| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * |
| * Bluetooth support for Intel PCIe devices |
| * |
| * Copyright (C) 2024 Intel Corporation |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/firmware.h> |
| #include <linux/pci.h> |
| #include <linux/wait.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| |
| #include "btintel.h" |
| #include "btintel_pcie.h" |
| |
| #define VERSION "0.1" |
| |
| #define BTINTEL_PCI_DEVICE(dev, subdev) \ |
| .vendor = PCI_VENDOR_ID_INTEL, \ |
| .device = (dev), \ |
| .subvendor = PCI_ANY_ID, \ |
| .subdevice = (subdev), \ |
| .driver_data = 0 |
| |
| #define POLL_INTERVAL_US 10 |
| |
| /* Intel Bluetooth PCIe device id table */ |
| static const struct pci_device_id btintel_pcie_table[] = { |
| { BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) }, |
| { 0 } |
| }; |
| MODULE_DEVICE_TABLE(pci, btintel_pcie_table); |
| |
| /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */ |
| #define BTINTEL_PCIE_HCI_TYPE_LEN 4 |
| #define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001 |
| #define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002 |
| #define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003 |
| #define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004 |
| |
| static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia, |
| u16 queue_num) |
| { |
| bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u", |
| queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ", |
| ia->tr_hia[queue_num], ia->tr_tia[queue_num], |
| ia->cr_hia[queue_num], ia->cr_tia[queue_num]); |
| } |
| |
| static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1, |
| u16 index) |
| { |
| bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x", |
| index, urbd1->frbd_tag, urbd1->status, urbd1->fixed); |
| } |
| |
| static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset, |
| u32 bits, u32 mask, int timeout_us) |
| { |
| int t = 0; |
| u32 reg; |
| |
| do { |
| reg = btintel_pcie_rd_reg32(data, offset); |
| |
| if ((reg & mask) == (bits & mask)) |
| return t; |
| udelay(POLL_INTERVAL_US); |
| t += POLL_INTERVAL_US; |
| } while (t < timeout_us); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry) |
| { |
| u8 queue = entry->entry; |
| struct msix_entry *entries = entry - queue; |
| |
| return container_of(entries, struct btintel_pcie_data, msix_entries[0]); |
| } |
| |
| /* Set the doorbell for TXQ to notify the device that @index (actually index-1) |
| * of the TFD is updated and ready to transmit. |
| */ |
| static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index) |
| { |
| u32 val; |
| |
| val = index; |
| val |= (BTINTEL_PCIE_TX_DB_VEC << 16); |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); |
| } |
| |
| /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer |
| * descriptor) with the data length and the DMA address of the data buffer. |
| */ |
| static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index, |
| struct sk_buff *skb) |
| { |
| struct data_buf *buf; |
| struct tfd *tfd; |
| |
| tfd = &txq->tfds[tfd_index]; |
| memset(tfd, 0, sizeof(*tfd)); |
| |
| buf = &txq->bufs[tfd_index]; |
| |
| tfd->size = skb->len; |
| tfd->addr = buf->data_p_addr; |
| |
| /* Copy the outgoing data to DMA buffer */ |
| memcpy(buf->data, skb->data, tfd->size); |
| } |
| |
| static int btintel_pcie_send_sync(struct btintel_pcie_data *data, |
| struct sk_buff *skb) |
| { |
| int ret; |
| u16 tfd_index; |
| struct txq *txq = &data->txq; |
| |
| tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM]; |
| |
| if (tfd_index > txq->count) |
| return -ERANGE; |
| |
| /* Prepare for TX. It updates the TFD with the length of data and |
| * address of the DMA buffer, and copy the data to the DMA buffer |
| */ |
| btintel_pcie_prepare_tx(txq, tfd_index, skb); |
| |
| tfd_index = (tfd_index + 1) % txq->count; |
| data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index; |
| |
| /* Arm wait event condition */ |
| data->tx_wait_done = false; |
| |
| /* Set the doorbell to notify the device */ |
| btintel_pcie_set_tx_db(data, tfd_index); |
| |
| /* Wait for the complete interrupt - URBD0 */ |
| ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done, |
| msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS)); |
| if (!ret) |
| return -ETIME; |
| |
| return 0; |
| } |
| |
| /* Set the doorbell for RXQ to notify the device that @index (actually index-1) |
| * is available to receive the data |
| */ |
| static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index) |
