| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <uapi/misc/habanalabs.h> |
| #include "habanalabs.h" |
| |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| |
| #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ |
| HL_CS_FLAGS_COLLECTIVE_WAIT) |
| |
| /** |
| * enum hl_cs_wait_status - cs wait status |
| * @CS_WAIT_STATUS_BUSY: cs was not completed yet |
| * @CS_WAIT_STATUS_COMPLETED: cs completed |
| * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone |
| */ |
| enum hl_cs_wait_status { |
| CS_WAIT_STATUS_BUSY, |
| CS_WAIT_STATUS_COMPLETED, |
| CS_WAIT_STATUS_GONE |
| }; |
| |
| static void job_wq_completion(struct work_struct *work); |
| static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, |
| u64 timeout_us, u64 seq, |
| enum hl_cs_wait_status *status, s64 *timestamp); |
| static void cs_do_release(struct kref *ref); |
| |
| static void hl_sob_reset(struct kref *ref) |
| { |
| struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, |
| kref); |
| struct hl_device *hdev = hw_sob->hdev; |
| |
| hdev->asic_funcs->reset_sob(hdev, hw_sob); |
| } |
| |
| void hl_sob_reset_error(struct kref *ref) |
| { |
| struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, |
| kref); |
| struct hl_device *hdev = hw_sob->hdev; |
| |
| dev_crit(hdev->dev, |
| "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", |
| hw_sob->q_idx, hw_sob->sob_id); |
| } |
| |
| /** |
| * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet |
| * @sob_base: sob base id |
| * @sob_mask: sob user mask, each bit represents a sob offset from sob base |
| * @mask: generated mask |
| * |
| * Return: 0 if given parameters are valid |
| */ |
| int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) |
| { |
| int i; |
| |
| if (sob_mask == 0) |
| return -EINVAL; |
| |
| if (sob_mask == 0x1) { |
| *mask = ~(1 << (sob_base & 0x7)); |
| } else { |
| /* find msb in order to verify sob range is valid */ |
| for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) |
| if (BIT(i) & sob_mask) |
| break; |
| |
| if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) |
| return -EINVAL; |
| |
| *mask = ~sob_mask; |
| } |
| |
| return 0; |
| } |
| |
| static void sob_reset_work(struct work_struct *work) |
| { |
| struct hl_cs_compl *hl_cs_cmpl = |
| container_of(work, struct hl_cs_compl, sob_reset_work); |
| struct hl_device *hdev = hl_cs_cmpl->hdev; |
| |
| /* |
| * A signal CS can get completion while the corresponding wait |
| * for signal CS is on its way to the PQ. The wait for signal CS |
| * will get stuck if the signal CS incremented the SOB to its |
| * max value and there are no pending (submitted) waits on this |
| * SOB. |
| * We do the following to void this situation: |
| * 1. The wait for signal CS must get a ref for the signal CS as |
| * soon as possible in cs_ioctl_signal_wait() and put it |
| * before being submitted to the PQ but after it incremented |
| * the SOB refcnt in init_signal_wait_cs(). |
| * 2. Signal/Wait for signal CS will decrement the SOB refcnt |
| * here. |
| * These two measures guarantee that the wait for signal CS will |
| * reset the SOB upon completion rather than the signal CS and |
| * hence the above scenario is avoided. |
| */ |
| kref_put(&hl_cs_cmpl->hw_sob->kref, hl_sob_reset); |
| |
| if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) |
| hdev->asic_funcs->reset_sob_group(hdev, |
| hl_cs_cmpl->sob_group); |
| |
| kfree(hl_cs_cmpl); |
| } |
| |
| static void hl_fence_release(struct kref *kref) |
| { |
| struct hl_fence *fence = |
| container_of(kref, struct hl_fence, refcount); |
| struct hl_cs_compl *hl_cs_cmpl = |
| container_of(fence, struct hl_cs_compl, base_fence); |
| struct hl_device *hdev = hl_cs_cmpl->hdev; |
| |
| /* EBUSY means the CS was never submitted and hence we don't have |
| * an attached hw_sob object that we should handle here |
| */ |
| if (fence->error == -EBUSY) |
| goto free; |
| |
| if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || |
| (hl_cs_cmpl->type == CS_TYPE_WAIT) || |
| (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)) { |
| |
| dev_dbg(hdev->dev, |
| "CS 0x%llx type %d finished, sob_id: %d, sob_val: 0x%x\n", |
| hl_cs_cmpl->cs_seq, |
| hl_cs_cmpl->type, |
| hl_cs_cmpl->hw_sob->sob_id, |
| hl_cs_cmpl->sob_val); |
| |
| queue_work(hdev->sob_reset_wq, &hl_cs_cmpl->sob_reset_work); |
| |
| return; |
| } |
| |
| free: |
| kfree(hl_cs_cmpl); |
| } |
| |
| void hl_fence_put(struct hl_fence *fence) |
| { |
| if (fence) |
| kref_put(&fence->refcount, hl_fence_release); |
| } |
| |
| void hl_fence_get(struct hl_fence *fence) |
| { |
| if (fence) |
| kref_get(&fence->refcount); |
| } |
| |
| static void hl_fence_init(struct hl_fence *fence, u64 sequence) |
| { |
| kref_init(&fence->refcount); |
| fence->cs_sequence = sequence; |
| fence->error = 0; |
| fence->timestamp = ktime_set(0, 0); |
| init_completion(&fence->completion); |
| } |
| |
| void cs_get(struct hl_cs *cs) |
| { |
| kref_get(&cs->refcount); |
| } |
| |
| static int cs_get_unless_zero(struct hl_cs *cs) |
| { |
| return kref_get_unless_zero(&cs->refcount); |
| } |
| |
| static void cs_put(struct hl_cs *cs) |
| { |
| kref_put(&cs->refcount, cs_do_release); |
| } |
| |
| static void cs_job_do_release(struct kref *ref) |
| { |
| struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); |
| |
| kfree(job); |
| } |
| |
| static void cs_job_put(struct hl_cs_job *job) |
| { |
| kref_put(&job->refcount, cs_job_do_release); |
| } |
| |
| bool cs_needs_completion(struct hl_cs *cs) |
| { |
| /* In case this is a staged CS, only the last CS in sequence should |
| * get a completion, any non staged CS will always get a completion |
| */ |
| if (cs->staged_cs && !cs->staged_last) |
| return false; |
| |
| return true; |
| } |
| |
| bool cs_needs_timeout(struct hl_cs *cs) |
| { |
| /* In case this is a staged CS, only the first CS in sequence should |
| * get a timeout, any non staged CS will always get a timeout |
| */ |
| if (cs->staged_cs && !cs->staged_first) |
| return false; |
| |
| return true; |
| } |
| |
| static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) |
| { |
| /* |
| * Patched CB is created for external queues jobs, and for H/W queues |
| * jobs if the user CB was allocated by driver and MMU is disabled. |
| */ |
| return (job->queue_type == QUEUE_TYPE_EXT || |
| (job->queue_type == QUEUE_TYPE_HW && |
| job->is_kernel_allocated_cb && |
| !hdev->mmu_enable)); |
| } |
| |
| /* |
| * cs_parser - parse the user command submission |
| * |
| * @hpriv : pointer to the private data of the fd |
| * @job : pointer to the job that holds the command submission info |
| * |
| * The function parses the command submission of the user. It calls the |
| * ASIC specific parser, which returns a list of memory blocks to send |
| * to the device as different command buffers |
| * |
| */ |
| static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_parser parser; |
| int rc; |
| |
| parser.ctx_id = job->cs->ctx->asid; |
| parser.cs_sequence = job->cs->sequence; |
| parser.job_id = job->id; |
| |
| parser.hw_queue_id = job->hw_queue_id; |
| parser.job_userptr_list = &job->userptr_list; |
| parser.patched_cb = NULL; |
| parser.user_cb = job->user_cb; |
