| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * drivers/media/i2c/ccs/ccs-reg-access.c |
| * |
| * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors |
| * |
| * Copyright (C) 2020 Intel Corporation |
| * Copyright (C) 2011--2012 Nokia Corporation |
| * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> |
| */ |
| |
| #include <asm/unaligned.h> |
| |
| #include <linux/delay.h> |
| #include <linux/i2c.h> |
| |
| #include "ccs.h" |
| #include "ccs-limits.h" |
| |
| static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat) |
| { |
| s32 exp; |
| u64 man; |
| |
| if (phloat >= 0x80000000) { |
| dev_err(&client->dev, "this is a negative number\n"); |
| return 0; |
| } |
| |
| if (phloat == 0x7f800000) |
| return ~0; /* Inf. */ |
| |
| if ((phloat & 0x7f800000) == 0x7f800000) { |
| dev_err(&client->dev, "NaN or other special number\n"); |
| return 0; |
| } |
| |
| /* Valid cases begin here */ |
| if (phloat == 0) |
| return 0; /* Valid zero */ |
| |
| if (phloat > 0x4f800000) |
| return ~0; /* larger than 4294967295 */ |
| |
| /* |
| * Unbias exponent (note how phloat is now guaranteed to |
| * have 0 in the high bit) |
| */ |
| exp = ((int32_t)phloat >> 23) - 127; |
| |
| /* Extract mantissa, add missing '1' bit and it's in MHz */ |
| man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL; |
| |
| if (exp < 0) |
| man >>= -exp; |
| else |
| man <<= exp; |
| |
| man >>= 23; /* Remove mantissa bias */ |
| |
| return man & 0xffffffff; |
| } |
| |
| |
| /* |
| * Read a 8/16/32-bit i2c register. The value is returned in 'val'. |
| * Returns zero if successful, or non-zero otherwise. |
| */ |
| static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len, |
| u32 *val) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct i2c_msg msg; |
| unsigned char data_buf[sizeof(u32)] = { 0 }; |
| unsigned char offset_buf[sizeof(u16)]; |
| int r; |
| |
| if (len > sizeof(data_buf)) |
| return -EINVAL; |
| |
| msg.addr = client->addr; |
| msg.flags = 0; |
| msg.len = sizeof(offset_buf); |
| msg.buf = offset_buf; |
| put_unaligned_be16(reg, offset_buf); |
| |
| r = i2c_transfer(client->adapter, &msg, 1); |
| if (r != 1) { |
| if (r >= 0) |
| r = -EBUSY; |
| goto err; |
| } |
| |
| msg.len = len; |
| msg.flags = I2C_M_RD; |
| msg.buf = &data_buf[sizeof(data_buf) - len]; |
| |
| r = i2c_transfer(client->adapter, &msg, 1); |
| if (r != 1) { |
| if (r >= 0) |
| r = -EBUSY; |
| goto err; |
| } |
| |
| *val = get_unaligned_be32(data_buf); |
| |
| return 0; |
| |
| err: |
| dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r); |
| |
| return r; |
| } |
| |
| /* Read a register using 8-bit access only. */ |
| static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg, |
| u16 len, u32 *val) |
| { |
| unsigned int i; |
| int rval; |
| |
| *val = 0; |
| |
| for (i = 0; i < len; i++) { |
| u32 val8; |
| |
| rval = ____ccs_read_addr(sensor, reg + i, 1, &val8); |
| if (rval < 0) |
| return rval; |
| *val |= val8 << ((len - i - 1) << 3); |
| } |
| |
| return 0; |
| } |
| |
| unsigned int ccs_reg_width(u32 reg) |
| { |
| if (reg & CCS_FL_16BIT) |
| return sizeof(u16); |
| if (reg & CCS_FL_32BIT) |
| return sizeof(u32); |
| |
| return sizeof(u8); |
| } |
| |
| static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val) |
| { |
| if (val >> 10 > U32_MAX / 15625) { |
| dev_warn(&client->dev, "value %u overflows!\n", val); |
| return U32_MAX; |
| } |
| |
| return ((val >> 10) * 15625) + |
| (val & GENMASK(9, 0)) * 15625 / 1024; |
| } |
| |
| u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| |
| if (reg & CCS_FL_FLOAT_IREAL) { |
| if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) & |
| CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL) |
| val = ireal32_to_u32_mul_1000000(client, val); |
| else |
| val = float_to_u32_mul_1000000(client, val); |
| } else if (reg & CCS_FL_IREAL) { |
| val = ireal32_to_u32_mul_1000000(client, val); |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Read a 8/16/32-bit i2c register. The value is returned in 'val'. |
| * Returns zero if successful, or non-zero otherwise. |
| */ |
| static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val, |
| bool only8, bool conv) |
| { |
| unsigned int len = ccs_reg_width(reg); |
| int rval; |
| |
| if (!only8) |
| rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val); |
| else |
| rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len, |
| val); |
| if (rval < 0) |
| return rval; |
| |
| if (!conv) |
| return 0; |
| |
| *val = ccs_reg_conv(sensor, reg, *val); |
| |
| return 0; |
| } |
| |
| static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs, |
| u32 reg, u32 *val) |
| { |
| unsigned int width = ccs_reg_width(reg); |
| size_t i; |
| |
| for (i = 0; i < num_regs; i++, regs++) { |
| u8 *data; |
| |