| { |
| u32 val; |
| |
| val = index; |
| val |= (BTINTEL_PCIE_RX_DB_VEC << 16); |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); |
| } |
| |
| /* Update the FRBD (free buffer descriptor) with the @frbd_index and the |
| * DMA address of the free buffer. |
| */ |
| static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index) |
| { |
| struct data_buf *buf; |
| struct frbd *frbd; |
| |
| /* Get the buffer of the FRBD for DMA */ |
| buf = &rxq->bufs[frbd_index]; |
| |
| frbd = &rxq->frbds[frbd_index]; |
| memset(frbd, 0, sizeof(*frbd)); |
| |
| /* Update FRBD */ |
| frbd->tag = frbd_index; |
| frbd->addr = buf->data_p_addr; |
| } |
| |
| static int btintel_pcie_submit_rx(struct btintel_pcie_data *data) |
| { |
| u16 frbd_index; |
| struct rxq *rxq = &data->rxq; |
| |
| frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM]; |
| |
| if (frbd_index > rxq->count) |
| return -ERANGE; |
| |
| /* Prepare for RX submit. It updates the FRBD with the address of DMA |
| * buffer |
| */ |
| btintel_pcie_prepare_rx(rxq, frbd_index); |
| |
| frbd_index = (frbd_index + 1) % rxq->count; |
| data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index; |
| ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); |
| |
| /* Set the doorbell to notify the device */ |
| btintel_pcie_set_rx_db(data, frbd_index); |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_start_rx(struct btintel_pcie_data *data) |
| { |
| int i, ret; |
| |
| for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) { |
| ret = btintel_pcie_submit_rx(data); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_reset_ia(struct btintel_pcie_data *data) |
| { |
| memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| } |
| |
| static void btintel_pcie_reset_bt(struct btintel_pcie_data *data) |
| { |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, |
| BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); |
| } |
| |
| /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in |
| * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with |
| * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0. |
| * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage |
| * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG. |
| */ |
| static int btintel_pcie_enable_bt(struct btintel_pcie_data *data) |
| { |
| int err; |
| |
| data->gp0_received = false; |
| |
| /* Update the DMA address of CI struct to CSR */ |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG, |
| data->ci_p_addr & 0xffffffff); |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG, |
| (u64)data->ci_p_addr >> 32); |
| |
| /* Reset the cached value of boot stage. it is updated by the MSI-X |
| * gp0 interrupt handler. |
| */ |
| data->boot_stage_cache = 0x0; |
| |
| /* Set MAC_INIT bit to start primary bootloader */ |
| btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); |
| |
| /* Wait until MAC_ACCESS is granted */ |
| err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, |
| BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US); |
| if (err < 0) |
| return -ENODEV; |
| |
| /* MAC is ready. Enable BT FUNC */ |
| btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, |
| BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); |
| |
| btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| /* wait for interrupt from the device after booting up to primary |
| * bootloader. |
| */ |
| err = wait_event_timeout(data->gp0_wait_q, data->gp0_received, |
| msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT)); |
| if (!err) |
| return -ETIME; |
| |
| /* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */ |
| if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in |
| * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response. |
| */ |
| static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data) |
| { |
| u32 reg; |
| |
| /* This interrupt is for three different causes and it is not easy to |
| * know what causes the interrupt. So, it compares each register value |
| * with cached value and update it before it wake up the queue. |
| */ |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); |
| if (reg != data->boot_stage_cache) |
| data->boot_stage_cache = reg; |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG); |
| if (reg != data->img_resp_cache) |
| data->img_resp_cache = reg; |
| |
| data->gp0_received = true; |
| |
| /* If the boot stage is OP or IML, reset IA and start RX again */ |
| if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW || |
