blob: 80c60fb41bbca5291cfade0a089fa5e544388fc3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include <linux/uaccess.h>
#include <linux/slab.h>
#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
HL_CS_FLAGS_COLLECTIVE_WAIT)
/**
* enum hl_cs_wait_status - cs wait status
* @CS_WAIT_STATUS_BUSY: cs was not completed yet
* @CS_WAIT_STATUS_COMPLETED: cs completed
* @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
*/
enum hl_cs_wait_status {
CS_WAIT_STATUS_BUSY,
CS_WAIT_STATUS_COMPLETED,
CS_WAIT_STATUS_GONE
};
static void job_wq_completion(struct work_struct *work);
static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
u64 timeout_us, u64 seq,
enum hl_cs_wait_status *status, s64 *timestamp);
static void cs_do_release(struct kref *ref);
static void hl_sob_reset(struct kref *ref)
{
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
kref);
struct hl_device *hdev = hw_sob->hdev;
hdev->asic_funcs->reset_sob(hdev, hw_sob);
}
void hl_sob_reset_error(struct kref *ref)
{
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
kref);
struct hl_device *hdev = hw_sob->hdev;
dev_crit(hdev->dev,
"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
hw_sob->q_idx, hw_sob->sob_id);
}
/**
* hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
* @sob_base: sob base id
* @sob_mask: sob user mask, each bit represents a sob offset from sob base
* @mask: generated mask
*
* Return: 0 if given parameters are valid
*/
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
{
int i;
if (sob_mask == 0)
return -EINVAL;
if (sob_mask == 0x1) {
*mask = ~(1 << (sob_base & 0x7));
} else {
/* find msb in order to verify sob range is valid */
for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
if (BIT(i) & sob_mask)
break;
if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
return -EINVAL;
*mask = ~sob_mask;
}
return 0;
}
static void sob_reset_work(struct work_struct *work)
{
struct hl_cs_compl *hl_cs_cmpl =
container_of(work, struct hl_cs_compl, sob_reset_work);
struct hl_device *hdev = hl_cs_cmpl->hdev;
/*
* A signal CS can get completion while the corresponding wait
* for signal CS is on its way to the PQ. The wait for signal CS
* will get stuck if the signal CS incremented the SOB to its
* max value and there are no pending (submitted) waits on this
* SOB.
* We do the following to void this situation:
* 1. The wait for signal CS must get a ref for the signal CS as
* soon as possible in cs_ioctl_signal_wait() and put it
* before being submitted to the PQ but after it incremented
* the SOB refcnt in init_signal_wait_cs().
* 2. Signal/Wait for signal CS will decrement the SOB refcnt
* here.
* These two measures guarantee that the wait for signal CS will
* reset the SOB upon completion rather than the signal CS and
* hence the above scenario is avoided.
*/
kref_put(&hl_cs_cmpl->hw_sob->kref, hl_sob_reset);
if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
hdev->asic_funcs->reset_sob_group(hdev,
hl_cs_cmpl->sob_group);
kfree(hl_cs_cmpl);
}
static void hl_fence_release(struct kref *kref)
{
struct hl_fence *fence =
container_of(kref, struct hl_fence, refcount);
struct hl_cs_compl *hl_cs_cmpl =
container_of(fence, struct hl_cs_compl, base_fence);
struct hl_device *hdev = hl_cs_cmpl->hdev;
/* EBUSY means the CS was never submitted and hence we don't have
* an attached hw_sob object that we should handle here
*/
if (fence->error == -EBUSY)
goto free;
if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)) {
dev_dbg(hdev->dev,
"CS 0x%llx type %d finished, sob_id: %d, sob_val: 0x%x\n",
hl_cs_cmpl->cs_seq,
hl_cs_cmpl->type,
hl_cs_cmpl->hw_sob->sob_id,
hl_cs_cmpl->sob_val);
queue_work(hdev->sob_reset_wq, &hl_cs_cmpl->sob_reset_work);
return;
}
free:
kfree(hl_cs_cmpl);
}
void hl_fence_put(struct hl_fence *fence)
{
if (fence)
kref_put(&fence->refcount, hl_fence_release);
}
void hl_fence_get(struct hl_fence *fence)
{
if (fence)
kref_get(&fence->refcount);
}
static void hl_fence_init(struct hl_fence *fence, u64 sequence)
{
kref_init(&fence->refcount);
fence->cs_sequence = sequence;
fence->error = 0;
fence->timestamp = ktime_set(0, 0);
init_completion(&fence->completion);
}
void cs_get(struct hl_cs *cs)
{
kref_get(&cs->refcount);
}
static int cs_get_unless_zero(struct hl_cs *cs)
{
return kref_get_unless_zero(&cs->refcount);
}
static void cs_put(struct hl_cs *cs)
{
kref_put(&cs->refcount, cs_do_release);
}
static void cs_job_do_release(struct kref *ref)
{
struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
kfree(job);
}
static void cs_job_put(struct hl_cs_job *job)
{
kref_put(&job->refcount, cs_job_do_release);
}
bool cs_needs_completion(struct hl_cs *cs)
{
/* In case this is a staged CS, only the last CS in sequence should
* get a completion, any non staged CS will always get a completion
*/
if (cs->staged_cs && !cs->staged_last)
return false;
return true;
}
bool cs_needs_timeout(struct hl_cs *cs)
{
/* In case this is a staged CS, only the first CS in sequence should
* get a timeout, any non staged CS will always get a timeout
*/
if (cs->staged_cs && !cs->staged_first)
return false;
return true;
}
static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
{
/*
* Patched CB is created for external queues jobs, and for H/W queues
* jobs if the user CB was allocated by driver and MMU is disabled.