| parser.user_cb_size = job->user_cb_size; |
| parser.queue_type = job->queue_type; |
| parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; |
| job->patched_cb = NULL; |
| parser.completion = cs_needs_completion(job->cs); |
| |
| rc = hdev->asic_funcs->cs_parser(hdev, &parser); |
| |
| if (is_cb_patched(hdev, job)) { |
| if (!rc) { |
| job->patched_cb = parser.patched_cb; |
| job->job_cb_size = parser.patched_cb_size; |
| job->contains_dma_pkt = parser.contains_dma_pkt; |
| atomic_inc(&job->patched_cb->cs_cnt); |
| } |
| |
| /* |
| * Whether the parsing worked or not, we don't need the |
| * original CB anymore because it was already parsed and |
| * won't be accessed again for this CS |
| */ |
| atomic_dec(&job->user_cb->cs_cnt); |
| hl_cb_put(job->user_cb); |
| job->user_cb = NULL; |
| } else if (!rc) { |
| job->job_cb_size = job->user_cb_size; |
| } |
| |
| return rc; |
| } |
| |
| static void complete_job(struct hl_device *hdev, struct hl_cs_job *job) |
| { |
| struct hl_cs *cs = job->cs; |
| |
| if (is_cb_patched(hdev, job)) { |
| hl_userptr_delete_list(hdev, &job->userptr_list); |
| |
| /* |
| * We might arrive here from rollback and patched CB wasn't |
| * created, so we need to check it's not NULL |
| */ |
| if (job->patched_cb) { |
| atomic_dec(&job->patched_cb->cs_cnt); |
| hl_cb_put(job->patched_cb); |
| } |
| } |
| |
| /* For H/W queue jobs, if a user CB was allocated by driver and MMU is |
| * enabled, the user CB isn't released in cs_parser() and thus should be |
| * released here. |
| * This is also true for INT queues jobs which were allocated by driver |
| */ |
| if (job->is_kernel_allocated_cb && |
| ((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) || |
| job->queue_type == QUEUE_TYPE_INT)) { |
| atomic_dec(&job->user_cb->cs_cnt); |
| hl_cb_put(job->user_cb); |
| } |
| |
| /* |
| * This is the only place where there can be multiple threads |
| * modifying the list at the same time |
| */ |
| spin_lock(&cs->job_lock); |
| list_del(&job->cs_node); |
| spin_unlock(&cs->job_lock); |
| |
| hl_debugfs_remove_job(hdev, job); |
| |
| /* We decrement reference only for a CS that gets completion |
| * because the reference was incremented only for this kind of CS |
| * right before it was scheduled. |
| * |
| * In staged submission, only the last CS marked as 'staged_last' |
| * gets completion, hence its release function will be called from here. |
| * As for all the rest CS's in the staged submission which do not get |
| * completion, their CS reference will be decremented by the |
| * 'staged_last' CS during the CS release flow. |
| * All relevant PQ CI counters will be incremented during the CS release |
| * flow by calling 'hl_hw_queue_update_ci'. |
| */ |
| if (cs_needs_completion(cs) && |
| (job->queue_type == QUEUE_TYPE_EXT || |
| job->queue_type == QUEUE_TYPE_HW)) |
| cs_put(cs); |
| |
| cs_job_put(job); |
| } |
| |
| /* |
| * hl_staged_cs_find_first - locate the first CS in this staged submission |
| * |
| * @hdev: pointer to device structure |
| * @cs_seq: staged submission sequence number |
| * |
| * @note: This function must be called under 'hdev->cs_mirror_lock' |
| * |
| * Find and return a CS pointer with the given sequence |
| */ |
| struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) |
| { |
| struct hl_cs *cs; |
| |
| list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) |
| if (cs->staged_cs && cs->staged_first && |
| cs->sequence == cs_seq) |
| return cs; |
| |
| return NULL; |
| } |
| |
| /* |
| * is_staged_cs_last_exists - returns true if the last CS in sequence exists |
| * |
| * @hdev: pointer to device structure |
| * @cs: staged submission member |
| * |
| */ |
| bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_cs *last_entry; |
| |
| last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, |
| staged_cs_node); |
| |
| if (last_entry->staged_last) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * staged_cs_get - get CS reference if this CS is a part of a staged CS |
| * |
| * @hdev: pointer to device structure |
| * @cs: current CS |
| * @cs_seq: staged submission sequence number |
| * |
| * Increment CS reference for every CS in this staged submission except for |
| * the CS which get completion. |
| */ |
| static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| /* Only the last CS in this staged submission will get a completion. |
| * We must increment the reference for all other CS's in this |
| * staged submission. |
| * Once we get a completion we will release the whole staged submission. |
| */ |
| if (!cs->staged_last) |
| cs_get(cs); |
| } |
| |
| /* |
| * staged_cs_put - put a CS in case it is part of staged submission |
| * |
| * @hdev: pointer to device structure |
| * @cs: CS to put |
| * |
| * This function decrements a CS reference (for a non completion CS) |
| */ |
| static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| /* We release all CS's in a staged submission except the last |
| * CS which we have never incremented its reference. |
| */ |
| if (!cs_needs_completion(cs)) |
| cs_put(cs); |
| } |
| |
| static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| bool next_entry_found = false; |
| struct hl_cs *next; |
| |
| if (!cs_needs_timeout(cs)) |
| return; |
| |
| spin_lock(&hdev->cs_mirror_lock); |
| |
| /* We need to handle tdr only once for the complete staged submission. |
| * Hence, we choose the CS that reaches this function first which is |
| * the CS marked as 'staged_last'. |
| */ |
| if (cs->staged_cs && cs->staged_last) |
| cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); |
| |
| spin_unlock(&hdev->cs_mirror_lock); |
| |
| /* Don't cancel TDR in case this CS was timedout because we might be |
| * running from the TDR context |
| */ |
| if (cs && (cs->timedout || |
| hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)) |
| return; |
| |
| if (cs && cs->tdr_active) |
| cancel_delayed_work_sync(&cs->work_tdr); |
| |
| spin_lock(&hdev->cs_mirror_lock); |
| |
| /* queue TDR for next CS */ |
| list_for_each_entry(next, &hdev->cs_mirror_list, mirror_node) |
| if (cs_needs_timeout(next)) { |
| next_entry_found = true; |
| break; |
| } |
| |
| if (next_entry_found && !next->tdr_active) { |
| next->tdr_active = true; |
| schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); |
| } |
| |
| spin_unlock(&hdev->cs_mirror_lock); |
| } |
| |
| static void cs_do_release(struct kref *ref) |
| { |
| struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); |
| struct hl_device *hdev = cs->ctx->hdev; |
| struct hl_cs_job *job, *tmp; |
| |
| cs->completed = true; |
| |
| /* |
| * Although if we reached here it means that all external jobs have |
| * finished, because each one of them took refcnt to CS, we still |
| * need to go over the internal jobs and complete them. Otherwise, we |
| * will have leaked memory and what's worse, the CS object (and |
| * potentially the CTX object) could be released, while the JOB |
| * still holds a pointer to them (but no reference). |
| */ |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| complete_job(hdev, job); |
| |
| if (!cs->submitted) { |
| /* In case the wait for signal CS was submitted, the put occurs |
| * in init_signal_wait_cs() or collective_wait_init_cs() |
