ |
| (d) = (h)->data[0]; \ |
| (h)->used--; \ |
| heap_swap(h, 0, (h)->used); \ |
| heap_sift(h, 0, cmp); \ |
| } \ |
| _r; \ |
| }) |
| |
| #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) |
| |
| #define heap_full(h) ((h)->used == (h)->size) |
| |
| #define DECLARE_FIFO(type, name) \ |
| struct { \ |
| size_t front, back, size, mask; \ |
| type *data; \ |
| } name |
| |
| #define fifo_for_each(c, fifo, iter) \ |
| for (iter = (fifo)->front; \ |
| c = (fifo)->data[iter], iter != (fifo)->back; \ |
| iter = (iter + 1) & (fifo)->mask) |
| |
| #define __init_fifo(fifo, gfp) \ |
| ({ \ |
| size_t _allocated_size, _bytes; \ |
| BUG_ON(!(fifo)->size); \ |
| \ |
| _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ |
| _bytes = _allocated_size * sizeof(*(fifo)->data); \ |
| \ |
| (fifo)->mask = _allocated_size - 1; \ |
| (fifo)->front = (fifo)->back = 0; \ |
| \ |
| (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ |
| (fifo)->data; \ |
| }) |
| |
| #define init_fifo_exact(fifo, _size, gfp) \ |
| ({ \ |
| (fifo)->size = (_size); \ |
| __init_fifo(fifo, gfp); \ |
| }) |
| |
| #define init_fifo(fifo, _size, gfp) \ |
| ({ \ |
| (fifo)->size = (_size); \ |
| if ((fifo)->size > 4) \ |
| (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ |
| __init_fifo(fifo, gfp); \ |
| }) |
| |
| #define free_fifo(fifo) \ |
| do { \ |
| kvfree((fifo)->data); \ |
| (fifo)->data = NULL; \ |
| } while (0) |
| |
| #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) |
| #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) |
| |
| #define fifo_empty(fifo) (!fifo_used(fifo)) |
| #define fifo_full(fifo) (!fifo_free(fifo)) |
| |
| #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) |
| #define fifo_back(fifo) \ |
| ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) |
| |
| #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) |
| |
| #define fifo_push_back(fifo, i) \ |
| ({ \ |
| bool _r = !fifo_full((fifo)); \ |
| if (_r) { \ |
| (fifo)->data[(fifo)->back++] = (i); \ |
| (fifo)->back &= (fifo)->mask; \ |
| } \ |
| _r; \ |
| }) |
| |
| #define fifo_pop_front(fifo, i) \ |
| ({ \ |
| bool _r = !fifo_empty((fifo)); \ |
| if (_r) { \ |
| (i) = (fifo)->data[(fifo)->front++]; \ |
| (fifo)->front &= (fifo)->mask; \ |
| } \ |
| _r; \ |
| }) |
| |
| #define fifo_push_front(fifo, i) \ |
| ({ \ |
| bool _r = !fifo_full((fifo)); \ |
| if (_r) { \ |
| --(fifo)->front; \ |
| (fifo)->front &= (fifo)->mask; \ |
| (fifo)->data[(fifo)->front] = (i); \ |
| } \ |
| _r; \ |
| }) |
| |
| #define fifo_pop_back(fifo, i) \ |
| ({ \ |
| bool _r = !fifo_empty((fifo)); \ |
| if (_r) { \ |
| --(fifo)->back; \ |
| (fifo)->back &= (fifo)->mask; \ |
| (i) = (fifo)->data[(fifo)->back] \ |
| } \ |
| _r; \ |
| }) |
| |
| #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) |
| #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) |
| |
| #define fifo_swap(l, r) \ |
| do { \ |
| swap((l)->front, (r)->front); \ |
| swap((l)->back, (r)->back); \ |
| swap((l)->size, (r)->size); \ |
| swap((l)->mask, (r)->mask); \ |
| swap((l)->data, (r)->data); \ |
| } while (0) |
| |
| #define fifo_move(dest, src) \ |
| do { \ |
| typeof(*((dest)->data)) _t; \ |
| while (!fifo_full(dest) && \ |
| fifo_pop(src, _t)) \ |
| fifo_push(dest, _t); \ |
| } while (0) |
| |
| /* |
| * Simple array based allocator - preallocates a number of elements and you can |
| * never allocate more than that, also has no locking. |
| * |