*/
return (job->queue_type == QUEUE_TYPE_EXT ||
(job->queue_type == QUEUE_TYPE_HW &&
job->is_kernel_allocated_cb &&
!hdev->mmu_enable));
}
/*
* cs_parser - parse the user command submission
*
* @hpriv : pointer to the private data of the fd
* @job : pointer to the job that holds the command submission info
*
* The function parses the command submission of the user. It calls the
* ASIC specific parser, which returns a list of memory blocks to send
* to the device as different command buffers
*
*/
static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_parser parser;
int rc;
parser.ctx_id = job->cs->ctx->asid;
parser.cs_sequence = job->cs->sequence;
parser.job_id = job->id;
parser.hw_queue_id = job->hw_queue_id;
parser.job_userptr_list = &job->userptr_list;
parser.patched_cb = NULL;
parser.user_cb = job->user_cb;
parser.user_cb_size = job->user_cb_size;
parser.queue_type = job->queue_type;
parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
job->patched_cb = NULL;
parser.completion = cs_needs_completion(job->cs);
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
if (is_cb_patched(hdev, job)) {
if (!rc) {
job->patched_cb = parser.patched_cb;
job->job_cb_size = parser.patched_cb_size;
job->contains_dma_pkt = parser.contains_dma_pkt;
atomic_inc(&job->patched_cb->cs_cnt);
}
/*
* Whether the parsing worked or not, we don't need the
* original CB anymore because it was already parsed and
* won't be accessed again for this CS
*/
atomic_dec(&job->user_cb->cs_cnt);
hl_cb_put(job->user_cb);
job->user_cb = NULL;
} else if (!rc) {
job->job_cb_size = job->user_cb_size;
}
return rc;
}
static void complete_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_cs *cs = job->cs;
if (is_cb_patched(hdev, job)) {
hl_userptr_delete_list(hdev, &job->userptr_list);
/*
* We might arrive here from rollback and patched CB wasn't
* created, so we need to check it's not NULL
*/
if (job->patched_cb) {
atomic_dec(&job->patched_cb->cs_cnt);
hl_cb_put(job->patched_cb);
}
}
/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
* enabled, the user CB isn't released in cs_parser() and thus should be
* released here.
* This is also true for INT queues jobs which were allocated by driver
*/
if (job->is_kernel_allocated_cb &&
((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
job->queue_type == QUEUE_TYPE_INT)) {
atomic_dec(&job->user_cb->cs_cnt);
hl_cb_put(job->user_cb);
}
/*
* This is the only place where there can be multiple threads
* modifying the list at the same time
*/
spin_lock(&cs->job_lock);
list_del(&job->cs_node);
spin_unlock(&cs->job_lock);
hl_debugfs_remove_job(hdev, job);
/* We decrement reference only for a CS that gets completion
* because the reference was incremented only for this kind of CS
* right before it was scheduled.
*
* In staged submission, only the last CS marked as 'staged_last'
* gets completion, hence its release function will be called from here.
* As for all the rest CS's in the staged submission which do not get
* completion, their CS reference will be decremented by the
* 'staged_last' CS during the CS release flow.
* All relevant PQ CI counters will be incremented during the CS release
* flow by calling 'hl_hw_queue_update_ci'.
*/
if (cs_needs_completion(cs) &&
(job->queue_type == QUEUE_TYPE_EXT ||
job->queue_type == QUEUE_TYPE_HW))
cs_put(cs);
cs_job_put(job);
}
/*
* hl_staged_cs_find_first - locate the first CS in this staged submission
*
* @hdev: pointer to device structure
* @cs_seq: staged submission sequence number
*
* @note: This function must be called under 'hdev->cs_mirror_lock'
*
* Find and return a CS pointer with the given sequence
*/
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
{
struct hl_cs *cs;
list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
if (cs->staged_cs && cs->staged_first &&
cs->sequence == cs_seq)
return cs;
return NULL;
}
/*
* is_staged_cs_last_exists - returns true if the last CS in sequence exists
*
* @hdev: pointer to device structure
* @cs: staged submission member
*
*/
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs *last_entry;
last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
staged_cs_node);
if (last_entry->staged_last)
return true;
return false;
}
/*
* staged_cs_get - get CS reference if this CS is a part of a staged CS
*
* @hdev: pointer to device structure
* @cs: current CS
* @cs_seq: staged submission sequence number
*
* Increment CS reference for every CS in this staged submission except for
* the CS which get completion.
*/
static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
{
/* Only the last CS in this staged submission will get a completion.
* We must increment the reference for all other CS's in this
* staged submission.
* Once we get a completion we will release the whole staged submission.
*/
if (!cs->staged_last)
cs_get(cs);
}
/*
* staged_cs_put - put a CS in case it is part of staged submission
*
* @hdev: pointer to device structure
* @cs: CS to put
*
* This function decrements a CS reference (for a non completion CS)
*/
static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
{
/* We release all CS's in a staged submission except the last
* CS which we have never incremented its reference.
*/
if (!cs_needs_completion(cs))
cs_put(cs);
}
static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
{
bool next_entry_found = false;
struct hl_cs *next;
if (!cs_needs_timeout(cs))
return;
spin_lock(&hdev->cs_mirror_lock);
/* We need to handle tdr only once for the complete staged submission.
* Hence, we choose the CS that reaches this function first which is
* the CS marked as 'staged_last'.
*/
if (cs->staged_cs && cs->staged_last)
cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
spin_unlock(&hdev->cs_mirror_lock);
/* Don't cancel TDR in case this CS was timedout because we might be
* running from the TDR context
*/
if (cs && (cs->timedout ||
hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT))
return;
if (cs && cs->tdr_active)
cancel_delayed_work_sync(&cs->work_tdr);
spin_lock(&hdev->cs_mirror_lock);
/* queue TDR for next CS */
list_for_each_entry(next, &hdev->cs_mirror_list, mirror_node)
if (cs_needs_timeout(next)) {
next_entry_found = true;
break;
}
if (next_entry_found && !next->tdr_active) {
next->tdr_active = true;
schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
}
spin_unlock(&hdev->cs_mirror_lock);
}
static void cs_do_release(struct kref *ref)
{
struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
struct hl_device *hdev = cs->ctx->hdev;
struct hl_cs_job *job, *tmp;
cs->completed = true;
/*
* Although if we reached here it means that all external jobs have
* finished, because each one of them took refcnt to CS, we still
* need to go over the internal jobs and complete them. Otherwise, we
* will have leaked memory and what's worse, the CS object (and
* potentially the CTX object) could be released, while the JOB
* still holds a pointer to them (but no reference).
*/
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
complete_job(hdev, job);
if (!cs->submitted) {
/* In case the wait for signal CS was submitted, the put occurs
* in init_signal_wait_cs() or collective_wait_init_cs()
* right before hanging on the PQ.