| * right before hanging on the PQ. |
| */ |
| if (cs->type == CS_TYPE_WAIT || |
| cs->type == CS_TYPE_COLLECTIVE_WAIT) |
| hl_fence_put(cs->signal_fence); |
| |
| goto out; |
| } |
| |
| /* Need to update CI for all queue jobs that does not get completion */ |
| hl_hw_queue_update_ci(cs); |
| |
| /* remove CS from CS mirror list */ |
| spin_lock(&hdev->cs_mirror_lock); |
| list_del_init(&cs->mirror_node); |
| spin_unlock(&hdev->cs_mirror_lock); |
| |
| cs_handle_tdr(hdev, cs); |
| |
| if (cs->staged_cs) { |
| /* the completion CS decrements reference for the entire |
| * staged submission |
| */ |
| if (cs->staged_last) { |
| struct hl_cs *staged_cs, *tmp; |
| |
| list_for_each_entry_safe(staged_cs, tmp, |
| &cs->staged_cs_node, staged_cs_node) |
| staged_cs_put(hdev, staged_cs); |
| } |
| |
| /* A staged CS will be a member in the list only after it |
| * was submitted. We used 'cs_mirror_lock' when inserting |
| * it to list so we will use it again when removing it |
| */ |
| if (cs->submitted) { |
| spin_lock(&hdev->cs_mirror_lock); |
| list_del(&cs->staged_cs_node); |
| spin_unlock(&hdev->cs_mirror_lock); |
| } |
| } |
| |
| out: |
| /* Must be called before hl_ctx_put because inside we use ctx to get |
| * the device |
| */ |
| hl_debugfs_remove_cs(cs); |
| |
| hl_ctx_put(cs->ctx); |
| |
| /* We need to mark an error for not submitted because in that case |
| * the hl fence release flow is different. Mainly, we don't need |
| * to handle hw_sob for signal/wait |
| */ |
| if (cs->timedout) |
| cs->fence->error = -ETIMEDOUT; |
| else if (cs->aborted) |
| cs->fence->error = -EIO; |
| else if (!cs->submitted) |
| cs->fence->error = -EBUSY; |
| |
| if (unlikely(cs->skip_reset_on_timeout)) { |
| dev_err(hdev->dev, |
| "Command submission %llu completed after %llu (s)\n", |
| cs->sequence, |
| div_u64(jiffies - cs->submission_time_jiffies, HZ)); |
| } |
| |
| if (cs->timestamp) |
| cs->fence->timestamp = ktime_get(); |
| complete_all(&cs->fence->completion); |
| hl_fence_put(cs->fence); |
| |
| kfree(cs->jobs_in_queue_cnt); |
| kfree(cs); |
| } |
| |
| static void cs_timedout(struct work_struct *work) |
| { |
| struct hl_device *hdev; |
| int rc; |
| struct hl_cs *cs = container_of(work, struct hl_cs, |
| work_tdr.work); |
| bool skip_reset_on_timeout = cs->skip_reset_on_timeout; |
| |
| rc = cs_get_unless_zero(cs); |
| if (!rc) |
| return; |
| |
| if ((!cs->submitted) || (cs->completed)) { |
| cs_put(cs); |
| return; |
| } |
| |
| /* Mark the CS is timed out so we won't try to cancel its TDR */ |
| if (likely(!skip_reset_on_timeout)) |
| cs->timedout = true; |
| |
| hdev = cs->ctx->hdev; |
| |
| switch (cs->type) { |
| case CS_TYPE_SIGNAL: |
| dev_err(hdev->dev, |
| "Signal command submission %llu has not finished in time!\n", |
| cs->sequence); |
| break; |
| |
| case CS_TYPE_WAIT: |
| dev_err(hdev->dev, |
| "Wait command submission %llu has not finished in time!\n", |
| cs->sequence); |
| break; |
| |
| case CS_TYPE_COLLECTIVE_WAIT: |
| dev_err(hdev->dev, |
| "Collective Wait command submission %llu has not finished in time!\n", |
| cs->sequence); |
| break; |
| |
| default: |
| dev_err(hdev->dev, |
| "Command submission %llu has not finished in time!\n", |
| cs->sequence); |
| break; |
| } |
| |
| cs_put(cs); |
| |
| if (likely(!skip_reset_on_timeout)) { |
| if (hdev->reset_on_lockup) |
| hl_device_reset(hdev, HL_RESET_TDR); |
| else |
| hdev->needs_reset = true; |
| } |
| } |
| |
| static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, |
| enum hl_cs_type cs_type, u64 user_sequence, |
| struct hl_cs **cs_new, u32 flags, u32 timeout) |
| { |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_fence *other = NULL; |
| struct hl_cs_compl *cs_cmpl; |
| struct hl_cs *cs; |
| int rc; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| |
| cs = kzalloc(sizeof(*cs), GFP_ATOMIC); |
| if (!cs) |
| cs = kzalloc(sizeof(*cs), GFP_KERNEL); |
| |
| if (!cs) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| return -ENOMEM; |
| } |
| |
| /* increment refcnt for context */ |
| hl_ctx_get(hdev, ctx); |
| |
| cs->ctx = ctx; |
| cs->submitted = false; |
| cs->completed = false; |
| cs->type = cs_type; |
| cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); |
| cs->timeout_jiffies = timeout; |
| cs->skip_reset_on_timeout = |
| hdev->skip_reset_on_timeout || |
| !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); |
| cs->submission_time_jiffies = jiffies; |
| INIT_LIST_HEAD(&cs->job_list); |
| INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); |
| kref_init(&cs->refcount); |
| spin_lock_init(&cs->job_lock); |
| |
| cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_ATOMIC); |
| if (!cs_cmpl) |
| cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_KERNEL); |
| |
| if (!cs_cmpl) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| rc = -ENOMEM; |
| goto free_cs; |
| } |
| |
| cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, |
| sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); |
| if (!cs->jobs_in_queue_cnt) |
| cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, |
| sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); |
| |
| if (!cs->jobs_in_queue_cnt) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| rc = -ENOMEM; |
| goto free_cs_cmpl; |
| } |
| |
| cs_cmpl->hdev = hdev; |
| cs_cmpl->type = cs->type; |
| spin_lock_init(&cs_cmpl->lock); |
| INIT_WORK(&cs_cmpl->sob_reset_work, sob_reset_work); |
| cs->fence = &cs_cmpl->base_fence; |
| |
| spin_lock(&ctx->cs_lock); |
| |
| cs_cmpl->cs_seq = ctx->cs_sequence; |
| other = ctx->cs_pending[cs_cmpl->cs_seq & |
| (hdev->asic_prop.max_pending_cs - 1)]; |
| |
| if (other && !completion_done(&other->completion)) { |
| /* If the following statement is true, it means we have reached |
| * a point in which only part of the staged submission was |
| * submitted and we don't have enough room in the 'cs_pending' |
| * array for the rest of the submission. |
| * This causes a deadlock because this CS will never be |
| * completed as it depends on future CS's for completion. |
| */ |
| if (other->cs_sequence == user_sequence) |
| dev_crit_ratelimited(hdev->dev, |
| "Staged CS %llu deadlock due to lack of resources", |
| user_sequence); |
| |
| dev_dbg_ratelimited(hdev->dev, |
| "Rejecting CS because of too many in-flights CS\n"); |
| atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); |
| atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); |
| rc = -EAGAIN; |
| goto free_fence; |
| } |
| |
| /* init hl_fence */ |
| hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); |
| |
| cs->sequence = cs_cmpl->cs_seq; |
| |
| ctx->cs_pending[cs_cmpl->cs_seq & |
| (hdev->asic_prop.max_pending_cs - 1)] = |
| &cs_cmpl->base_fence; |
| ctx->cs_sequence++; |
| |
| hl_fence_get(&cs_cmpl->base_fence); |
| |
| hl_fence_put(other); |
| |
| spin_unlock(&ctx->cs_lock); |
| |
| *cs_new = cs; |
| |
| return 0; |
| |
| free_fence: |
| spin_unlock(&ctx->cs_lock); |
| kfree(cs->jobs_in_queue_cnt); |
| free_cs_cmpl: |
| kfree(cs_cmpl); |
| free_cs: |
| kfree(cs); |
| hl_ctx_put(ctx); |
| return rc; |
| } |
| |
| static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_cs_job *job, *tmp; |
| |
| staged_cs_put(hdev, cs); |
