blob: 87847c380051688a27192cbb317de8644461943b [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of AMD Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD PCIe NTB Linux driver
*
* Contact Information:
* Xiangliang Yu <Xiangliang.Yu@amd.com>
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/ntb.h>
#include "ntb_hw_amd.h"
#define NTB_NAME "ntb_hw_amd"
#define NTB_DESC "AMD(R) PCI-E Non-Transparent Bridge Driver"
#define NTB_VER "1.0"
MODULE_DESCRIPTION(NTB_DESC);
MODULE_VERSION(NTB_VER);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("AMD Inc.");
static const struct file_operations amd_ntb_debugfs_info;
static struct dentry *debugfs_dir;
static int ndev_mw_to_bar(struct amd_ntb_dev *ndev, int idx)
{
if (idx < 0 || idx > ndev->mw_count)
return -EINVAL;
return ndev->dev_data->mw_idx << idx;
}
static int amd_ntb_mw_count(struct ntb_dev *ntb, int pidx)
{
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
return ntb_ndev(ntb)->mw_count;
}
static int amd_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int idx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
if (addr_align)
*addr_align = SZ_4K;
if (size_align)
*size_align = 1;
if (size_max)
*size_max = pci_resource_len(ndev->ntb.pdev, bar);
return 0;
}
static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx,
dma_addr_t addr, resource_size_t size)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
unsigned long xlat_reg, limit_reg = 0;
resource_size_t mw_size;
void __iomem *mmio, *peer_mmio;
u64 base_addr, limit, reg_val;
int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
mw_size = pci_resource_len(ntb->pdev, bar);
/* make sure the range fits in the usable mw size */
if (size > mw_size)
return -EINVAL;
mmio = ndev->self_mmio;
peer_mmio = ndev->peer_mmio;
base_addr = pci_resource_start(ntb->pdev, bar);
if (bar != 1) {
xlat_reg = AMD_BAR23XLAT_OFFSET + ((bar - 2) << 2);
limit_reg = AMD_BAR23LMT_OFFSET + ((bar - 2) << 2);
/* Set the limit if supported */
limit = size;
/* set and verify setting the translation address */
write64(addr, peer_mmio + xlat_reg);
reg_val = read64(peer_mmio + xlat_reg);
if (reg_val != addr) {
write64(0, peer_mmio + xlat_reg);
return -EIO;
}
/* set and verify setting the limit */
write64(limit, peer_mmio + limit_reg);
reg_val = read64(peer_mmio + limit_reg);
if (reg_val != limit) {
write64(base_addr, mmio + limit_reg);
write64(0, peer_mmio + xlat_reg);
return -EIO;
}
} else {
xlat_reg = AMD_BAR1XLAT_OFFSET;
limit_reg = AMD_BAR1LMT_OFFSET;
/* Set the limit if supported */
limit = size;
/* set and verify setting the translation address */
write64(addr, peer_mmio + xlat_reg);
reg_val = read64(peer_mmio + xlat_reg);
if (reg_val != addr) {
write64(0, peer_mmio + xlat_reg);
return -EIO;
}
/* set and verify setting the limit */
writel(limit, peer_mmio + limit_reg);
reg_val = readl(peer_mmio + limit_reg);
if (reg_val != limit) {
writel(base_addr, mmio + limit_reg);
writel(0, peer_mmio + xlat_reg);
return -EIO;
}
}
return 0;
}
static int amd_ntb_get_link_status(struct amd_ntb_dev *ndev)
{
struct pci_dev *pdev = NULL;
struct pci_dev *pci_swds = NULL;
struct pci_dev *pci_swus = NULL;
u32 stat;
int rc;
if (ndev->ntb.topo == NTB_TOPO_SEC) {
/* Locate the pointer to Downstream Switch for this device */
pci_swds = pci_upstream_bridge(ndev->ntb.pdev);
if (pci_swds) {
/*
* Locate the pointer to Upstream Switch for
* the Downstream Switch.
*/
pci_swus = pci_upstream_bridge(pci_swds);
if (pci_swus) {
rc = pcie_capability_read_dword(pci_swus,
PCI_EXP_LNKCTL,
&stat);
if (rc)
return 0;
} else {
return 0;
}
} else {
return 0;
}
} else if (ndev->ntb.topo == NTB_TOPO_PRI) {
/*
* For NTB primary, we simply read the Link Status and control
* register of the NTB device itself.