*/
if (cs->type == CS_TYPE_WAIT ||
cs->type == CS_TYPE_COLLECTIVE_WAIT)
hl_fence_put(cs->signal_fence);
goto out;
}
/* Need to update CI for all queue jobs that does not get completion */
hl_hw_queue_update_ci(cs);
/* remove CS from CS mirror list */
spin_lock(&hdev->cs_mirror_lock);
list_del_init(&cs->mirror_node);
spin_unlock(&hdev->cs_mirror_lock);
cs_handle_tdr(hdev, cs);
if (cs->staged_cs) {
/* the completion CS decrements reference for the entire
* staged submission
*/
if (cs->staged_last) {
struct hl_cs *staged_cs, *tmp;
list_for_each_entry_safe(staged_cs, tmp,
&cs->staged_cs_node, staged_cs_node)
staged_cs_put(hdev, staged_cs);
}
/* A staged CS will be a member in the list only after it
* was submitted. We used 'cs_mirror_lock' when inserting
* it to list so we will use it again when removing it
*/
if (cs->submitted) {
spin_lock(&hdev->cs_mirror_lock);
list_del(&cs->staged_cs_node);
spin_unlock(&hdev->cs_mirror_lock);
}
}
out:
/* Must be called before hl_ctx_put because inside we use ctx to get
* the device
*/
hl_debugfs_remove_cs(cs);
hl_ctx_put(cs->ctx);
/* We need to mark an error for not submitted because in that case
* the hl fence release flow is different. Mainly, we don't need
* to handle hw_sob for signal/wait
*/
if (cs->timedout)
cs->fence->error = -ETIMEDOUT;
else if (cs->aborted)
cs->fence->error = -EIO;
else if (!cs->submitted)
cs->fence->error = -EBUSY;
if (unlikely(cs->skip_reset_on_timeout)) {
dev_err(hdev->dev,
"Command submission %llu completed after %llu (s)\n",
cs->sequence,
div_u64(jiffies - cs->submission_time_jiffies, HZ));
}
if (cs->timestamp)
cs->fence->timestamp = ktime_get();
complete_all(&cs->fence->completion);
hl_fence_put(cs->fence);
kfree(cs->jobs_in_queue_cnt);
kfree(cs);
}
static void cs_timedout(struct work_struct *work)
{
struct hl_device *hdev;
int rc;
struct hl_cs *cs = container_of(work, struct hl_cs,
work_tdr.work);
bool skip_reset_on_timeout = cs->skip_reset_on_timeout;
rc = cs_get_unless_zero(cs);
if (!rc)
return;
if ((!cs->submitted) || (cs->completed)) {
cs_put(cs);
return;
}
/* Mark the CS is timed out so we won't try to cancel its TDR */
if (likely(!skip_reset_on_timeout))
cs->timedout = true;
hdev = cs->ctx->hdev;
switch (cs->type) {
case CS_TYPE_SIGNAL:
dev_err(hdev->dev,
"Signal command submission %llu has not finished in time!\n",
cs->sequence);
break;
case CS_TYPE_WAIT:
dev_err(hdev->dev,
"Wait command submission %llu has not finished in time!\n",
cs->sequence);
break;
case CS_TYPE_COLLECTIVE_WAIT:
dev_err(hdev->dev,
"Collective Wait command submission %llu has not finished in time!\n",
cs->sequence);
break;
default:
dev_err(hdev->dev,
"Command submission %llu has not finished in time!\n",
cs->sequence);
break;
}
cs_put(cs);
if (likely(!skip_reset_on_timeout)) {
if (hdev->reset_on_lockup)
hl_device_reset(hdev, HL_RESET_TDR);
else
hdev->needs_reset = true;
}
}
static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_cs_type cs_type, u64 user_sequence,
struct hl_cs **cs_new, u32 flags, u32 timeout)
{
struct hl_cs_counters_atomic *cntr;
struct hl_fence *other = NULL;
struct hl_cs_compl *cs_cmpl;
struct hl_cs *cs;
int rc;
cntr = &hdev->aggregated_cs_counters;
cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
if (!cs)
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
return -ENOMEM;
}
/* increment refcnt for context */
hl_ctx_get(hdev, ctx);
cs->ctx = ctx;
cs->submitted = false;
cs->completed = false;
cs->type = cs_type;
cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
cs->timeout_jiffies = timeout;
cs->skip_reset_on_timeout =
hdev->skip_reset_on_timeout ||
!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
cs->submission_time_jiffies = jiffies;
INIT_LIST_HEAD(&cs->job_list);
INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
kref_init(&cs->refcount);
spin_lock_init(&cs->job_lock);
cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
if (!cs_cmpl)
cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_KERNEL);
if (!cs_cmpl) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
rc = -ENOMEM;
goto free_cs;
}
cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
if (!cs->jobs_in_queue_cnt)
cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
if (!cs->jobs_in_queue_cnt) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
rc = -ENOMEM;
goto free_cs_cmpl;
}
cs_cmpl->hdev = hdev;
cs_cmpl->type = cs->type;
spin_lock_init(&cs_cmpl->lock);
INIT_WORK(&cs_cmpl->sob_reset_work, sob_reset_work);
cs->fence = &cs_cmpl->base_fence;
spin_lock(&ctx->cs_lock);
cs_cmpl->cs_seq = ctx->cs_sequence;
other = ctx->cs_pending[cs_cmpl->cs_seq &
(hdev->asic_prop.max_pending_cs - 1)];
if (other && !completion_done(&other->completion)) {
/* If the following statement is true, it means we have reached
* a point in which only part of the staged submission was
* submitted and we don't have enough room in the 'cs_pending'
* array for the rest of the submission.
* This causes a deadlock because this CS will never be
* completed as it depends on future CS's for completion.
*/
if (other->cs_sequence == user_sequence)
dev_crit_ratelimited(hdev->dev,
"Staged CS %llu deadlock due to lack of resources",
user_sequence);
dev_dbg_ratelimited(hdev->dev,
"Rejecting CS because of too many in-flights CS\n");
atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
rc = -EAGAIN;
goto free_fence;
}
/* init hl_fence */
hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
cs->sequence = cs_cmpl->cs_seq;
ctx->cs_pending[cs_cmpl->cs_seq &
(hdev->asic_prop.max_pending_cs - 1)] =
&cs_cmpl->base_fence;
ctx->cs_sequence++;
hl_fence_get(&cs_cmpl->base_fence);
hl_fence_put(other);
spin_unlock(&ctx->cs_lock);
*cs_new = cs;
return 0;
free_fence:
spin_unlock(&ctx->cs_lock);
kfree(cs->jobs_in_queue_cnt);
free_cs_cmpl:
kfree(cs_cmpl);
free_cs:
kfree(cs);
hl_ctx_put(ctx);
return rc;
}
static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs_job *job, *tmp;
staged_cs_put(hdev, cs);
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
complete_job(hdev, job);
}
void hl_cs_rollback_all(struct hl_device *hdev)
{
int i;
struct hl_cs *cs, *tmp;
flush_workqueue(hdev->sob_reset_wq);
/* flush all completions before iterating over the CS mirror list in
* order to avoid a race with the release functions
*/
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
flush_workqueue(hdev->cq_wq[i]);
/* Make sure we don't have leftovers in the CS mirror list */
list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
cs_get(cs);
cs->aborted = true;
dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
cs->ctx->asid, cs->sequence);
cs_rollback(hdev, cs);
cs_put(cs);
}
}
void hl_pending_cb_list_flush(struct hl_ctx *ctx)
{
struct hl_pending_cb *pending_cb, *tmp;
list_for_each_entry_safe(pending_cb, tmp,
&ctx->pending_cb_list, cb_node) {
list_del(&pending_cb->cb_node);
hl_cb_put(pending_cb->cb);
kfree(pending_cb);
}
}
static void
wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
{
struct hl_user_pending_interrupt *pend;
spin_lock(&interrupt->wait_list_lock);
list_for_each_entry(pend, &interrupt->wait_list_head, wait_list_node) {
pend->fence.error = -EIO;
complete_all(&pend->fence.completion);
}
spin_unlock(&interrupt->wait_list_lock);
}
void hl_release_pending_user_interrupts(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_user_interrupt *interrupt;
int i;
if (!prop->user_interrupt_count)
return;
/* We iterate through the user interrupt requests and waking up all
* user threads waiting for interrupt completion. We iterate the
* list under a lock, this is why all user threads, once awake,
* will wait on the same lock and will release the waiting object upon
* unlock.