| |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| complete_job(hdev, job); |
| } |
| |
| void hl_cs_rollback_all(struct hl_device *hdev) |
| { |
| int i; |
| struct hl_cs *cs, *tmp; |
| |
| flush_workqueue(hdev->sob_reset_wq); |
| |
| /* flush all completions before iterating over the CS mirror list in |
| * order to avoid a race with the release functions |
| */ |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| flush_workqueue(hdev->cq_wq[i]); |
| |
| /* Make sure we don't have leftovers in the CS mirror list */ |
| list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { |
| cs_get(cs); |
| cs->aborted = true; |
| dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", |
| cs->ctx->asid, cs->sequence); |
| cs_rollback(hdev, cs); |
| cs_put(cs); |
| } |
| } |
| |
| void hl_pending_cb_list_flush(struct hl_ctx *ctx) |
| { |
| struct hl_pending_cb *pending_cb, *tmp; |
| |
| list_for_each_entry_safe(pending_cb, tmp, |
| &ctx->pending_cb_list, cb_node) { |
| list_del(&pending_cb->cb_node); |
| hl_cb_put(pending_cb->cb); |
| kfree(pending_cb); |
| } |
| } |
| |
| static void |
| wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) |
| { |
| struct hl_user_pending_interrupt *pend; |
| |
| spin_lock(&interrupt->wait_list_lock); |
| list_for_each_entry(pend, &interrupt->wait_list_head, wait_list_node) { |
| pend->fence.error = -EIO; |
| complete_all(&pend->fence.completion); |
| } |
| spin_unlock(&interrupt->wait_list_lock); |
| } |
| |
| void hl_release_pending_user_interrupts(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_user_interrupt *interrupt; |
| int i; |
| |
| if (!prop->user_interrupt_count) |
| return; |
| |
| /* We iterate through the user interrupt requests and waking up all |
| * user threads waiting for interrupt completion. We iterate the |
| * list under a lock, this is why all user threads, once awake, |
| * will wait on the same lock and will release the waiting object upon |
| * unlock. |
| */ |
| |
| for (i = 0 ; i < prop->user_interrupt_count ; i++) { |
| interrupt = &hdev->user_interrupt[i]; |
| wake_pending_user_interrupt_threads(interrupt); |
| } |
| |
| interrupt = &hdev->common_user_interrupt; |
| wake_pending_user_interrupt_threads(interrupt); |
| } |
| |
| static void job_wq_completion(struct work_struct *work) |
| { |
| struct hl_cs_job *job = container_of(work, struct hl_cs_job, |
| finish_work); |
| struct hl_cs *cs = job->cs; |
| struct hl_device *hdev = cs->ctx->hdev; |
| |
| /* job is no longer needed */ |
| complete_job(hdev, job); |
| } |
| |
| static int validate_queue_index(struct hl_device *hdev, |
| struct hl_cs_chunk *chunk, |
| enum hl_queue_type *queue_type, |
| bool *is_kernel_allocated_cb) |
| { |
| struct asic_fixed_properties *asic = &hdev->asic_prop; |
| struct hw_queue_properties *hw_queue_prop; |
| |
| /* This must be checked here to prevent out-of-bounds access to |
| * hw_queues_props array |
| */ |
| if (chunk->queue_index >= asic->max_queues) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; |
| |
| if (hw_queue_prop->type == QUEUE_TYPE_NA) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| if (hw_queue_prop->driver_only) { |
| dev_err(hdev->dev, |
| "Queue index %d is restricted for the kernel driver\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| /* When hw queue type isn't QUEUE_TYPE_HW, |
| * USER_ALLOC_CB flag shall be referred as "don't care". |
| */ |
| if (hw_queue_prop->type == QUEUE_TYPE_HW) { |
| if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { |
| if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { |
| dev_err(hdev->dev, |
| "Queue index %d doesn't support user CB\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| *is_kernel_allocated_cb = false; |
| } else { |
| if (!(hw_queue_prop->cb_alloc_flags & |
| CB_ALLOC_KERNEL)) { |
| dev_err(hdev->dev, |
| "Queue index %d doesn't support kernel CB\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| *is_kernel_allocated_cb = true; |
| } |
| } else { |
| *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags |
| & CB_ALLOC_KERNEL); |
| } |
| |
| *queue_type = hw_queue_prop->type; |
| return 0; |
| } |
| |
| static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, |
| struct hl_cb_mgr *cb_mgr, |
| struct hl_cs_chunk *chunk) |
| { |
| struct hl_cb *cb; |
| u32 cb_handle; |
| |
| cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT); |
| |
| cb = hl_cb_get(hdev, cb_mgr, cb_handle); |
| if (!cb) { |
| dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle); |
| return NULL; |
| } |
| |
| if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { |
| dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); |
| goto release_cb; |
| } |
| |
| atomic_inc(&cb->cs_cnt); |
| |
| return cb; |
| |
| release_cb: |
| hl_cb_put(cb); |
| return NULL; |
| } |
| |
| struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, |
| enum hl_queue_type queue_type, bool is_kernel_allocated_cb) |
| { |
| struct hl_cs_job *job; |
| |
| job = kzalloc(sizeof(*job), GFP_ATOMIC); |
| if (!job) |
| job = kzalloc(sizeof(*job), GFP_KERNEL); |
| |
| if (!job) |
| return NULL; |
| |
| kref_init(&job->refcount); |
| job->queue_type = queue_type; |
| job->is_kernel_allocated_cb = is_kernel_allocated_cb; |
| |
| if (is_cb_patched(hdev, job)) |
| INIT_LIST_HEAD(&job->userptr_list); |
| |
| if (job->queue_type == QUEUE_TYPE_EXT) |
| INIT_WORK(&job->finish_work, job_wq_completion); |
| |
| return job; |
| } |
| |
| static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) |
| { |
| if (cs_type_flags & HL_CS_FLAGS_SIGNAL) |
| return CS_TYPE_SIGNAL; |
| else if (cs_type_flags & HL_CS_FLAGS_WAIT) |
| return CS_TYPE_WAIT; |
| else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) |
| return CS_TYPE_COLLECTIVE_WAIT; |
| else |
| return CS_TYPE_DEFAULT; |
| } |
| |
| static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| u32 cs_type_flags, num_chunks; |
| enum hl_device_status status; |
| enum hl_cs_type cs_type; |
| |
| if (!hl_device_operational(hdev, &status)) { |
| dev_warn_ratelimited(hdev->dev, |
| "Device is %s. Can't submit new CS\n", |
| hdev->status[status]); |
| return -EBUSY; |
| } |
| |
| if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && |
| !hdev->supports_staged_submission) { |
| dev_err(hdev->dev, "staged submission not supported"); |
| return -EPERM; |
| } |
| |
| cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; |
| |
| if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { |
| dev_err(hdev->dev, |
| "CS type flags are mutually exclusive, context %d\n", |
| ctx->asid); |
| return -EINVAL; |
| } |
| |
| cs_type = hl_cs_get_cs_type(cs_type_flags); |
| num_chunks = args->in.num_chunks_execute; |
| |
| if (unlikely((cs_type != CS_TYPE_DEFAULT) && |
| !hdev->supports_sync_stream)) { |
| dev_err(hdev->dev, "Sync stream CS is not supported\n"); |
| return -EINVAL; |
| } |
| |
| if (cs_type == CS_TYPE_DEFAULT) { |
| if (!num_chunks) { |
| dev_err(hdev->dev, |
| "Got execute CS with 0 chunks, context %d\n", |
| ctx->asid); |
| return -EINVAL; |
| } |
| } else if (num_chunks != 1) { |
| dev_err(hdev->dev, |
| "Sync stream CS mandates one chunk only, context %d\n", |