*/
pdev = ndev->ntb.pdev;
rc = pcie_capability_read_dword(pdev, PCI_EXP_LNKCTL, &stat);
if (rc)
return 0;
} else {
/* Catch all for everything else */
return 0;
}
ndev->lnk_sta = stat;
return 1;
}
static int amd_link_is_up(struct amd_ntb_dev *ndev)
{
int ret;
/*
* We consider the link to be up under two conditions:
*
* - When a link-up event is received. This is indicated by
* AMD_LINK_UP_EVENT set in peer_sta.
* - When driver on both sides of the link have been loaded.
* This is indicated by bit 1 being set in the peer
* SIDEINFO register.
*
* This function should return 1 when the latter of the above
* two conditions is true.
*
* Now consider the sequence of events - Link-Up event occurs,
* then the peer side driver loads. In this case, we would have
* received LINK_UP event and bit 1 of peer SIDEINFO is also
* set. What happens now if the link goes down? Bit 1 of
* peer SIDEINFO remains set, but LINK_DOWN bit is set in
* peer_sta. So we should return 0 from this function. Not only
* that, we clear bit 1 of peer SIDEINFO to 0, since the peer
* side driver did not even get a chance to clear it before
* the link went down. This can be the case of surprise link
* removal.
*
* LINK_UP event will always occur before the peer side driver
* gets loaded the very first time. So there can be a case when
* the LINK_UP event has occurred, but the peer side driver hasn't
* yet loaded. We return 0 in that case.
*
* There is also a special case when the primary side driver is
* unloaded and then loaded again. Since there is no change in
* the status of NTB secondary in this case, there is no Link-Up
* or Link-Down notification received. We recognize this condition
* with peer_sta being set to 0.
*
* If bit 1 of peer SIDEINFO register is not set, then we
* simply return 0 irrespective of the link up or down status
* set in peer_sta.
*/
ret = amd_poll_link(ndev);
if (ret) {
/*
* We need to check the below only for NTB primary. For NTB
* secondary, simply checking the result of PSIDE_INFO
* register will suffice.
*/
if (ndev->ntb.topo == NTB_TOPO_PRI) {
if ((ndev->peer_sta & AMD_LINK_UP_EVENT) ||
(ndev->peer_sta == 0))
return ret;
else if (ndev->peer_sta & AMD_LINK_DOWN_EVENT) {
/* Clear peer sideinfo register */
amd_clear_side_info_reg(ndev, true);
return 0;
}
} else { /* NTB_TOPO_SEC */
return ret;
}
}
return 0;
}
static u64 amd_ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed,
enum ntb_width *width)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int ret = 0;
if (amd_link_is_up(ndev)) {
if (speed)
*speed = NTB_LNK_STA_SPEED(ndev->lnk_sta);
if (width)
*width = NTB_LNK_STA_WIDTH(ndev->lnk_sta);
dev_dbg(&ntb->pdev->dev, "link is up.\n");
ret = 1;
} else {
if (speed)
*speed = NTB_SPEED_NONE;
if (width)
*width = NTB_WIDTH_NONE;
dev_dbg(&ntb->pdev->dev, "link is down.\n");
}
return ret;
}
static int amd_ntb_link_enable(struct ntb_dev *ntb,
enum ntb_speed max_speed,
enum ntb_width max_width)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
/* Enable event interrupt */
ndev->int_mask &= ~AMD_EVENT_INTMASK;
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL;
dev_dbg(&ntb->pdev->dev, "Enabling Link.\n");
return 0;
}
static int amd_ntb_link_disable(struct ntb_dev *ntb)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
/* Disable event interrupt */
ndev->int_mask |= AMD_EVENT_INTMASK;
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL;
dev_dbg(&ntb->pdev->dev, "Enabling Link.\n");
return 0;
}
static int amd_ntb_peer_mw_count(struct ntb_dev *ntb)
{
/* The same as for inbound MWs */
return ntb_ndev(ntb)->mw_count;
}
static int amd_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int idx,
phys_addr_t *base, resource_size_t *size)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int bar;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