*/
for (i = 0 ; i < prop->user_interrupt_count ; i++) {
interrupt = &hdev->user_interrupt[i];
wake_pending_user_interrupt_threads(interrupt);
}
interrupt = &hdev->common_user_interrupt;
wake_pending_user_interrupt_threads(interrupt);
}
static void job_wq_completion(struct work_struct *work)
{
struct hl_cs_job *job = container_of(work, struct hl_cs_job,
finish_work);
struct hl_cs *cs = job->cs;
struct hl_device *hdev = cs->ctx->hdev;
/* job is no longer needed */
complete_job(hdev, job);
}
static int validate_queue_index(struct hl_device *hdev,
struct hl_cs_chunk *chunk,
enum hl_queue_type *queue_type,
bool *is_kernel_allocated_cb)
{
struct asic_fixed_properties *asic = &hdev->asic_prop;
struct hw_queue_properties *hw_queue_prop;
/* This must be checked here to prevent out-of-bounds access to
* hw_queues_props array
*/
if (chunk->queue_index >= asic->max_queues) {
dev_err(hdev->dev, "Queue index %d is invalid\n",
chunk->queue_index);
return -EINVAL;
}
hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
if (hw_queue_prop->type == QUEUE_TYPE_NA) {
dev_err(hdev->dev, "Queue index %d is invalid\n",
chunk->queue_index);
return -EINVAL;
}
if (hw_queue_prop->driver_only) {
dev_err(hdev->dev,
"Queue index %d is restricted for the kernel driver\n",
chunk->queue_index);
return -EINVAL;
}
/* When hw queue type isn't QUEUE_TYPE_HW,
* USER_ALLOC_CB flag shall be referred as "don't care".
*/
if (hw_queue_prop->type == QUEUE_TYPE_HW) {
if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
dev_err(hdev->dev,
"Queue index %d doesn't support user CB\n",
chunk->queue_index);
return -EINVAL;
}
*is_kernel_allocated_cb = false;
} else {
if (!(hw_queue_prop->cb_alloc_flags &
CB_ALLOC_KERNEL)) {
dev_err(hdev->dev,
"Queue index %d doesn't support kernel CB\n",
chunk->queue_index);
return -EINVAL;
}
*is_kernel_allocated_cb = true;
}
} else {
*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
& CB_ALLOC_KERNEL);
}
*queue_type = hw_queue_prop->type;
return 0;
}
static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
struct hl_cb_mgr *cb_mgr,
struct hl_cs_chunk *chunk)
{
struct hl_cb *cb;
u32 cb_handle;
cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT);
cb = hl_cb_get(hdev, cb_mgr, cb_handle);
if (!cb) {
dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle);
return NULL;
}
if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
goto release_cb;
}
atomic_inc(&cb->cs_cnt);
return cb;
release_cb:
hl_cb_put(cb);
return NULL;
}
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
{
struct hl_cs_job *job;
job = kzalloc(sizeof(*job), GFP_ATOMIC);
if (!job)
job = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job)
return NULL;
kref_init(&job->refcount);
job->queue_type = queue_type;
job->is_kernel_allocated_cb = is_kernel_allocated_cb;
if (is_cb_patched(hdev, job))
INIT_LIST_HEAD(&job->userptr_list);
if (job->queue_type == QUEUE_TYPE_EXT)
INIT_WORK(&job->finish_work, job_wq_completion);
return job;
}
static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
{
if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
return CS_TYPE_SIGNAL;
else if (cs_type_flags & HL_CS_FLAGS_WAIT)
return CS_TYPE_WAIT;
else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
return CS_TYPE_COLLECTIVE_WAIT;
else
return CS_TYPE_DEFAULT;
}
static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
u32 cs_type_flags, num_chunks;
enum hl_device_status status;
enum hl_cs_type cs_type;
if (!hl_device_operational(hdev, &status)) {
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't submit new CS\n",
hdev->status[status]);
return -EBUSY;
}
if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
!hdev->supports_staged_submission) {
dev_err(hdev->dev, "staged submission not supported");
return -EPERM;
}
cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
dev_err(hdev->dev,
"CS type flags are mutually exclusive, context %d\n",
ctx->asid);
return -EINVAL;
}
cs_type = hl_cs_get_cs_type(cs_type_flags);
num_chunks = args->in.num_chunks_execute;
if (unlikely((cs_type != CS_TYPE_DEFAULT) &&
!hdev->supports_sync_stream)) {
dev_err(hdev->dev, "Sync stream CS is not supported\n");
return -EINVAL;
}
if (cs_type == CS_TYPE_DEFAULT) {
if (!num_chunks) {
dev_err(hdev->dev,
"Got execute CS with 0 chunks, context %d\n",
ctx->asid);
return -EINVAL;
}
} else if (num_chunks != 1) {
dev_err(hdev->dev,
"Sync stream CS mandates one chunk only, context %d\n",
ctx->asid);
return -EINVAL;
}
return 0;
}
static int hl_cs_copy_chunk_array(struct hl_device *hdev,
struct hl_cs_chunk **cs_chunk_array,
void __user *chunks, u32 num_chunks,
struct hl_ctx *ctx)
{
u32 size_to_copy;
if (num_chunks > HL_MAX_JOBS_PER_CS) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev,
"Number of chunks can NOT be larger than %d\n",
HL_MAX_JOBS_PER_CS);
return -EINVAL;
}
*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
GFP_ATOMIC);
if (!*cs_chunk_array)
*cs_chunk_array = kmalloc_array(num_chunks,
sizeof(**cs_chunk_array), GFP_KERNEL);
if (!*cs_chunk_array) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
return -ENOMEM;
}
size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
kfree(*cs_chunk_array);
return -EFAULT;
}
return 0;
}
static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
u64 sequence, u32 flags)
{
if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
return 0;
cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
if (cs->staged_first) {
/* Staged CS sequence is the first CS sequence */
INIT_LIST_HEAD(&cs->staged_cs_node);
cs->staged_sequence = cs->sequence;
} else {
/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
* under the cs_mirror_lock
*/
cs->staged_sequence = sequence;
}
/* Increment CS reference if needed */
staged_cs_get(hdev, cs);
cs->staged_cs = true;
return 0;
}
static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
u32 num_chunks, u64 *cs_seq, u32 flags,
u32 timeout)
{
bool staged_mid, int_queues_only = true;