| * Handy because if you know you only need a fixed number of elements you don't |
| * have to worry about memory allocation failure, and sometimes a mempool isn't |
| * what you want. |
| * |
| * We treat the free elements as entries in a singly linked list, and the |
| * freelist as a stack - allocating and freeing push and pop off the freelist. |
| */ |
| |
| #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ |
| struct { \ |
| type *freelist; \ |
| type data[size]; \ |
| } name |
| |
| #define array_alloc(array) \ |
| ({ \ |
| typeof((array)->freelist) _ret = (array)->freelist; \ |
| \ |
| if (_ret) \ |
| (array)->freelist = *((typeof((array)->freelist) *) _ret);\ |
| \ |
| _ret; \ |
| }) |
| |
| #define array_free(array, ptr) \ |
| do { \ |
| typeof((array)->freelist) _ptr = ptr; \ |
| \ |
| *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ |
| (array)->freelist = _ptr; \ |
| } while (0) |
| |
| #define array_allocator_init(array) \ |
| do { \ |
| typeof((array)->freelist) _i; \ |
| \ |
| BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ |
| (array)->freelist = NULL; \ |
| \ |
| for (_i = (array)->data; \ |
| _i < (array)->data + ARRAY_SIZE((array)->data); \ |
| _i++) \ |
| array_free(array, _i); \ |
| } while (0) |
| |
| #define array_freelist_empty(array) ((array)->freelist == NULL) |
| |
| #define ANYSINT_MAX(t) \ |
| ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) |
| |
| int bch_strtoint_h(const char *cp, int *res); |
| int bch_strtouint_h(const char *cp, unsigned int *res); |
| int bch_strtoll_h(const char *cp, long long *res); |
| int bch_strtoull_h(const char *cp, unsigned long long *res); |
| |
| static inline int bch_strtol_h(const char *cp, long *res) |
| { |
| #if BITS_PER_LONG == 32 |
| return bch_strtoint_h(cp, (int *) res); |
| #else |
| return bch_strtoll_h(cp, (long long *) res); |
| #endif |
| } |
| |
| static inline int bch_strtoul_h(const char *cp, long *res) |
| { |
| #if BITS_PER_LONG == 32 |
| return bch_strtouint_h(cp, (unsigned int *) res); |
| #else |
| return bch_strtoull_h(cp, (unsigned long long *) res); |
| #endif |
| } |
| |
| #define strtoi_h(cp, res) \ |
| (__builtin_types_compatible_p(typeof(*res), int) \ |
| ? bch_strtoint_h(cp, (void *) res) \ |
| : __builtin_types_compatible_p(typeof(*res), long) \ |
| ? bch_strtol_h(cp, (void *) res) \ |
| : __builtin_types_compatible_p(typeof(*res), long long) \ |
| ? bch_strtoll_h(cp, (void *) res) \ |
| : __builtin_types_compatible_p(typeof(*res), unsigned int) \ |
| ? bch_strtouint_h(cp, (void *) res) \ |
| : __builtin_types_compatible_p(typeof(*res), unsigned long) \ |
| ? bch_strtoul_h(cp, (void *) res) \ |
| : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ |
| ? bch_strtoull_h(cp, (void *) res) : -EINVAL) |
| |
| #define strtoul_safe(cp, var) \ |
| ({ \ |
| unsigned long _v; \ |
| int _r = kstrtoul(cp, 10, &_v); \ |
| if (!_r) \ |
| var = _v; \ |
| _r; \ |
| }) |
| |
| #define strtoul_safe_clamp(cp, var, min, max) \ |
| ({ \ |
| unsigned long _v; \ |
| int _r = kstrtoul(cp, 10, &_v); \ |
| if (!_r) \ |
| var = clamp_t(typeof(var), _v, min, max); \ |
| _r; \ |
| }) |
| |
| #define snprint(buf, size, var) \ |
| snprintf(buf, size, \ |
| __builtin_types_compatible_p(typeof(var), int) \ |
| ? "%i\n" : \ |
| __builtin_types_compatible_p(typeof(var), unsigned int) \ |
| ? "%u\n" : \ |
| __builtin_types_compatible_p(typeof(var), long) \ |
| ? "%li\n" : \ |