if (base)
*base = pci_resource_start(ndev->ntb.pdev, bar);
if (size)
*size = pci_resource_len(ndev->ntb.pdev, bar);
return 0;
}
static u64 amd_ntb_db_valid_mask(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->db_valid_mask;
}
static int amd_ntb_db_vector_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->db_count;
}
static u64 amd_ntb_db_vector_mask(struct ntb_dev *ntb, int db_vector)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
if (db_vector < 0 || db_vector > ndev->db_count)
return 0;
return ntb_ndev(ntb)->db_valid_mask & (1ULL << db_vector);
}
static u64 amd_ntb_db_read(struct ntb_dev *ntb)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
return (u64)readw(mmio + AMD_DBSTAT_OFFSET);
}
static int amd_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
writew((u16)db_bits, mmio + AMD_DBSTAT_OFFSET);
return 0;
}
static int amd_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
unsigned long flags;
if (db_bits & ~ndev->db_valid_mask)
return -EINVAL;
spin_lock_irqsave(&ndev->db_mask_lock, flags);
ndev->db_mask |= db_bits;
writew((u16)ndev->db_mask, mmio + AMD_DBMASK_OFFSET);
spin_unlock_irqrestore(&ndev->db_mask_lock, flags);
return 0;
}
static int amd_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
unsigned long flags;
if (db_bits & ~ndev->db_valid_mask)
return -EINVAL;
spin_lock_irqsave(&ndev->db_mask_lock, flags);
ndev->db_mask &= ~db_bits;
writew((u16)ndev->db_mask, mmio + AMD_DBMASK_OFFSET);
spin_unlock_irqrestore(&ndev->db_mask_lock, flags);
return 0;
}
static int amd_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
writew((u16)db_bits, mmio + AMD_DBREQ_OFFSET);
return 0;
}
static int amd_ntb_spad_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->spad_count;
}
static u32 amd_ntb_spad_read(struct ntb_dev *ntb, int idx)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count)
return 0;
offset = ndev->self_spad + (idx << 2);
return readl(mmio + AMD_SPAD_OFFSET + offset);
}
static int amd_ntb_spad_write(struct ntb_dev *ntb,
int idx, u32 val)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count)
return -EINVAL;
offset = ndev->self_spad + (idx << 2);
writel(val, mmio + AMD_SPAD_OFFSET + offset);
return 0;
}
static u32 amd_ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (sidx < 0 || sidx >= ndev->spad_count)
return -EINVAL;
offset = ndev->peer_spad + (sidx << 2);
return readl(mmio + AMD_SPAD_OFFSET + offset);
}
static int amd_ntb_peer_spad_write(struct ntb_dev *ntb, int pidx,
int sidx, u32 val)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (sidx < 0 || sidx >= ndev->spad_count)
return -EINVAL;
offset = ndev->peer_spad + (sidx << 2);
writel(val, mmio + AMD_SPAD_OFFSET + offset);
return 0;
}
static const struct ntb_dev_ops amd_ntb_ops = {
.mw_count = amd_ntb_mw_count,
.mw_get_align = amd_ntb_mw_get_align,
.mw_set_trans = amd_ntb_mw_set_trans,
.peer_mw_count = amd_ntb_peer_mw_count,
.peer_mw_get_addr = amd_ntb_peer_mw_get_addr,
.link_is_up = amd_ntb_link_is_up,
.link_enable = amd_ntb_link_enable,
.link_disable = amd_ntb_link_disable,
.db_valid_mask = amd_ntb_db_valid_mask,
.db_vector_count = amd_ntb_db_vector_count,
.db_vector_mask = amd_ntb_db_vector_mask,
.db_read = amd_ntb_db_read,
.db_clear = amd_ntb_db_clear,
.db_set_mask = amd_ntb_db_set_mask,
.db_clear_mask = amd_ntb_db_clear_mask,
.peer_db_set = amd_ntb_peer_db_set,
.spad_count = amd_ntb_spad_count,
.spad_read = amd_ntb_spad_read,
.spad_write = amd_ntb_spad_write,
.peer_spad_read = amd_ntb_peer_spad_read,
.peer_spad_write = amd_ntb_peer_spad_write,
};
static void amd_ack_smu(struct amd_ntb_dev *ndev, u32 bit)
{
void __iomem *mmio = ndev->self_mmio;
int reg;
reg = readl(mmio + AMD_SMUACK_OFFSET);
reg |= bit;
writel(reg, mmio + AMD_SMUACK_OFFSET);
}
static void amd_handle_event(struct amd_ntb_dev *ndev, int vec)