| ctx->asid); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int hl_cs_copy_chunk_array(struct hl_device *hdev, |
| struct hl_cs_chunk **cs_chunk_array, |
| void __user *chunks, u32 num_chunks, |
| struct hl_ctx *ctx) |
| { |
| u32 size_to_copy; |
| |
| if (num_chunks > HL_MAX_JOBS_PER_CS) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Number of chunks can NOT be larger than %d\n", |
| HL_MAX_JOBS_PER_CS); |
| return -EINVAL; |
| } |
| |
| *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), |
| GFP_ATOMIC); |
| if (!*cs_chunk_array) |
| *cs_chunk_array = kmalloc_array(num_chunks, |
| sizeof(**cs_chunk_array), GFP_KERNEL); |
| if (!*cs_chunk_array) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); |
| return -ENOMEM; |
| } |
| |
| size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); |
| if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); |
| kfree(*cs_chunk_array); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, |
| u64 sequence, u32 flags) |
| { |
| if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) |
| return 0; |
| |
| cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); |
| cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); |
| |
| if (cs->staged_first) { |
| /* Staged CS sequence is the first CS sequence */ |
| INIT_LIST_HEAD(&cs->staged_cs_node); |
| cs->staged_sequence = cs->sequence; |
| } else { |
| /* User sequence will be validated in 'hl_hw_queue_schedule_cs' |
| * under the cs_mirror_lock |
| */ |
| cs->staged_sequence = sequence; |
| } |
| |
| /* Increment CS reference if needed */ |
| staged_cs_get(hdev, cs); |
| |
| cs->staged_cs = true; |
| |
| return 0; |
| } |
| |
| static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, |
| u32 num_chunks, u64 *cs_seq, u32 flags, |
| u32 timeout) |
| { |
| bool staged_mid, int_queues_only = true; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_chunk *cs_chunk_array; |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_ctx *ctx = hpriv->ctx; |
| struct hl_cs_job *job; |
| struct hl_cs *cs; |
| struct hl_cb *cb; |
| u64 user_sequence; |
| int rc, i; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| user_sequence = *cs_seq; |
| *cs_seq = ULLONG_MAX; |
| |
| rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, |
| hpriv->ctx); |
| if (rc) |
| goto out; |
| |
| if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && |
| !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) |
| staged_mid = true; |
| else |
| staged_mid = false; |
| |
| rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, |
| staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, |
| timeout); |
| if (rc) |
| goto free_cs_chunk_array; |
| |
| *cs_seq = cs->sequence; |
| |
| hl_debugfs_add_cs(cs); |
| |
| rc = cs_staged_submission(hdev, cs, user_sequence, flags); |
| if (rc) |
| goto free_cs_object; |
| |
| /* Validate ALL the CS chunks before submitting the CS */ |
| for (i = 0 ; i < num_chunks ; i++) { |
| struct hl_cs_chunk *chunk = &cs_chunk_array[i]; |
| enum hl_queue_type queue_type; |
| bool is_kernel_allocated_cb; |
| |
| rc = validate_queue_index(hdev, chunk, &queue_type, |
| &is_kernel_allocated_cb); |
| if (rc) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| goto free_cs_object; |
| } |
| |
| if (is_kernel_allocated_cb) { |
| cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk); |
| if (!cb) { |
| atomic64_inc( |
| &ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| rc = -EINVAL; |
| goto free_cs_object; |
| } |
| } else { |
| cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; |
| } |
| |
| if (queue_type == QUEUE_TYPE_EXT || queue_type == QUEUE_TYPE_HW) |
| int_queues_only = false; |
| |
| job = hl_cs_allocate_job(hdev, queue_type, |
| is_kernel_allocated_cb); |
| if (!job) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| if (is_kernel_allocated_cb) |
| goto release_cb; |
| |
| goto free_cs_object; |
| } |
| |
| job->id = i + 1; |
| job->cs = cs; |
| job->user_cb = cb; |
| job->user_cb_size = chunk->cb_size; |
| job->hw_queue_id = chunk->queue_index; |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| /* |
| * Increment CS reference. When CS reference is 0, CS is |
| * done and can be signaled to user and free all its resources |
| * Only increment for JOB on external or H/W queues, because |
| * only for those JOBs we get completion |
| */ |
| if (cs_needs_completion(cs) && |
| (job->queue_type == QUEUE_TYPE_EXT || |
| job->queue_type == QUEUE_TYPE_HW)) |
| cs_get(cs); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = cs_parser(hpriv, job); |
| if (rc) { |
| atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); |
| atomic64_inc(&cntr->parsing_drop_cnt); |
| dev_err(hdev->dev, |
| "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", |
| cs->ctx->asid, cs->sequence, job->id, rc); |
| goto free_cs_object; |
| } |
| } |
| |
| /* We allow a CS with any queue type combination as long as it does |
| * not get a completion |
| */ |
| if (int_queues_only && cs_needs_completion(cs)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", |
| cs->ctx->asid, cs->sequence); |
| rc = -EINVAL; |
| goto free_cs_object; |
| } |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu to H/W queues, error %d\n", |
| cs->ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| rc = HL_CS_STATUS_SUCCESS; |
| goto put_cs; |
| |
| release_cb: |
| atomic_dec(&cb->cs_cnt); |
| hl_cb_put(cb); |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| *cs_seq = ULLONG_MAX; |
| /* The path below is both for good and erroneous exits */ |
| put_cs: |
| /* We finished with the CS in this function, so put the ref */ |
| cs_put(cs); |
| free_cs_chunk_array: |
| kfree(cs_chunk_array); |
| out: |
| return rc; |
| } |
| |
| static int pending_cb_create_job(struct hl_device *hdev, struct hl_ctx *ctx, |
| struct hl_cs *cs, struct hl_cb *cb, u32 size, u32 hw_queue_id) |
| { |
| struct hw_queue_properties *hw_queue_prop; |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_cs_job *job; |
| |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[hw_queue_id]; |
| cntr = &hdev->aggregated_cs_counters; |
| |
| job = hl_cs_allocate_job(hdev, hw_queue_prop->type, true); |
| if (!job) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| return -ENOMEM; |
| } |
| |
| job->id = 0; |
| job->cs = cs; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = size; |
| job->hw_queue_id = hw_queue_id; |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = job->user_cb_size; |
| |
| /* increment refcount as for external queues we get completion */ |
| cs_get(cs); |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| return 0; |
| } |
| |
| static int hl_submit_pending_cb(struct hl_fpriv *hpriv) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| struct hl_pending_cb *pending_cb, *tmp; |
| struct list_head local_cb_list; |
| struct hl_cs *cs; |
| struct hl_cb *cb; |
| u32 hw_queue_id; |
| u32 cb_size; |
| int process_list, rc = 0; |
| |
| if (list_empty(&ctx->pending_cb_list)) |
| return 0; |
| |
| process_list = atomic_cmpxchg(&ctx->thread_pending_cb_token, 1, 0); |
| |
| /* Only a single thread is allowed to process the list */ |
| if (!process_list) |
| return 0; |
| |
| if (list_empty(&ctx->pending_cb_list)) |
| goto free_pending_cb_token; |
| |