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_chunk *cs_chunk_array;
struct hl_cs_counters_atomic *cntr;
struct hl_ctx *ctx = hpriv->ctx;
struct hl_cs_job *job;
struct hl_cs *cs;
struct hl_cb *cb;
u64 user_sequence;
int rc, i;
cntr = &hdev->aggregated_cs_counters;
user_sequence = *cs_seq;
*cs_seq = ULLONG_MAX;
rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
hpriv->ctx);
if (rc)
goto out;
if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
staged_mid = true;
else
staged_mid = false;
rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
timeout);
if (rc)
goto free_cs_chunk_array;
*cs_seq = cs->sequence;
hl_debugfs_add_cs(cs);
rc = cs_staged_submission(hdev, cs, user_sequence, flags);
if (rc)
goto free_cs_object;
/* Validate ALL the CS chunks before submitting the CS */
for (i = 0 ; i < num_chunks ; i++) {
struct hl_cs_chunk *chunk = &cs_chunk_array[i];
enum hl_queue_type queue_type;
bool is_kernel_allocated_cb;
rc = validate_queue_index(hdev, chunk, &queue_type,
&is_kernel_allocated_cb);
if (rc) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
goto free_cs_object;
}
if (is_kernel_allocated_cb) {
cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk);
if (!cb) {
atomic64_inc(
&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
rc = -EINVAL;
goto free_cs_object;
}
} else {
cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
}
if (queue_type == QUEUE_TYPE_EXT || queue_type == QUEUE_TYPE_HW)
int_queues_only = false;
job = hl_cs_allocate_job(hdev, queue_type,
is_kernel_allocated_cb);
if (!job) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
dev_err(hdev->dev, "Failed to allocate a new job\n");
rc = -ENOMEM;
if (is_kernel_allocated_cb)
goto release_cb;
goto free_cs_object;
}
job->id = i + 1;
job->cs = cs;
job->user_cb = cb;
job->user_cb_size = chunk->cb_size;
job->hw_queue_id = chunk->queue_index;
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
/*
* Increment CS reference. When CS reference is 0, CS is
* done and can be signaled to user and free all its resources
* Only increment for JOB on external or H/W queues, because
* only for those JOBs we get completion
*/
if (cs_needs_completion(cs) &&
(job->queue_type == QUEUE_TYPE_EXT ||
job->queue_type == QUEUE_TYPE_HW))
cs_get(cs);
hl_debugfs_add_job(hdev, job);
rc = cs_parser(hpriv, job);
if (rc) {
atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
atomic64_inc(&cntr->parsing_drop_cnt);
dev_err(hdev->dev,
"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
cs->ctx->asid, cs->sequence, job->id, rc);
goto free_cs_object;
}
}
/* We allow a CS with any queue type combination as long as it does
* not get a completion
*/
if (int_queues_only && cs_needs_completion(cs)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
cs->ctx->asid, cs->sequence);
rc = -EINVAL;
goto free_cs_object;
}
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
cs->ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
rc = HL_CS_STATUS_SUCCESS;
goto put_cs;
release_cb:
atomic_dec(&cb->cs_cnt);
hl_cb_put(cb);
free_cs_object:
cs_rollback(hdev, cs);
*cs_seq = ULLONG_MAX;
/* The path below is both for good and erroneous exits */
put_cs:
/* We finished with the CS in this function, so put the ref */
cs_put(cs);
free_cs_chunk_array:
kfree(cs_chunk_array);
out:
return rc;
}
static int pending_cb_create_job(struct hl_device *hdev, struct hl_ctx *ctx,
struct hl_cs *cs, struct hl_cb *cb, u32 size, u32 hw_queue_id)
{
struct hw_queue_properties *hw_queue_prop;
struct hl_cs_counters_atomic *cntr;
struct hl_cs_job *job;
hw_queue_prop = &hdev->asic_prop.hw_queues_props[hw_queue_id];
cntr = &hdev->aggregated_cs_counters;
job = hl_cs_allocate_job(hdev, hw_queue_prop->type, true);
if (!job) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
dev_err(hdev->dev, "Failed to allocate a new job\n");
return -ENOMEM;
}
job->id = 0;
job->cs = cs;
job->user_cb = cb;
atomic_inc(&job->user_cb->cs_cnt);
job->user_cb_size = size;
job->hw_queue_id = hw_queue_id;
job->patched_cb = job->user_cb;
job->job_cb_size = job->user_cb_size;
/* increment refcount as for external queues we get completion */
cs_get(cs);
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
hl_debugfs_add_job(hdev, job);
return 0;
}
static int hl_submit_pending_cb(struct hl_fpriv *hpriv)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
struct hl_pending_cb *pending_cb, *tmp;
struct list_head local_cb_list;
struct hl_cs *cs;
struct hl_cb *cb;
u32 hw_queue_id;
u32 cb_size;
int process_list, rc = 0;
if (list_empty(&ctx->pending_cb_list))
return 0;
process_list = atomic_cmpxchg(&ctx->thread_pending_cb_token, 1, 0);
/* Only a single thread is allowed to process the list */
if (!process_list)
return 0;
if (list_empty(&ctx->pending_cb_list))
goto free_pending_cb_token;
/* move all list elements to a local list */
INIT_LIST_HEAD(&local_cb_list);
spin_lock(&ctx->pending_cb_lock);
list_for_each_entry_safe(pending_cb, tmp, &ctx->pending_cb_list,
cb_node)
list_move_tail(&pending_cb->cb_node, &local_cb_list);
spin_unlock(&ctx->pending_cb_lock);
rc = allocate_cs(hdev, ctx, CS_TYPE_DEFAULT, ULLONG_MAX, &cs, 0,
hdev->timeout_jiffies);
if (rc)
goto add_list_elements;
hl_debugfs_add_cs(cs);
/* Iterate through pending cb list, create jobs and add to CS */
list_for_each_entry(pending_cb, &local_cb_list, cb_node) {
cb = pending_cb->cb;
cb_size = pending_cb->cb_size;
hw_queue_id = pending_cb->hw_queue_id;
rc = pending_cb_create_job(hdev, ctx, cs, cb, cb_size,
hw_queue_id);
if (rc)
goto free_cs_object;
}
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu (%d)\n",
ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
/* pending cb was scheduled successfully */
list_for_each_entry_safe(pending_cb, tmp, &local_cb_list, cb_node) {
list_del(&pending_cb->cb_node);
kfree(pending_cb);
}
cs_put(cs);
goto free_pending_cb_token;
free_cs_object:
cs_rollback(hdev, cs);
cs_put(cs);
add_list_elements:
spin_lock(&ctx->pending_cb_lock);
list_for_each_entry_safe_reverse(pending_cb, tmp, &local_cb_list,