{
void __iomem *mmio = ndev->self_mmio;
struct device *dev = &ndev->ntb.pdev->dev;
u32 status;
status = readl(mmio + AMD_INTSTAT_OFFSET);
if (!(status & AMD_EVENT_INTMASK))
return;
dev_dbg(dev, "status = 0x%x and vec = %d\n", status, vec);
status &= AMD_EVENT_INTMASK;
switch (status) {
case AMD_PEER_FLUSH_EVENT:
ndev->peer_sta |= AMD_PEER_FLUSH_EVENT;
dev_info(dev, "Flush is done.\n");
break;
case AMD_PEER_RESET_EVENT:
case AMD_LINK_DOWN_EVENT:
ndev->peer_sta |= status;
if (status == AMD_LINK_DOWN_EVENT)
ndev->peer_sta &= ~AMD_LINK_UP_EVENT;
amd_ack_smu(ndev, status);
/* link down first */
ntb_link_event(&ndev->ntb);
/* polling peer status */
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
break;
case AMD_PEER_D3_EVENT:
case AMD_PEER_PMETO_EVENT:
case AMD_LINK_UP_EVENT:
ndev->peer_sta |= status;
if (status == AMD_LINK_UP_EVENT)
ndev->peer_sta &= ~AMD_LINK_DOWN_EVENT;
else if (status == AMD_PEER_D3_EVENT)
ndev->peer_sta &= ~AMD_PEER_D0_EVENT;
amd_ack_smu(ndev, status);
/* link down */
ntb_link_event(&ndev->ntb);
break;
case AMD_PEER_D0_EVENT:
mmio = ndev->peer_mmio;
status = readl(mmio + AMD_PMESTAT_OFFSET);
/* check if this is WAKEUP event */
if (status & 0x1)
dev_info(dev, "Wakeup is done.\n");
ndev->peer_sta |= AMD_PEER_D0_EVENT;
ndev->peer_sta &= ~AMD_PEER_D3_EVENT;
amd_ack_smu(ndev, AMD_PEER_D0_EVENT);
/* start a timer to poll link status */
schedule_delayed_work(&ndev->hb_timer,
AMD_LINK_HB_TIMEOUT);
break;
default:
dev_info(dev, "event status = 0x%x.\n", status);
break;
}
/* Clear the interrupt status */
writel(status, mmio + AMD_INTSTAT_OFFSET);
}
static void amd_handle_db_event(struct amd_ntb_dev *ndev, int vec)
{
struct device *dev = &ndev->ntb.pdev->dev;
u64 status;
status = amd_ntb_db_read(&ndev->ntb);
dev_dbg(dev, "status = 0x%llx and vec = %d\n", status, vec);
/*
* Since we had reserved highest order bit of DB for signaling peer of
* a special event, this is the only status bit we should be concerned
* here now.
*/
if (status & BIT(ndev->db_last_bit)) {
ntb_db_clear(&ndev->ntb, BIT(ndev->db_last_bit));
/* send link down event notification */
ntb_link_event(&ndev->ntb);
/*
* If we are here, that means the peer has signalled a special
* event which notifies that the peer driver has been
* un-loaded for some reason. Since there is a chance that the
* peer will load its driver again sometime, we schedule link
* polling routine.
*/
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
}
}
static irqreturn_t ndev_interrupt(struct amd_ntb_dev *ndev, int vec)
{
dev_dbg(&ndev->ntb.pdev->dev, "vec %d\n", vec);
if (vec > (AMD_DB_CNT - 1) || (ndev->msix_vec_count == 1))
amd_handle_event(ndev, vec);
if (vec < AMD_DB_CNT) {
amd_handle_db_event(ndev, vec);
ntb_db_event(&ndev->ntb, vec);
}
return IRQ_HANDLED;
}
static irqreturn_t ndev_vec_isr(int irq, void *dev)
{
struct amd_ntb_vec *nvec = dev;
return ndev_interrupt(nvec->ndev, nvec->num);
}
static irqreturn_t ndev_irq_isr(int irq, void *dev)
{
struct amd_ntb_dev *ndev = dev;
return ndev_interrupt(ndev, irq - ndev->ntb.pdev->irq);
}
static int ndev_init_isr(struct amd_ntb_dev *ndev,
int msix_min, int msix_max)
{
struct pci_dev *pdev;
int rc, i, msix_count, node;
pdev = ndev->ntb.pdev;
node = dev_to_node(&pdev->dev);
ndev->db_mask = ndev->db_valid_mask;
/* Try to set up msix irq */
ndev->vec = kcalloc_node(msix_max, sizeof(*ndev->vec),
GFP_KERNEL, node);
if (!ndev->vec)
goto err_msix_vec_alloc;
ndev->msix = kcalloc_node(msix_max, sizeof(*ndev->msix),
GFP_KERNEL, node);
if (!ndev->msix)
goto err_msix_alloc;
for (i = 0; i < msix_max; ++i)
ndev->msix[i].entry = i;
msix_count = pci_enable_msix_range(pdev, ndev->msix,
msix_min, msix_max);
if (msix_count < 0)
goto err_msix_enable;
/* NOTE: Disable MSIX if msix count is less than 16 because of
* hardware limitation.