| /* move all list elements to a local list */ |
| INIT_LIST_HEAD(&local_cb_list); |
| spin_lock(&ctx->pending_cb_lock); |
| list_for_each_entry_safe(pending_cb, tmp, &ctx->pending_cb_list, |
| cb_node) |
| list_move_tail(&pending_cb->cb_node, &local_cb_list); |
| spin_unlock(&ctx->pending_cb_lock); |
| |
| rc = allocate_cs(hdev, ctx, CS_TYPE_DEFAULT, ULLONG_MAX, &cs, 0, |
| hdev->timeout_jiffies); |
| if (rc) |
| goto add_list_elements; |
| |
| hl_debugfs_add_cs(cs); |
| |
| /* Iterate through pending cb list, create jobs and add to CS */ |
| list_for_each_entry(pending_cb, &local_cb_list, cb_node) { |
| cb = pending_cb->cb; |
| cb_size = pending_cb->cb_size; |
| hw_queue_id = pending_cb->hw_queue_id; |
| |
| rc = pending_cb_create_job(hdev, ctx, cs, cb, cb_size, |
| hw_queue_id); |
| if (rc) |
| goto free_cs_object; |
| } |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu (%d)\n", |
| ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| /* pending cb was scheduled successfully */ |
| list_for_each_entry_safe(pending_cb, tmp, &local_cb_list, cb_node) { |
| list_del(&pending_cb->cb_node); |
| kfree(pending_cb); |
| } |
| |
| cs_put(cs); |
| |
| goto free_pending_cb_token; |
| |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| cs_put(cs); |
| add_list_elements: |
| spin_lock(&ctx->pending_cb_lock); |
| list_for_each_entry_safe_reverse(pending_cb, tmp, &local_cb_list, |
| cb_node) |
| list_move(&pending_cb->cb_node, &ctx->pending_cb_list); |
| spin_unlock(&ctx->pending_cb_lock); |
| free_pending_cb_token: |
| atomic_set(&ctx->thread_pending_cb_token, 1); |
| |
| return rc; |
| } |
| |
| static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, |
| u64 *cs_seq) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| bool need_soft_reset = false; |
| int rc = 0, do_ctx_switch; |
| void __user *chunks; |
| u32 num_chunks, tmp; |
| int ret; |
| |
| do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); |
| |
| if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { |
| mutex_lock(&hpriv->restore_phase_mutex); |
| |
| if (do_ctx_switch) { |
| rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); |
| if (rc) { |
| dev_err_ratelimited(hdev->dev, |
| "Failed to switch to context %d, rejecting CS! %d\n", |
| ctx->asid, rc); |
| /* |
| * If we timedout, or if the device is not IDLE |
| * while we want to do context-switch (-EBUSY), |
| * we need to soft-reset because QMAN is |
| * probably stuck. However, we can't call to |
| * reset here directly because of deadlock, so |
| * need to do it at the very end of this |
| * function |
| */ |
| if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) |
| need_soft_reset = true; |
| mutex_unlock(&hpriv->restore_phase_mutex); |
| goto out; |
| } |
| } |
| |
| hdev->asic_funcs->restore_phase_topology(hdev); |
| |
| chunks = (void __user *) (uintptr_t) args->in.chunks_restore; |
| num_chunks = args->in.num_chunks_restore; |
| |
| if (!num_chunks) { |
| dev_dbg(hdev->dev, |
| "Need to run restore phase but restore CS is empty\n"); |
| rc = 0; |
| } else { |
| rc = cs_ioctl_default(hpriv, chunks, num_chunks, |
| cs_seq, 0, hdev->timeout_jiffies); |
| } |
| |
| mutex_unlock(&hpriv->restore_phase_mutex); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to submit restore CS for context %d (%d)\n", |
| ctx->asid, rc); |
| goto out; |
| } |
| |
| /* Need to wait for restore completion before execution phase */ |
| if (num_chunks) { |
| enum hl_cs_wait_status status; |
| wait_again: |
| ret = _hl_cs_wait_ioctl(hdev, ctx, |
| jiffies_to_usecs(hdev->timeout_jiffies), |
| *cs_seq, &status, NULL); |
| if (ret) { |
| if (ret == -ERESTARTSYS) { |
| usleep_range(100, 200); |
| goto wait_again; |
| } |
| |
| dev_err(hdev->dev, |
| "Restore CS for context %d failed to complete %d\n", |
| ctx->asid, ret); |
| rc = -ENOEXEC; |
| goto out; |
| } |
| } |
| |
| ctx->thread_ctx_switch_wait_token = 1; |
| |
| } else if (!ctx->thread_ctx_switch_wait_token) { |
| rc = hl_poll_timeout_memory(hdev, |
| &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), |
| 100, jiffies_to_usecs(hdev->timeout_jiffies), false); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, |
| "context switch phase timeout (%d)\n", tmp); |
| goto out; |
| } |
| } |
| |
| out: |
| if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) |
| hl_device_reset(hdev, 0); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. |
| * if the SOB value reaches the max value move to the other SOB reserved |
| * to the queue. |
| * Note that this function must be called while hw_queues_lock is taken. |
| */ |
| int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, |
| struct hl_hw_sob **hw_sob, u32 count) |
| { |
| struct hl_sync_stream_properties *prop; |
| struct hl_hw_sob *sob = *hw_sob, *other_sob; |
| u8 other_sob_offset; |
| |
| prop = &hdev->kernel_queues[q_idx].sync_stream_prop; |
| |
| kref_get(&sob->kref); |
| |
| /* check for wraparound */ |
| if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { |
| /* |
| * Decrement as we reached the max value. |
| * The release function won't be called here as we've |
| * just incremented the refcount right before calling this |
| * function. |
| */ |
| kref_put(&sob->kref, hl_sob_reset_error); |
| |
| /* |
| * check the other sob value, if it still in use then fail |
| * otherwise make the switch |
| */ |
| other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; |
| other_sob = &prop->hw_sob[other_sob_offset]; |
| |
| if (kref_read(&other_sob->kref) != 1) { |
| dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", |
| q_idx); |
| return -EINVAL; |
| } |
| |
| prop->next_sob_val = 1; |
| |
| /* only two SOBs are currently in use */ |
| prop->curr_sob_offset = other_sob_offset; |
| *hw_sob = other_sob; |
| |
| dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", |
| prop->curr_sob_offset, q_idx); |
| } else { |
| prop->next_sob_val += count; |
| } |
| |
| return 0; |
| } |
| |
| static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, |
| struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx) |
| { |
| u64 *signal_seq_arr = NULL; |
| u32 size_to_copy, signal_seq_arr_len; |
| int rc = 0; |
| |
| signal_seq_arr_len = chunk->num_signal_seq_arr; |
| |
| /* currently only one signal seq is supported */ |
| if (signal_seq_arr_len != 1) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Wait for signal CS supports only one signal CS seq\n"); |
| return -EINVAL; |
| } |
| |
| signal_seq_arr = kmalloc_array(signal_seq_arr_len, |
| sizeof(*signal_seq_arr), |
| GFP_ATOMIC); |
| if (!signal_seq_arr) |
| signal_seq_arr = kmalloc_array(signal_seq_arr_len, |
| sizeof(*signal_seq_arr), |
| GFP_KERNEL); |
| if (!signal_seq_arr) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); |
| return -ENOMEM; |
| } |
| |
| size_to_copy = chunk->num_signal_seq_arr * sizeof(*signal_seq_arr); |
| if (copy_from_user(signal_seq_arr, |
| u64_to_user_ptr(chunk->signal_seq_arr), |
| size_to_copy)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Failed to copy signal seq array from user\n"); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| /* currently it is guaranteed to have only one signal seq */ |
| *signal_seq = signal_seq_arr[0]; |
| |
| out: |
| kfree(signal_seq_arr); |