cb_node)
list_move(&pending_cb->cb_node, &ctx->pending_cb_list);
spin_unlock(&ctx->pending_cb_lock);
free_pending_cb_token:
atomic_set(&ctx->thread_pending_cb_token, 1);
return rc;
}
static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
u64 *cs_seq)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
bool need_soft_reset = false;
int rc = 0, do_ctx_switch;
void __user *chunks;
u32 num_chunks, tmp;
int ret;
do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
mutex_lock(&hpriv->restore_phase_mutex);
if (do_ctx_switch) {
rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
if (rc) {
dev_err_ratelimited(hdev->dev,
"Failed to switch to context %d, rejecting CS! %d\n",
ctx->asid, rc);
/*
* If we timedout, or if the device is not IDLE
* while we want to do context-switch (-EBUSY),
* we need to soft-reset because QMAN is
* probably stuck. However, we can't call to
* reset here directly because of deadlock, so
* need to do it at the very end of this
* function
*/
if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
need_soft_reset = true;
mutex_unlock(&hpriv->restore_phase_mutex);
goto out;
}
}
hdev->asic_funcs->restore_phase_topology(hdev);
chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
num_chunks = args->in.num_chunks_restore;
if (!num_chunks) {
dev_dbg(hdev->dev,
"Need to run restore phase but restore CS is empty\n");
rc = 0;
} else {
rc = cs_ioctl_default(hpriv, chunks, num_chunks,
cs_seq, 0, hdev->timeout_jiffies);
}
mutex_unlock(&hpriv->restore_phase_mutex);
if (rc) {
dev_err(hdev->dev,
"Failed to submit restore CS for context %d (%d)\n",
ctx->asid, rc);
goto out;
}
/* Need to wait for restore completion before execution phase */
if (num_chunks) {
enum hl_cs_wait_status status;
wait_again:
ret = _hl_cs_wait_ioctl(hdev, ctx,
jiffies_to_usecs(hdev->timeout_jiffies),
*cs_seq, &status, NULL);
if (ret) {
if (ret == -ERESTARTSYS) {
usleep_range(100, 200);
goto wait_again;
}
dev_err(hdev->dev,
"Restore CS for context %d failed to complete %d\n",
ctx->asid, ret);
rc = -ENOEXEC;
goto out;
}
}
ctx->thread_ctx_switch_wait_token = 1;
} else if (!ctx->thread_ctx_switch_wait_token) {
rc = hl_poll_timeout_memory(hdev,
&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
100, jiffies_to_usecs(hdev->timeout_jiffies), false);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev,
"context switch phase timeout (%d)\n", tmp);
goto out;
}
}
out:
if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
hl_device_reset(hdev, 0);
return rc;
}
/*
* hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
* if the SOB value reaches the max value move to the other SOB reserved
* to the queue.
* Note that this function must be called while hw_queues_lock is taken.
*/
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
struct hl_hw_sob **hw_sob, u32 count)
{
struct hl_sync_stream_properties *prop;
struct hl_hw_sob *sob = *hw_sob, *other_sob;
u8 other_sob_offset;
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
kref_get(&sob->kref);
/* check for wraparound */
if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
/*
* Decrement as we reached the max value.
* The release function won't be called here as we've
* just incremented the refcount right before calling this
* function.
*/
kref_put(&sob->kref, hl_sob_reset_error);
/*
* check the other sob value, if it still in use then fail
* otherwise make the switch
*/
other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
other_sob = &prop->hw_sob[other_sob_offset];
if (kref_read(&other_sob->kref) != 1) {
dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
q_idx);
return -EINVAL;
}
prop->next_sob_val = 1;
/* only two SOBs are currently in use */
prop->curr_sob_offset = other_sob_offset;
*hw_sob = other_sob;
dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
prop->curr_sob_offset, q_idx);
} else {
prop->next_sob_val += count;
}
return 0;
}
static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx)
{
u64 *signal_seq_arr = NULL;
u32 size_to_copy, signal_seq_arr_len;
int rc = 0;
signal_seq_arr_len = chunk->num_signal_seq_arr;
/* currently only one signal seq is supported */
if (signal_seq_arr_len != 1) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev,
"Wait for signal CS supports only one signal CS seq\n");
return -EINVAL;
}
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
sizeof(*signal_seq_arr),
GFP_ATOMIC);
if (!signal_seq_arr)
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
sizeof(*signal_seq_arr),
GFP_KERNEL);
if (!signal_seq_arr) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
return -ENOMEM;
}
size_to_copy = chunk->num_signal_seq_arr * sizeof(*signal_seq_arr);
if (copy_from_user(signal_seq_arr,
u64_to_user_ptr(chunk->signal_seq_arr),
size_to_copy)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev,
"Failed to copy signal seq array from user\n");
rc = -EFAULT;
goto out;
}
/* currently it is guaranteed to have only one signal seq */
*signal_seq = signal_seq_arr[0];
out:
kfree(signal_seq_arr);
return rc;
}
static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs, enum hl_queue_type q_type,
u32 q_idx)
{
struct hl_cs_counters_atomic *cntr;
struct hl_cs_job *job;
struct hl_cb *cb;
u32 cb_size;
cntr = &hdev->aggregated_cs_counters;
job = hl_cs_allocate_job(hdev, q_type, true);
if (!job) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
dev_err(hdev->dev, "Failed to allocate a new job\n");
return -ENOMEM;
}
if (cs->type == CS_TYPE_WAIT)
cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
else
cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
cb = hl_cb_kernel_create(hdev, cb_size,
q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
if (!cb) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
kfree(job);
return -EFAULT;
}
job->id = 0;
job->cs = cs;
job->user_cb = cb;
atomic_inc(&job->user_cb->cs_cnt);
job->user_cb_size = cb_size;
job->hw_queue_id = q_idx;
/*
* No need in parsing, user CB is the patched CB.