*/
if (msix_count < msix_min) {
pci_disable_msix(pdev);
goto err_msix_enable;
}
for (i = 0; i < msix_count; ++i) {
ndev->vec[i].ndev = ndev;
ndev->vec[i].num = i;
rc = request_irq(ndev->msix[i].vector, ndev_vec_isr, 0,
"ndev_vec_isr", &ndev->vec[i]);
if (rc)
goto err_msix_request;
}
dev_dbg(&pdev->dev, "Using msix interrupts\n");
ndev->db_count = msix_min;
ndev->msix_vec_count = msix_max;
return 0;
err_msix_request:
while (i-- > 0)
free_irq(ndev->msix[i].vector, &ndev->vec[i]);
pci_disable_msix(pdev);
err_msix_enable:
kfree(ndev->msix);
err_msix_alloc:
kfree(ndev->vec);
err_msix_vec_alloc:
ndev->msix = NULL;
ndev->vec = NULL;
/* Try to set up msi irq */
rc = pci_enable_msi(pdev);
if (rc)
goto err_msi_enable;
rc = request_irq(pdev->irq, ndev_irq_isr, 0,
"ndev_irq_isr", ndev);
if (rc)
goto err_msi_request;
dev_dbg(&pdev->dev, "Using msi interrupts\n");
ndev->db_count = 1;
ndev->msix_vec_count = 1;
return 0;
err_msi_request:
pci_disable_msi(pdev);
err_msi_enable:
/* Try to set up intx irq */
pci_intx(pdev, 1);
rc = request_irq(pdev->irq, ndev_irq_isr, IRQF_SHARED,
"ndev_irq_isr", ndev);
if (rc)
goto err_intx_request;
dev_dbg(&pdev->dev, "Using intx interrupts\n");
ndev->db_count = 1;
ndev->msix_vec_count = 1;
return 0;
err_intx_request:
return rc;
}
static void ndev_deinit_isr(struct amd_ntb_dev *ndev)
{
struct pci_dev *pdev;
void __iomem *mmio = ndev->self_mmio;
int i;
pdev = ndev->ntb.pdev;
/* Mask all doorbell interrupts */
ndev->db_mask = ndev->db_valid_mask;
writel(ndev->db_mask, mmio + AMD_DBMASK_OFFSET);
if (ndev->msix) {
i = ndev->msix_vec_count;
while (i--)
free_irq(ndev->msix[i].vector, &ndev->vec[i]);
pci_disable_msix(pdev);
kfree(ndev->msix);
kfree(ndev->vec);
} else {
free_irq(pdev->irq, ndev);
if (pci_dev_msi_enabled(pdev))
pci_disable_msi(pdev);
else
pci_intx(pdev, 0);
}
}
static ssize_t ndev_debugfs_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct amd_ntb_dev *ndev;
void __iomem *mmio;
char *buf;
size_t buf_size;
ssize_t ret, off;
union { u64 v64; u32 v32; u16 v16; } u;
ndev = filp->private_data;
mmio = ndev->self_mmio;
buf_size = min(count, 0x800ul);
buf = kmalloc(buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
off = 0;
off += scnprintf(buf + off, buf_size - off,
"NTB Device Information:\n");
off += scnprintf(buf + off, buf_size - off,
"Connection Topology -\t%s\n",
ntb_topo_string(ndev->ntb.topo));
off += scnprintf(buf + off, buf_size - off,
"LNK STA -\t\t%#06x\n", ndev->lnk_sta);
if (!amd_link_is_up(ndev)) {
off += scnprintf(buf + off, buf_size - off,
"Link Status -\t\tDown\n");
} else {
off += scnprintf(buf + off, buf_size - off,
"Link Status -\t\tUp\n");
off += scnprintf(buf + off, buf_size - off,
"Link Speed -\t\tPCI-E Gen %u\n",
NTB_LNK_STA_SPEED(ndev->lnk_sta));
off += scnprintf(buf + off, buf_size - off,
"Link Width -\t\tx%u\n",
NTB_LNK_STA_WIDTH(ndev->lnk_sta));
}
off += scnprintf(buf + off, buf_size - off,
"Memory Window Count -\t%u\n", ndev->mw_count);