| |
| return rc; |
| } |
| |
| static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, |
| struct hl_ctx *ctx, struct hl_cs *cs, enum hl_queue_type q_type, |
| u32 q_idx) |
| { |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_cs_job *job; |
| struct hl_cb *cb; |
| u32 cb_size; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| |
| job = hl_cs_allocate_job(hdev, q_type, true); |
| if (!job) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| return -ENOMEM; |
| } |
| |
| if (cs->type == CS_TYPE_WAIT) |
| cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); |
| else |
| cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); |
| |
| cb = hl_cb_kernel_create(hdev, cb_size, |
| q_type == QUEUE_TYPE_HW && hdev->mmu_enable); |
| if (!cb) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| kfree(job); |
| return -EFAULT; |
| } |
| |
| job->id = 0; |
| job->cs = cs; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = q_idx; |
| |
| /* |
| * No need in parsing, user CB is the patched CB. |
| * We call hl_cb_destroy() out of two reasons - we don't need the CB in |
| * the CB idr anymore and to decrement its refcount as it was |
| * incremented inside hl_cb_kernel_create(). |
| */ |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = job->user_cb_size; |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); |
| |
| /* increment refcount as for external queues we get completion */ |
| cs_get(cs); |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| return 0; |
| } |
| |
| static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, |
| void __user *chunks, u32 num_chunks, |
| u64 *cs_seq, u32 flags, u32 timeout) |
| { |
| struct hl_cs_chunk *cs_chunk_array, *chunk; |
| struct hw_queue_properties *hw_queue_prop; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_compl *sig_waitcs_cmpl; |
| u32 q_idx, collective_engine_id = 0; |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_fence *sig_fence = NULL; |
| struct hl_ctx *ctx = hpriv->ctx; |
| enum hl_queue_type q_type; |
| struct hl_cs *cs; |
| u64 signal_seq; |
| int rc; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| *cs_seq = ULLONG_MAX; |
| |
| rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, |
| ctx); |
| if (rc) |
| goto out; |
| |
| /* currently it is guaranteed to have only one chunk */ |
| chunk = &cs_chunk_array[0]; |
| |
| if (chunk->queue_index >= hdev->asic_prop.max_queues) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| q_idx = chunk->queue_index; |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; |
| q_type = hw_queue_prop->type; |
| |
| if (!hw_queue_prop->supports_sync_stream) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Queue index %d does not support sync stream operations\n", |
| q_idx); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { |
| if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Queue index %d is invalid\n", q_idx); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| collective_engine_id = chunk->collective_engine_id; |
| } |
| |
| if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_COLLECTIVE_WAIT) { |
| rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, ctx); |
| if (rc) |
| goto free_cs_chunk_array; |
| |
| sig_fence = hl_ctx_get_fence(ctx, signal_seq); |
| if (IS_ERR(sig_fence)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Failed to get signal CS with seq 0x%llx\n", |
| signal_seq); |
| rc = PTR_ERR(sig_fence); |
| goto free_cs_chunk_array; |
| } |
| |
| if (!sig_fence) { |
| /* signal CS already finished */ |
| rc = 0; |
| goto free_cs_chunk_array; |
| } |
| |
| sig_waitcs_cmpl = |
| container_of(sig_fence, struct hl_cs_compl, base_fence); |
| |
| if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "CS seq 0x%llx is not of a signal CS\n", |
| signal_seq); |
| hl_fence_put(sig_fence); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| if (completion_done(&sig_fence->completion)) { |
| /* signal CS already finished */ |
| hl_fence_put(sig_fence); |
| rc = 0; |
| goto free_cs_chunk_array; |
| } |
| } |
| |
| rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); |
| if (rc) { |
| if (cs_type == CS_TYPE_WAIT || |
| cs_type == CS_TYPE_COLLECTIVE_WAIT) |
| hl_fence_put(sig_fence); |
| goto free_cs_chunk_array; |
| } |
| |
| /* |
| * Save the signal CS fence for later initialization right before |
| * hanging the wait CS on the queue. |
| */ |
| if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_COLLECTIVE_WAIT) |
| cs->signal_fence = sig_fence; |
| |
| hl_debugfs_add_cs(cs); |
| |
| *cs_seq = cs->sequence; |
| |
| if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) |
| rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, |
| q_idx); |
| else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) |
| rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, |
| cs, q_idx, collective_engine_id); |
| else { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| rc = -EINVAL; |
| } |
| |
| if (rc) |
| goto free_cs_object; |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu to H/W queues, error %d\n", |
| ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| rc = HL_CS_STATUS_SUCCESS; |
| goto put_cs; |
| |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| *cs_seq = ULLONG_MAX; |
| /* The path below is both for good and erroneous exits */ |
| put_cs: |
| /* We finished with the CS in this function, so put the ref */ |
| cs_put(cs); |
| free_cs_chunk_array: |
| kfree(cs_chunk_array); |
| out: |
| return rc; |
| } |
| |
| int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| union hl_cs_args *args = data; |
| enum hl_cs_type cs_type; |
| u64 cs_seq = ULONG_MAX; |
| void __user *chunks; |
| u32 num_chunks, flags, timeout; |
| int rc; |
| |
| rc = hl_cs_sanity_checks(hpriv, args); |
| if (rc) |
| goto out; |
| |
| rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); |
| if (rc) |
| goto out; |
| |
| rc = hl_submit_pending_cb(hpriv); |
| if (rc) |
| goto out; |
| |
| cs_type = hl_cs_get_cs_type(args->in.cs_flags & |
| ~HL_CS_FLAGS_FORCE_RESTORE); |
| chunks = (void __user *) (uintptr_t) args->in.chunks_execute; |
| num_chunks = args->in.num_chunks_execute; |
| flags = args->in.cs_flags; |
| |
| /* In case this is a staged CS, user should supply the CS sequence */ |
| if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && |
| !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) |
| cs_seq = args->in.seq; |
| |
| timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT |
| ? msecs_to_jiffies(args->in.timeout * 1000) |
| : hpriv->hdev->timeout_jiffies; |
| |
| switch (cs_type) { |
| case CS_TYPE_SIGNAL: |
| case CS_TYPE_WAIT: |
| case CS_TYPE_COLLECTIVE_WAIT: |
| rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, |
| &cs_seq, args->in.cs_flags, timeout); |
| break; |
| default: |
| rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, |
| args->in.cs_flags, timeout); |
| break; |
| } |
| |
| out: |
| if (rc != -EAGAIN) { |
| memset(args, 0, sizeof(*args)); |
| args->out.status = rc; |
| args->out.seq = cs_seq; |
| } |
| |
| return rc; |
| } |
| |
| static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, |
| u64 timeout_us, u64 seq, |
| enum hl_cs_wait_status *status, s64 *timestamp) |
| { |