| if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width) |
| continue; |
| |
| if (regs->addr > CCS_REG_ADDR(reg)) |
| break; |
| |
| data = ®s->value[CCS_REG_ADDR(reg) - regs->addr]; |
| |
| switch (width) { |
| case sizeof(u8): |
| *val = *data; |
| break; |
| case sizeof(u16): |
| *val = get_unaligned_be16(data); |
| break; |
| case sizeof(u32): |
| *val = get_unaligned_be32(data); |
| break; |
| default: |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| return -ENOENT; |
| } |
| |
| static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val) |
| { |
| if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs, |
| sensor->sdata.num_sensor_read_only_regs, |
| reg, val)) |
| return 0; |
| |
| return __ccs_read_data(sensor->mdata.module_read_only_regs, |
| sensor->mdata.num_module_read_only_regs, |
| reg, val); |
| } |
| |
| static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val, |
| bool force8, bool quirk, bool conv, bool data) |
| { |
| int rval; |
| |
| if (data) { |
| rval = ccs_read_data(sensor, reg, val); |
| if (!rval) |
| return 0; |
| } |
| |
| if (quirk) { |
| *val = 0; |
| rval = ccs_call_quirk(sensor, reg_access, false, ®, val); |
| if (rval == -ENOIOCTLCMD) |
| return 0; |
| if (rval < 0) |
| return rval; |
| |
| if (force8) |
| return __ccs_read_addr(sensor, reg, val, true, conv); |
| } |
| |
| return __ccs_read_addr(sensor, reg, val, |
| ccs_needs_quirk(sensor, |
| CCS_QUIRK_FLAG_8BIT_READ_ONLY), |
| conv); |
| } |
| |
| int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val) |
| { |
| return ccs_read_addr_raw(sensor, reg, val, false, true, true, true); |
| } |
| |
| int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val) |
| { |
| return ccs_read_addr_raw(sensor, reg, val, true, true, true, true); |
| } |
| |
| int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val) |
| { |
| return ccs_read_addr_raw(sensor, reg, val, false, true, false, true); |
| } |
| |
| static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg) |
| { |
| unsigned int retries; |
| int r; |
| |
| for (retries = 0; retries < 10; retries++) { |
| /* |
| * Due to unknown reason sensor stops responding. This |
| * loop is a temporaty solution until the root cause |
| * is found. |
| */ |
| r = i2c_transfer(client->adapter, msg, 1); |
| if (r != 1) { |
| usleep_range(1000, 2000); |
| continue; |
| } |
| |
| if (retries) |
| dev_err(&client->dev, |
| "sensor i2c stall encountered. retries: %d\n", |
| retries); |
| return 0; |
| } |
| |
| return r; |
| } |
| |
| int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct i2c_msg msg; |
| unsigned char data[6]; |
| unsigned int len = ccs_reg_width(reg); |
| int r; |
| |
| if (len > sizeof(data) - 2) |
| return -EINVAL; |
| |
| msg.addr = client->addr; |
| msg.flags = 0; /* Write */ |
| msg.len = 2 + len; |
| msg.buf = data; |
| |
| put_unaligned_be16(CCS_REG_ADDR(reg), data); |
| put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2); |
| |
| dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n", |
| CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1, |
| ccs_reg_width(reg) << 1, val, val); |
| |
| r = ccs_write_retry(client, &msg); |
| if (r) |
| dev_err(&client->dev, |
| "wrote 0x%x to offset 0x%x error %d\n", val, |
| CCS_REG_ADDR(reg), r); |
| |
| return r; |
| } |
| |
| /* |
| * Write to a 8/16-bit register. |
| * Returns zero if successful, or non-zero otherwise. |
| */ |
| int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val) |
| { |
| int rval; |
| |
| rval = ccs_call_quirk(sensor, reg_access, true, ®, &val); |
| if (rval == -ENOIOCTLCMD) |
| return 0; |
| if (rval < 0) |
| return rval; |
| |
| return ccs_write_addr_no_quirk(sensor, reg, val); |
| } |
| |
| #define MAX_WRITE_LEN 32U |
| |
| int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs, |
| size_t num_regs) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned char buf[2 + MAX_WRITE_LEN]; |
| struct i2c_msg msg = { |
| .addr = client->addr, |
| .buf = buf, |
| }; |
| size_t i; |
| |
| for (i = 0; i < num_regs; i++, regs++) { |
| unsigned char *regdata = regs->value; |
| unsigned int j; |
| |
| for (j = 0; j < regs->len; |
| j += msg.len - 2, regdata += msg.len - 2) { |
| char printbuf[(MAX_WRITE_LEN << 1) + |
| 1 /* \0 */] = { 0 }; |
| int rval; |
| |
| msg.len = min(regs->len - j, MAX_WRITE_LEN); |
| |
| bin2hex(printbuf, regdata, msg.len); |
| dev_dbg(&client->dev, |
| "writing msr reg 0x%4.4x value 0x%s\n", |
| regs->addr + j, printbuf); |
| |
| put_unaligned_be16(regs->addr + j, buf); |
| memcpy(buf + 2, regdata, msg.len); |
| |
| msg.len += 2; |
| |
| rval = ccs_write_retry(client, &msg); |
| if (rval) { |
| dev_err(&client->dev, |
| "error writing %u octets to address 0x%4.4x\n", |
| msg.len, regs->addr + j); |
| return rval; |
| } |
| } |
| } |
| |
| return 0; |
| } |