| __builtin_types_compatible_p(typeof(var), unsigned long)\ |
| ? "%lu\n" : \ |
| __builtin_types_compatible_p(typeof(var), int64_t) \ |
| ? "%lli\n" : \ |
| __builtin_types_compatible_p(typeof(var), uint64_t) \ |
| ? "%llu\n" : \ |
| __builtin_types_compatible_p(typeof(var), const char *) \ |
| ? "%s\n" : "%i\n", var) |
| |
| ssize_t bch_hprint(char *buf, int64_t v); |
| |
| bool bch_is_zero(const char *p, size_t n); |
| int bch_parse_uuid(const char *s, char *uuid); |
| |
| struct time_stats { |
| spinlock_t lock; |
| /* |
| * all fields are in nanoseconds, averages are ewmas stored left shifted |
| * by 8 |
| */ |
| uint64_t max_duration; |
| uint64_t average_duration; |
| uint64_t average_frequency; |
| uint64_t last; |
| }; |
| |
| void bch_time_stats_update(struct time_stats *stats, uint64_t time); |
| |
| static inline unsigned int local_clock_us(void) |
| { |
| return local_clock() >> 10; |
| } |
| |
| #define NSEC_PER_ns 1L |
| #define NSEC_PER_us NSEC_PER_USEC |
| #define NSEC_PER_ms NSEC_PER_MSEC |
| #define NSEC_PER_sec NSEC_PER_SEC |
| |
| #define __print_time_stat(stats, name, stat, units) \ |
| sysfs_print(name ## _ ## stat ## _ ## units, \ |
| div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) |
| |
| #define sysfs_print_time_stats(stats, name, \ |
| frequency_units, \ |
| duration_units) \ |
| do { \ |
| __print_time_stat(stats, name, \ |
| average_frequency, frequency_units); \ |
| __print_time_stat(stats, name, \ |
| average_duration, duration_units); \ |
| sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ |
| div_u64((stats)->max_duration, \ |
| NSEC_PER_ ## duration_units)); \ |
| \ |
| sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ |
| ? div_s64(local_clock() - (stats)->last, \ |
| NSEC_PER_ ## frequency_units) \ |
| : -1LL); \ |
| } while (0) |
| |
| #define sysfs_time_stats_attribute(name, \ |
| frequency_units, \ |
| duration_units) \ |
| read_attribute(name ## _average_frequency_ ## frequency_units); \ |
| read_attribute(name ## _average_duration_ ## duration_units); \ |
| read_attribute(name ## _max_duration_ ## duration_units); \ |
| read_attribute(name ## _last_ ## frequency_units) |
| |
| #define sysfs_time_stats_attribute_list(name, \ |
| frequency_units, \ |
| duration_units) \ |
| &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ |
| &sysfs_ ## name ## _average_duration_ ## duration_units, \ |
| &sysfs_ ## name ## _max_duration_ ## duration_units, \ |
| &sysfs_ ## name ## _last_ ## frequency_units, |
| |
| #define ewma_add(ewma, val, weight, factor) \ |
| ({ \ |
| (ewma) *= (weight) - 1; \ |
| (ewma) += (val) << factor; \ |
| (ewma) /= (weight); \ |
| (ewma) >> factor; \ |
| }) |
| |
| struct bch_ratelimit { |
| /* Next time we want to do some work, in nanoseconds */ |
| uint64_t next; |
| |
| /* |
| * Rate at which we want to do work, in units per second |
| * The units here correspond to the units passed to bch_next_delay() |
| */ |
| atomic_long_t rate; |
| }; |
| |
| static inline void bch_ratelimit_reset(struct bch_ratelimit *d) |
| { |
| d->next = local_clock(); |
| } |
| |
| uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); |
| |
| #define __DIV_SAFE(n, d, zero) \ |
| ({ \ |
| typeof(n) _n = (n); \ |
| typeof(d) _d = (d); \ |
| _d ? _n / _d : zero; \ |
| }) |
| |
| #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) |
| |
| #define container_of_or_null(ptr, type, member) \ |
| ({ \ |
| typeof(ptr) _ptr = ptr; \ |