off += scnprintf(buf + off, buf_size - off,
"Scratchpad Count -\t%u\n", ndev->spad_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Count -\t%u\n", ndev->db_count);
off += scnprintf(buf + off, buf_size - off,
"MSIX Vector Count -\t%u\n", ndev->msix_vec_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Valid Mask -\t%#llx\n", ndev->db_valid_mask);
u.v32 = readl(ndev->self_mmio + AMD_DBMASK_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Mask -\t\t\t%#06x\n", u.v32);
u.v32 = readl(mmio + AMD_DBSTAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Bell -\t\t\t%#06x\n", u.v32);
off += scnprintf(buf + off, buf_size - off,
"\nNTB Incoming XLAT:\n");
u.v64 = read64(mmio + AMD_BAR1XLAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"XLAT1 -\t\t%#018llx\n", u.v64);
u.v64 = read64(ndev->self_mmio + AMD_BAR23XLAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"XLAT23 -\t\t%#018llx\n", u.v64);
u.v64 = read64(ndev->self_mmio + AMD_BAR45XLAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"XLAT45 -\t\t%#018llx\n", u.v64);
u.v32 = readl(mmio + AMD_BAR1LMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"LMT1 -\t\t\t%#06x\n", u.v32);
u.v64 = read64(ndev->self_mmio + AMD_BAR23LMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"LMT23 -\t\t\t%#018llx\n", u.v64);
u.v64 = read64(ndev->self_mmio + AMD_BAR45LMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"LMT45 -\t\t\t%#018llx\n", u.v64);
ret = simple_read_from_buffer(ubuf, count, offp, buf, off);
kfree(buf);
return ret;
}
static void ndev_init_debugfs(struct amd_ntb_dev *ndev)
{
if (!debugfs_dir) {
ndev->debugfs_dir = NULL;
ndev->debugfs_info = NULL;
} else {
ndev->debugfs_dir =
debugfs_create_dir(pci_name(ndev->ntb.pdev),
debugfs_dir);
if (!ndev->debugfs_dir)
ndev->debugfs_info = NULL;
else
ndev->debugfs_info =
debugfs_create_file("info", S_IRUSR,
ndev->debugfs_dir, ndev,
&amd_ntb_debugfs_info);
}
}
static void ndev_deinit_debugfs(struct amd_ntb_dev *ndev)
{
debugfs_remove_recursive(ndev->debugfs_dir);
}
static inline void ndev_init_struct(struct amd_ntb_dev *ndev,
struct pci_dev *pdev)
{
ndev->ntb.pdev = pdev;
ndev->ntb.topo = NTB_TOPO_NONE;
ndev->ntb.ops = &amd_ntb_ops;
ndev->int_mask = AMD_EVENT_INTMASK;
spin_lock_init(&ndev->db_mask_lock);
}
static int amd_poll_link(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->peer_mmio;
u32 reg;
reg = readl(mmio + AMD_SIDEINFO_OFFSET);
reg &= AMD_SIDE_READY;
dev_dbg(&ndev->ntb.pdev->dev, "%s: reg_val = 0x%x.\n", __func__, reg);
ndev->cntl_sta = reg;
amd_ntb_get_link_status(ndev);
return ndev->cntl_sta;
}
static void amd_link_hb(struct work_struct *work)
{
struct amd_ntb_dev *ndev = hb_ndev(work);
if (amd_poll_link(ndev))
ntb_link_event(&ndev->ntb);
if (!amd_link_is_up(ndev))
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
}
static int amd_init_isr(struct amd_ntb_dev *ndev)
{
return ndev_init_isr(ndev, AMD_DB_CNT, AMD_MSIX_VECTOR_CNT);
}
static void amd_set_side_info_reg(struct amd_ntb_dev *ndev, bool peer)