* We call hl_cb_destroy() out of two reasons - we don't need the CB in
* the CB idr anymore and to decrement its refcount as it was
* incremented inside hl_cb_kernel_create().
*/
job->patched_cb = job->user_cb;
job->job_cb_size = job->user_cb_size;
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
/* increment refcount as for external queues we get completion */
cs_get(cs);
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
hl_debugfs_add_job(hdev, job);
return 0;
}
static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
void __user *chunks, u32 num_chunks,
u64 *cs_seq, u32 flags, u32 timeout)
{
struct hl_cs_chunk *cs_chunk_array, *chunk;
struct hw_queue_properties *hw_queue_prop;
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_compl *sig_waitcs_cmpl;
u32 q_idx, collective_engine_id = 0;
struct hl_cs_counters_atomic *cntr;
struct hl_fence *sig_fence = NULL;
struct hl_ctx *ctx = hpriv->ctx;
enum hl_queue_type q_type;
struct hl_cs *cs;
u64 signal_seq;
int rc;
cntr = &hdev->aggregated_cs_counters;
*cs_seq = ULLONG_MAX;
rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
ctx);
if (rc)
goto out;
/* currently it is guaranteed to have only one chunk */
chunk = &cs_chunk_array[0];
if (chunk->queue_index >= hdev->asic_prop.max_queues) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev, "Queue index %d is invalid\n",
chunk->queue_index);
rc = -EINVAL;
goto free_cs_chunk_array;
}
q_idx = chunk->queue_index;
hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
q_type = hw_queue_prop->type;
if (!hw_queue_prop->supports_sync_stream) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Queue index %d does not support sync stream operations\n",
q_idx);
rc = -EINVAL;
goto free_cs_chunk_array;
}
if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Queue index %d is invalid\n", q_idx);
rc = -EINVAL;
goto free_cs_chunk_array;
}
collective_engine_id = chunk->collective_engine_id;
}
if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_COLLECTIVE_WAIT) {
rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, ctx);
if (rc)
goto free_cs_chunk_array;
sig_fence = hl_ctx_get_fence(ctx, signal_seq);
if (IS_ERR(sig_fence)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Failed to get signal CS with seq 0x%llx\n",
signal_seq);
rc = PTR_ERR(sig_fence);
goto free_cs_chunk_array;
}
if (!sig_fence) {
/* signal CS already finished */
rc = 0;
goto free_cs_chunk_array;
}
sig_waitcs_cmpl =
container_of(sig_fence, struct hl_cs_compl, base_fence);
if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"CS seq 0x%llx is not of a signal CS\n",
signal_seq);
hl_fence_put(sig_fence);
rc = -EINVAL;
goto free_cs_chunk_array;
}
if (completion_done(&sig_fence->completion)) {
/* signal CS already finished */
hl_fence_put(sig_fence);
rc = 0;
goto free_cs_chunk_array;
}
}
rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
if (rc) {
if (cs_type == CS_TYPE_WAIT ||
cs_type == CS_TYPE_COLLECTIVE_WAIT)
hl_fence_put(sig_fence);
goto free_cs_chunk_array;
}
/*
* Save the signal CS fence for later initialization right before
* hanging the wait CS on the queue.
*/
if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_COLLECTIVE_WAIT)
cs->signal_fence = sig_fence;
hl_debugfs_add_cs(cs);
*cs_seq = cs->sequence;
if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
q_idx);
else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
cs, q_idx, collective_engine_id);
else {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
rc = -EINVAL;
}
if (rc)
goto free_cs_object;
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
rc = HL_CS_STATUS_SUCCESS;
goto put_cs;
free_cs_object:
cs_rollback(hdev, cs);
*cs_seq = ULLONG_MAX;
/* The path below is both for good and erroneous exits */
put_cs:
/* We finished with the CS in this function, so put the ref */
cs_put(cs);
free_cs_chunk_array:
kfree(cs_chunk_array);
out:
return rc;
}
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
{
union hl_cs_args *args = data;
enum hl_cs_type cs_type;
u64 cs_seq = ULONG_MAX;
void __user *chunks;
u32 num_chunks, flags, timeout;
int rc;
rc = hl_cs_sanity_checks(hpriv, args);
if (rc)
goto out;
rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
if (rc)
goto out;
rc = hl_submit_pending_cb(hpriv);
if (rc)
goto out;
cs_type = hl_cs_get_cs_type(args->in.cs_flags &
~HL_CS_FLAGS_FORCE_RESTORE);
chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
num_chunks = args->in.num_chunks_execute;
flags = args->in.cs_flags;
/* In case this is a staged CS, user should supply the CS sequence */
if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
cs_seq = args->in.seq;
timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
? msecs_to_jiffies(args->in.timeout * 1000)
: hpriv->hdev->timeout_jiffies;
switch (cs_type) {
case CS_TYPE_SIGNAL:
case CS_TYPE_WAIT:
case CS_TYPE_COLLECTIVE_WAIT:
rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
&cs_seq, args->in.cs_flags, timeout);
break;
default:
rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
args->in.cs_flags, timeout);
break;
}
out:
if (rc != -EAGAIN) {
memset(args, 0, sizeof(*args));
args->out.status = rc;
args->out.seq = cs_seq;
}
return rc;
}
static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
u64 timeout_us, u64 seq,
enum hl_cs_wait_status *status, s64 *timestamp)
{
struct hl_fence *fence;
unsigned long timeout;
int rc = 0;
long completion_rc;
if (timestamp)
*timestamp = 0;
if (timeout_us == MAX_SCHEDULE_TIMEOUT)
timeout = timeout_us;
else
timeout = usecs_to_jiffies(timeout_us);
hl_ctx_get(hdev, ctx);
fence = hl_ctx_get_fence(ctx, seq);
if (IS_ERR(fence)) {
rc = PTR_ERR(fence);
if (rc == -EINVAL)
dev_notice_ratelimited(hdev->dev,
"Can't wait on CS %llu because current CS is at seq %llu\n",
seq, ctx->cs_sequence);
} else if (fence) {
if (!timeout_us)
completion_rc = completion_done(&fence->completion);
else
completion_rc =