| _ptr ? container_of(_ptr, type, member) : NULL; \ |
| }) |
| |
| #define RB_INSERT(root, new, member, cmp) \ |
| ({ \ |
| __label__ dup; \ |
| struct rb_node **n = &(root)->rb_node, *parent = NULL; \ |
| typeof(new) this; \ |
| int res, ret = -1; \ |
| \ |
| while (*n) { \ |
| parent = *n; \ |
| this = container_of(*n, typeof(*(new)), member); \ |
| res = cmp(new, this); \ |
| if (!res) \ |
| goto dup; \ |
| n = res < 0 \ |
| ? &(*n)->rb_left \ |
| : &(*n)->rb_right; \ |
| } \ |
| \ |
| rb_link_node(&(new)->member, parent, n); \ |
| rb_insert_color(&(new)->member, root); \ |
| ret = 0; \ |
| dup: \ |
| ret; \ |
| }) |
| |
| #define RB_SEARCH(root, search, member, cmp) \ |
| ({ \ |
| struct rb_node *n = (root)->rb_node; \ |
| typeof(&(search)) this, ret = NULL; \ |
| int res; \ |
| \ |
| while (n) { \ |
| this = container_of(n, typeof(search), member); \ |
| res = cmp(&(search), this); \ |
| if (!res) { \ |
| ret = this; \ |
| break; \ |
| } \ |
| n = res < 0 \ |
| ? n->rb_left \ |
| : n->rb_right; \ |
| } \ |
| ret; \ |
| }) |
| |
| #define RB_GREATER(root, search, member, cmp) \ |
| ({ \ |
| struct rb_node *n = (root)->rb_node; \ |
| typeof(&(search)) this, ret = NULL; \ |
| int res; \ |
| \ |
| while (n) { \ |
| this = container_of(n, typeof(search), member); \ |
| res = cmp(&(search), this); \ |
| if (res < 0) { \ |
| ret = this; \ |
| n = n->rb_left; \ |
| } else \ |
| n = n->rb_right; \ |
| } \ |
| ret; \ |
| }) |
| |
| #define RB_FIRST(root, type, member) \ |
| container_of_or_null(rb_first(root), type, member) |
| |
| #define RB_LAST(root, type, member) \ |
| container_of_or_null(rb_last(root), type, member) |
| |
| #define RB_NEXT(ptr, member) \ |
| container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) |
| |
| #define RB_PREV(ptr, member) \ |
| container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) |
| |
| static inline uint64_t bch_crc64(const void *p, size_t len) |
| { |
| uint64_t crc = 0xffffffffffffffffULL; |
| |
| crc = crc64_be(crc, p, len); |
| return crc ^ 0xffffffffffffffffULL; |
| } |
| |
| static inline uint64_t bch_crc64_update(uint64_t crc, |
| const void *p, |
| size_t len) |
| { |
| crc = crc64_be(crc, p, len); |
| return crc; |
| } |
| |
| /* |
| * A stepwise-linear pseudo-exponential. This returns 1 << (x >> |
| * frac_bits), with the less-significant bits filled in by linear |
| * interpolation. |
| * |
| * This can also be interpreted as a floating-point number format, |
| * where the low frac_bits are the mantissa (with implicit leading |
| * 1 bit), and the more significant bits are the exponent. |
| * The return value is 1.mantissa * 2^exponent. |
| * |
| * The way this is used, fract_bits is 6 and the largest possible |
| * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), |
| * so the maximum output is 0x1fc00. |
| */ |
| static inline unsigned int fract_exp_two(unsigned int x, |
| unsigned int fract_bits) |
| { |
| unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ |
| |
| mantissa += x & (mantissa - 1); |
| x >>= fract_bits; /* The exponent */ |
| /* Largest intermediate value 0x7f0000 */ |
| return mantissa << x >> fract_bits; |
| } |
| |
| void bch_bio_map(struct bio *bio, void *base); |
| int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); |
| |
| static inline sector_t bdev_sectors(struct block_device *bdev) |
| { |
| return bdev->bd_inode->i_size >> 9; |
| } |
| #endif /* _BCACHE_UTIL_H */ |