{
void __iomem *mmio = NULL;
unsigned int reg;
if (peer)
mmio = ndev->peer_mmio;
else
mmio = ndev->self_mmio;
reg = readl(mmio + AMD_SIDEINFO_OFFSET);
if (!(reg & AMD_SIDE_READY)) {
reg |= AMD_SIDE_READY;
writel(reg, mmio + AMD_SIDEINFO_OFFSET);
}
}
static void amd_clear_side_info_reg(struct amd_ntb_dev *ndev, bool peer)
{
void __iomem *mmio = NULL;
unsigned int reg;
if (peer)
mmio = ndev->peer_mmio;
else
mmio = ndev->self_mmio;
reg = readl(mmio + AMD_SIDEINFO_OFFSET);
if (reg & AMD_SIDE_READY) {
reg &= ~AMD_SIDE_READY;
writel(reg, mmio + AMD_SIDEINFO_OFFSET);
readl(mmio + AMD_SIDEINFO_OFFSET);
}
}
static void amd_init_side_info(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
u32 ntb_ctl;
amd_set_side_info_reg(ndev, false);
ntb_ctl = readl(mmio + AMD_CNTL_OFFSET);
ntb_ctl |= (PMM_REG_CTL | SMM_REG_CTL);
writel(ntb_ctl, mmio + AMD_CNTL_OFFSET);
}
static void amd_deinit_side_info(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
u32 ntb_ctl;
amd_clear_side_info_reg(ndev, false);
ntb_ctl = readl(mmio + AMD_CNTL_OFFSET);
ntb_ctl &= ~(PMM_REG_CTL | SMM_REG_CTL);
writel(ntb_ctl, mmio + AMD_CNTL_OFFSET);
}
static int amd_init_ntb(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
ndev->mw_count = ndev->dev_data->mw_count;
ndev->spad_count = AMD_SPADS_CNT;
ndev->db_count = AMD_DB_CNT;
switch (ndev->ntb.topo) {
case NTB_TOPO_PRI:
case NTB_TOPO_SEC:
ndev->spad_count >>= 1;
if (ndev->ntb.topo == NTB_TOPO_PRI) {
ndev->self_spad = 0;
ndev->peer_spad = 0x20;
} else {
ndev->self_spad = 0x20;
ndev->peer_spad = 0;
}
INIT_DELAYED_WORK(&ndev->hb_timer, amd_link_hb);
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
break;
default:
dev_err(&ndev->ntb.pdev->dev,
"AMD NTB does not support B2B mode.\n");
return -EINVAL;
}
/* Mask event interrupts */
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
return 0;
}
static enum ntb_topo amd_get_topo(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
u32 info;
info = readl(mmio + AMD_SIDEINFO_OFFSET);
if (info & AMD_SIDE_MASK)
return NTB_TOPO_SEC;
else
return NTB_TOPO_PRI;
}
static int amd_init_dev(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
struct pci_dev *pdev;
int rc = 0;
pdev = ndev->ntb.pdev;
ndev->ntb.topo = amd_get_topo(ndev);
dev_dbg(&pdev->dev, "AMD NTB topo is %s\n",
ntb_topo_string(ndev->ntb.topo));
rc = amd_init_ntb(ndev);
if (rc)
return rc;
rc = amd_init_isr(ndev);
if (rc) {
dev_err(&pdev->dev, "fail to init isr.\n");
return rc;
}
ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
/*
* We reserve the highest order bit of the DB register which will
* be used to notify peer when the driver on this side is being
* un-loaded.
*/
ndev->db_last_bit =
find_last_bit((unsigned long *)&ndev->db_valid_mask,
hweight64(ndev->db_valid_mask));
writew((u16)~BIT(ndev->db_last_bit), mmio + AMD_DBMASK_OFFSET);
/*
* Since now there is one less bit to account for, the DB count
* and DB mask should be adjusted accordingly.