wait_for_completion_interruptible_timeout(
&fence->completion, timeout);
if (completion_rc > 0) {
*status = CS_WAIT_STATUS_COMPLETED;
if (timestamp)
*timestamp = ktime_to_ns(fence->timestamp);
} else {
*status = CS_WAIT_STATUS_BUSY;
}
if (fence->error == -ETIMEDOUT)
rc = -ETIMEDOUT;
else if (fence->error == -EIO)
rc = -EIO;
hl_fence_put(fence);
} else {
dev_dbg(hdev->dev,
"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
seq, ctx->cs_sequence);
*status = CS_WAIT_STATUS_GONE;
}
hl_ctx_put(ctx);
return rc;
}
static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_device *hdev = hpriv->hdev;
union hl_wait_cs_args *args = data;
enum hl_cs_wait_status status;
u64 seq = args->in.seq;
s64 timestamp;
int rc;
rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq,
&status, &timestamp);
memset(args, 0, sizeof(*args));
if (rc) {
if (rc == -ERESTARTSYS) {
dev_err_ratelimited(hdev->dev,
"user process got signal while waiting for CS handle %llu\n",
seq);
args->out.status = HL_WAIT_CS_STATUS_INTERRUPTED;
rc = -EINTR;
} else if (rc == -ETIMEDOUT) {
dev_err_ratelimited(hdev->dev,
"CS %llu has timed-out while user process is waiting for it\n",
seq);
args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
} else if (rc == -EIO) {
dev_err_ratelimited(hdev->dev,
"CS %llu has been aborted while user process is waiting for it\n",
seq);
args->out.status = HL_WAIT_CS_STATUS_ABORTED;
}
return rc;
}
if (timestamp) {
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
args->out.timestamp_nsec = timestamp;
}
switch (status) {
case CS_WAIT_STATUS_GONE:
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
fallthrough;
case CS_WAIT_STATUS_COMPLETED:
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
break;
case CS_WAIT_STATUS_BUSY:
default:
args->out.status = HL_WAIT_CS_STATUS_BUSY;
break;
}
return 0;
}
static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
u32 timeout_us, u64 user_address,
u32 target_value, u16 interrupt_offset,
enum hl_cs_wait_status *status)
{
struct hl_user_pending_interrupt *pend;
struct hl_user_interrupt *interrupt;
unsigned long timeout;
long completion_rc;
u32 completion_value;
int rc = 0;
if (timeout_us == U32_MAX)
timeout = timeout_us;
else
timeout = usecs_to_jiffies(timeout_us);
hl_ctx_get(hdev, ctx);
pend = kmalloc(sizeof(*pend), GFP_KERNEL);
if (!pend) {
hl_ctx_put(ctx);
return -ENOMEM;
}
hl_fence_init(&pend->fence, ULONG_MAX);
if (interrupt_offset == HL_COMMON_USER_INTERRUPT_ID)
interrupt = &hdev->common_user_interrupt;
else
interrupt = &hdev->user_interrupt[interrupt_offset];
spin_lock(&interrupt->wait_list_lock);
if (!hl_device_operational(hdev, NULL)) {
rc = -EPERM;
goto unlock_and_free_fence;
}
if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 4)) {
dev_err(hdev->dev,
"Failed to copy completion value from user\n");
rc = -EFAULT;
goto unlock_and_free_fence;
}
if (completion_value >= target_value)
*status = CS_WAIT_STATUS_COMPLETED;
else
*status = CS_WAIT_STATUS_BUSY;
if (!timeout_us || (*status == CS_WAIT_STATUS_COMPLETED))
goto unlock_and_free_fence;
/* Add pending user interrupt to relevant list for the interrupt
* handler to monitor
*/
list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
spin_unlock(&interrupt->wait_list_lock);
wait_again:
/* Wait for interrupt handler to signal completion */
completion_rc =
wait_for_completion_interruptible_timeout(
&pend->fence.completion, timeout);
/* If timeout did not expire we need to perform the comparison.
* If comparison fails, keep waiting until timeout expires
*/
if (completion_rc > 0) {
if (copy_from_user(&completion_value,
u64_to_user_ptr(user_address), 4)) {
dev_err(hdev->dev,
"Failed to copy completion value from user\n");
rc = -EFAULT;
goto remove_pending_user_interrupt;
}
if (completion_value >= target_value) {
*status = CS_WAIT_STATUS_COMPLETED;
} else {
timeout = completion_rc;
goto wait_again;
}
} else {
*status = CS_WAIT_STATUS_BUSY;
}
remove_pending_user_interrupt:
spin_lock(&interrupt->wait_list_lock);
list_del(&pend->wait_list_node);
unlock_and_free_fence:
spin_unlock(&interrupt->wait_list_lock);
kfree(pend);
hl_ctx_put(ctx);
return rc;
}
static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
u16 interrupt_id, interrupt_offset, first_interrupt, last_interrupt;
struct hl_device *hdev = hpriv->hdev;
struct asic_fixed_properties *prop;
union hl_wait_cs_args *args = data;
enum hl_cs_wait_status status;
int rc;
prop = &hdev->asic_prop;
if (!prop->user_interrupt_count) {
dev_err(hdev->dev, "no user interrupts allowed");
return -EPERM;
}
interrupt_id =
FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
first_interrupt = prop->first_available_user_msix_interrupt;
last_interrupt = prop->first_available_user_msix_interrupt +
prop->user_interrupt_count - 1;
if ((interrupt_id < first_interrupt || interrupt_id > last_interrupt) &&
interrupt_id != HL_COMMON_USER_INTERRUPT_ID) {
dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
return -EINVAL;
}
if (interrupt_id == HL_COMMON_USER_INTERRUPT_ID)
interrupt_offset = HL_COMMON_USER_INTERRUPT_ID;
else
interrupt_offset = interrupt_id - first_interrupt;
rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx,
args->in.interrupt_timeout_us, args->in.addr,
args->in.target, interrupt_offset, &status);
memset(args, 0, sizeof(*args));
if (rc) {
dev_err_ratelimited(hdev->dev,
"interrupt_wait_ioctl failed (%d)\n", rc);
return rc;
}
switch (status) {
case CS_WAIT_STATUS_COMPLETED:
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
break;
case CS_WAIT_STATUS_BUSY:
default:
args->out.status = HL_WAIT_CS_STATUS_BUSY;
break;
}
return 0;
}
int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
union hl_wait_cs_args *args = data;
u32 flags = args->in.flags;
int rc;
if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
rc = hl_interrupt_wait_ioctl(hpriv, data);
else
rc = hl_cs_wait_ioctl(hpriv, data);
return rc;
}