| struct hl_fence *fence; |
| unsigned long timeout; |
| int rc = 0; |
| long completion_rc; |
| |
| if (timestamp) |
| *timestamp = 0; |
| |
| if (timeout_us == MAX_SCHEDULE_TIMEOUT) |
| timeout = timeout_us; |
| else |
| timeout = usecs_to_jiffies(timeout_us); |
| |
| hl_ctx_get(hdev, ctx); |
| |
| fence = hl_ctx_get_fence(ctx, seq); |
| if (IS_ERR(fence)) { |
| rc = PTR_ERR(fence); |
| if (rc == -EINVAL) |
| dev_notice_ratelimited(hdev->dev, |
| "Can't wait on CS %llu because current CS is at seq %llu\n", |
| seq, ctx->cs_sequence); |
| } else if (fence) { |
| if (!timeout_us) |
| completion_rc = completion_done(&fence->completion); |
| else |
| completion_rc = |
| wait_for_completion_interruptible_timeout( |
| &fence->completion, timeout); |
| |
| if (completion_rc > 0) { |
| *status = CS_WAIT_STATUS_COMPLETED; |
| if (timestamp) |
| *timestamp = ktime_to_ns(fence->timestamp); |
| } else { |
| *status = CS_WAIT_STATUS_BUSY; |
| } |
| |
| if (fence->error == -ETIMEDOUT) |
| rc = -ETIMEDOUT; |
| else if (fence->error == -EIO) |
| rc = -EIO; |
| |
| hl_fence_put(fence); |
| } else { |
| dev_dbg(hdev->dev, |
| "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", |
| seq, ctx->cs_sequence); |
| *status = CS_WAIT_STATUS_GONE; |
| } |
| |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| union hl_wait_cs_args *args = data; |
| enum hl_cs_wait_status status; |
| u64 seq = args->in.seq; |
| s64 timestamp; |
| int rc; |
| |
| rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, |
| &status, ×tamp); |
| |
| memset(args, 0, sizeof(*args)); |
| |
| if (rc) { |
| if (rc == -ERESTARTSYS) { |
| dev_err_ratelimited(hdev->dev, |
| "user process got signal while waiting for CS handle %llu\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_INTERRUPTED; |
| rc = -EINTR; |
| } else if (rc == -ETIMEDOUT) { |
| dev_err_ratelimited(hdev->dev, |
| "CS %llu has timed-out while user process is waiting for it\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; |
| } else if (rc == -EIO) { |
| dev_err_ratelimited(hdev->dev, |
| "CS %llu has been aborted while user process is waiting for it\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_ABORTED; |
| } |
| return rc; |
| } |
| |
| if (timestamp) { |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; |
| args->out.timestamp_nsec = timestamp; |
| } |
| |
| switch (status) { |
| case CS_WAIT_STATUS_GONE: |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; |
| fallthrough; |
| case CS_WAIT_STATUS_COMPLETED: |
| args->out.status = HL_WAIT_CS_STATUS_COMPLETED; |
| break; |
| case CS_WAIT_STATUS_BUSY: |
| default: |
| args->out.status = HL_WAIT_CS_STATUS_BUSY; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, |
| u32 timeout_us, u64 user_address, |
| u32 target_value, u16 interrupt_offset, |
| enum hl_cs_wait_status *status) |
| { |
| struct hl_user_pending_interrupt *pend; |
| struct hl_user_interrupt *interrupt; |
| unsigned long timeout; |
| long completion_rc; |
| u32 completion_value; |
| int rc = 0; |
| |
| if (timeout_us == U32_MAX) |
| timeout = timeout_us; |
| else |
| timeout = usecs_to_jiffies(timeout_us); |
| |
| hl_ctx_get(hdev, ctx); |
| |
| pend = kmalloc(sizeof(*pend), GFP_KERNEL); |
| if (!pend) { |
| hl_ctx_put(ctx); |
| return -ENOMEM; |
| } |
| |
| hl_fence_init(&pend->fence, ULONG_MAX); |
| |
| if (interrupt_offset == HL_COMMON_USER_INTERRUPT_ID) |
| interrupt = &hdev->common_user_interrupt; |
| else |
| interrupt = &hdev->user_interrupt[interrupt_offset]; |
| |
| spin_lock(&interrupt->wait_list_lock); |
| if (!hl_device_operational(hdev, NULL)) { |
| rc = -EPERM; |
| goto unlock_and_free_fence; |
| } |
| |
| if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 4)) { |
| dev_err(hdev->dev, |
| "Failed to copy completion value from user\n"); |
| rc = -EFAULT; |
| goto unlock_and_free_fence; |
| } |
| |
| if (completion_value >= target_value) |
| *status = CS_WAIT_STATUS_COMPLETED; |
| else |
| *status = CS_WAIT_STATUS_BUSY; |
| |
| if (!timeout_us || (*status == CS_WAIT_STATUS_COMPLETED)) |
| goto unlock_and_free_fence; |
| |
| /* Add pending user interrupt to relevant list for the interrupt |
| * handler to monitor |
| */ |
| list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); |
| spin_unlock(&interrupt->wait_list_lock); |
| |
| wait_again: |
| /* Wait for interrupt handler to signal completion */ |
| completion_rc = |
| wait_for_completion_interruptible_timeout( |
| &pend->fence.completion, timeout); |
| |
| /* If timeout did not expire we need to perform the comparison. |
| * If comparison fails, keep waiting until timeout expires |
| */ |
| if (completion_rc > 0) { |
| if (copy_from_user(&completion_value, |
| u64_to_user_ptr(user_address), 4)) { |
| dev_err(hdev->dev, |
| "Failed to copy completion value from user\n"); |
| rc = -EFAULT; |
| goto remove_pending_user_interrupt; |
| } |
| |
| if (completion_value >= target_value) { |
| *status = CS_WAIT_STATUS_COMPLETED; |
| } else { |
| timeout = completion_rc; |
| goto wait_again; |
| } |
| } else { |
| *status = CS_WAIT_STATUS_BUSY; |
| } |
| |
| remove_pending_user_interrupt: |
| spin_lock(&interrupt->wait_list_lock); |
| list_del(&pend->wait_list_node); |
| |
| unlock_and_free_fence: |
| spin_unlock(&interrupt->wait_list_lock); |
| kfree(pend); |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| u16 interrupt_id, interrupt_offset, first_interrupt, last_interrupt; |
| struct hl_device *hdev = hpriv->hdev; |
| struct asic_fixed_properties *prop; |
| union hl_wait_cs_args *args = data; |
| enum hl_cs_wait_status status; |
| int rc; |
| |
| prop = &hdev->asic_prop; |
| |
| if (!prop->user_interrupt_count) { |
| dev_err(hdev->dev, "no user interrupts allowed"); |
| return -EPERM; |
| } |
| |
| interrupt_id = |
| FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); |
| |
| first_interrupt = prop->first_available_user_msix_interrupt; |
| last_interrupt = prop->first_available_user_msix_interrupt + |
| prop->user_interrupt_count - 1; |
| |
| if ((interrupt_id < first_interrupt || interrupt_id > last_interrupt) && |
| interrupt_id != HL_COMMON_USER_INTERRUPT_ID) { |
| dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); |
| return -EINVAL; |
| } |
| |
| if (interrupt_id == HL_COMMON_USER_INTERRUPT_ID) |
| interrupt_offset = HL_COMMON_USER_INTERRUPT_ID; |
| else |
| interrupt_offset = interrupt_id - first_interrupt; |
| |
| rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, |
| args->in.interrupt_timeout_us, args->in.addr, |
| args->in.target, interrupt_offset, &status); |
| |
| memset(args, 0, sizeof(*args)); |
| |
| if (rc) { |
| dev_err_ratelimited(hdev->dev, |
| "interrupt_wait_ioctl failed (%d)\n", rc); |
| |
| return rc; |
| } |
| |
| switch (status) { |
| case CS_WAIT_STATUS_COMPLETED: |
| args->out.status = HL_WAIT_CS_STATUS_COMPLETED; |
| break; |
| case CS_WAIT_STATUS_BUSY: |
| default: |
| args->out.status = HL_WAIT_CS_STATUS_BUSY; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| union hl_wait_cs_args *args = data; |
| u32 flags = args->in.flags; |
| int rc; |
| |
| if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) |
| rc = hl_interrupt_wait_ioctl(hpriv, data); |
| else |
| rc = hl_cs_wait_ioctl(hpriv, data); |
| |
| return rc; |
| } |