*/
ndev->db_count -= 1;
ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
/* Enable Link-Up and Link-Down event interrupts */
ndev->int_mask &= ~(AMD_LINK_UP_EVENT | AMD_LINK_DOWN_EVENT);
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
return 0;
}
static void amd_deinit_dev(struct amd_ntb_dev *ndev)
{
cancel_delayed_work_sync(&ndev->hb_timer);
ndev_deinit_isr(ndev);
}
static int amd_ntb_init_pci(struct amd_ntb_dev *ndev,
struct pci_dev *pdev)
{
int rc;
pci_set_drvdata(pdev, ndev);
rc = pci_enable_device(pdev);
if (rc)
goto err_pci_enable;
rc = pci_request_regions(pdev, NTB_NAME);
if (rc)
goto err_pci_regions;
pci_set_master(pdev);
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc) {
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (rc)
goto err_dma_mask;
dev_warn(&pdev->dev, "Cannot DMA highmem\n");
}
ndev->self_mmio = pci_iomap(pdev, 0, 0);
if (!ndev->self_mmio) {
rc = -EIO;
goto err_dma_mask;
}
ndev->peer_mmio = ndev->self_mmio + AMD_PEER_OFFSET;
return 0;
err_dma_mask:
pci_clear_master(pdev);
pci_release_regions(pdev);
err_pci_regions:
pci_disable_device(pdev);
err_pci_enable:
pci_set_drvdata(pdev, NULL);
return rc;
}
static void amd_ntb_deinit_pci(struct amd_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
pci_iounmap(pdev, ndev->self_mmio);
pci_clear_master(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int amd_ntb_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct amd_ntb_dev *ndev;
int rc, node;
node = dev_to_node(&pdev->dev);
ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node);
if (!ndev) {
rc = -ENOMEM;
goto err_ndev;
}
ndev->dev_data = (struct ntb_dev_data *)id->driver_data;
ndev_init_struct(ndev, pdev);
rc = amd_ntb_init_pci(ndev, pdev);
if (rc)
goto err_init_pci;
rc = amd_init_dev(ndev);
if (rc)
goto err_init_dev;
/* write side info */
amd_init_side_info(ndev);
amd_poll_link(ndev);
ndev_init_debugfs(ndev);
rc = ntb_register_device(&ndev->ntb);
if (rc)
goto err_register;
dev_info(&pdev->dev, "NTB device registered.\n");
return 0;
err_register:
ndev_deinit_debugfs(ndev);
amd_deinit_dev(ndev);
err_init_dev:
amd_ntb_deinit_pci(ndev);
err_init_pci:
kfree(ndev);
err_ndev:
return rc;
}
static void amd_ntb_pci_remove(struct pci_dev *pdev)
{
struct amd_ntb_dev *ndev = pci_get_drvdata(pdev);
/*
* Clear the READY bit in SIDEINFO register before sending DB event
* to the peer. This will make sure that when the peer handles the
* DB event, it correctly reads this bit as being 0.
*/
amd_deinit_side_info(ndev);
ntb_peer_db_set(&ndev->ntb, BIT_ULL(ndev->db_last_bit));
ntb_unregister_device(&ndev->ntb);
ndev_deinit_debugfs(ndev);
amd_deinit_dev(ndev);
amd_ntb_deinit_pci(ndev);
kfree(ndev);
}
static void amd_ntb_pci_shutdown(struct pci_dev *pdev)
{
struct amd_ntb_dev *ndev = pci_get_drvdata(pdev);
/* Send link down notification */
ntb_link_event(&ndev->ntb);
amd_deinit_side_info(ndev);
ntb_peer_db_set(&ndev->ntb, BIT_ULL(ndev->db_last_bit));
ntb_unregister_device(&ndev->ntb);
ndev_deinit_debugfs(ndev);
amd_deinit_dev(ndev);
amd_ntb_deinit_pci(ndev);
kfree(ndev);
}
static const struct file_operations amd_ntb_debugfs_info = {
.owner = THIS_MODULE,
.open = simple_open,
.read = ndev_debugfs_read,
};
static const struct ntb_dev_data dev_data[] = {
{ /* for device 145b */
.mw_count = 3,
.mw_idx = 1,
},
{ /* for device 148b */
.mw_count = 2,
.mw_idx = 2,
},
};
static const struct pci_device_id amd_ntb_pci_tbl[] = {
{ PCI_VDEVICE(AMD, 0x145b), (kernel_ulong_t)&dev_data[0] },
{ PCI_VDEVICE(AMD, 0x148b), (kernel_ulong_t)&dev_data[1] },
{ PCI_VDEVICE(HYGON, 0x145b), (kernel_ulong_t)&dev_data[0] },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, amd_ntb_pci_tbl);
static struct pci_driver amd_ntb_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = amd_ntb_pci_tbl,
.probe = amd_ntb_pci_probe,
.remove = amd_ntb_pci_remove,
.shutdown = amd_ntb_pci_shutdown,
};
static int __init amd_ntb_pci_driver_init(void)
{
pr_info("%s %s\n", NTB_DESC, NTB_VER);
if (debugfs_initialized())
debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
return pci_register_driver(&amd_ntb_pci_driver);
}
module_init(amd_ntb_pci_driver_init);
static void __exit amd_ntb_pci_driver_exit(void)
{
pci_unregister_driver(&amd_ntb_pci_driver);
debugfs_remove_recursive(debugfs_dir);
}
module_exit(amd_ntb_pci_driver_exit);