| data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) { |
| btintel_pcie_reset_ia(data); |
| btintel_pcie_start_rx(data); |
| } |
| |
| wake_up(&data->gp0_wait_q); |
| } |
| |
| /* This function handles the MSX-X interrupt for rx queue 0 which is for TX |
| */ |
| static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data) |
| { |
| u16 cr_tia, cr_hia; |
| struct txq *txq; |
| struct urbd0 *urbd0; |
| |
| cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; |
| cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; |
| |
| if (cr_tia == cr_hia) |
| return; |
| |
| txq = &data->txq; |
| |
| while (cr_tia != cr_hia) { |
| data->tx_wait_done = true; |
| wake_up(&data->tx_wait_q); |
| |
| urbd0 = &txq->urbd0s[cr_tia]; |
| |
| if (urbd0->tfd_index > txq->count) |
| return; |
| |
| cr_tia = (cr_tia + 1) % txq->count; |
| data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia; |
| ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM); |
| } |
| } |
| |
| /* Process the received rx data |
| * It check the frame header to identify the data type and create skb |
| * and calling HCI API |
| */ |
| static int btintel_pcie_recv_frame(struct btintel_pcie_data *data, |
| struct sk_buff *skb) |
| { |
| int ret; |
| u8 pkt_type; |
| u16 plen; |
| u32 pcie_pkt_type; |
| struct sk_buff *new_skb; |
| void *pdata; |
| struct hci_dev *hdev = data->hdev; |
| |
| spin_lock(&data->hci_rx_lock); |
| |
| /* The first 4 bytes indicates the Intel PCIe specific packet type */ |
| pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN); |
| if (!data) { |
| bt_dev_err(hdev, "Corrupted packet received"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| |
| pcie_pkt_type = get_unaligned_le32(pdata); |
| |
| switch (pcie_pkt_type) { |
| case BTINTEL_PCIE_HCI_ACL_PKT: |
| if (skb->len >= HCI_ACL_HDR_SIZE) { |
| plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen); |
| pkt_type = HCI_ACLDATA_PKT; |
| } else { |
| bt_dev_err(hdev, "ACL packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| |
| case BTINTEL_PCIE_HCI_SCO_PKT: |
| if (skb->len >= HCI_SCO_HDR_SIZE) { |
| plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen; |
| pkt_type = HCI_SCODATA_PKT; |
| } else { |
| bt_dev_err(hdev, "SCO packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| |
| case BTINTEL_PCIE_HCI_EVT_PKT: |
| if (skb->len >= HCI_EVENT_HDR_SIZE) { |
| plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen; |
| pkt_type = HCI_EVENT_PKT; |
| } else { |
| bt_dev_err(hdev, "Event packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| default: |
| bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x", |
| pcie_pkt_type); |
| ret = -EINVAL; |
| goto exit_error; |
| } |
| |
| if (skb->len < plen) { |
| bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x", |
| pkt_type); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| |
| bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen); |
| |
| new_skb = bt_skb_alloc(plen, GFP_ATOMIC); |
| if (!new_skb) { |
| bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u", |
| skb->len); |
| ret = -ENOMEM; |
| goto exit_error; |
| } |
| |
| hci_skb_pkt_type(new_skb) = pkt_type; |
| skb_put_data(new_skb, skb->data, plen); |
| hdev->stat.byte_rx += plen; |
| |
| if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT) |
| ret = btintel_recv_event(hdev, new_skb); |
| else |
| ret = hci_recv_frame(hdev, new_skb); |
| |
| exit_error: |
| if (ret) |
| hdev->stat.err_rx++; |
| |
| spin_unlock(&data->hci_rx_lock); |
| |
| return ret; |
| } |
| |
| static void btintel_pcie_rx_work(struct work_struct *work) |
| { |
| struct btintel_pcie_data *data = container_of(work, |
| struct btintel_pcie_data, rx_work); |
| struct sk_buff *skb; |
| int err; |
| struct hci_dev *hdev = data->hdev; |
| |
| /* Process the sk_buf in queue and send to the HCI layer */ |
| while ((skb = skb_dequeue(&data->rx_skb_q))) { |
| err = btintel_pcie_recv_frame(data, skb); |
| if (err) |
| bt_dev_err(hdev, "Failed to send received frame: %d", |
| err); |
| kfree_skb(skb); |
| } |
| } |
| |
| /* create sk_buff with data and save it to queue and start RX work */ |
| static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status, |
| void *buf) |
| { |
| int ret, len; |
| struct rfh_hdr *rfh_hdr; |
| struct sk_buff *skb; |
| |
| rfh_hdr = buf; |
| |
| len = rfh_hdr->packet_len; |
| if (len <= 0) { |
| ret = -EINVAL; |
| goto resubmit; |
| } |
| |
| /* Remove RFH header */ |
| buf += sizeof(*rfh_hdr); |
| |
| skb = alloc_skb(len, GFP_ATOMIC); |
| if (!skb) { |
| ret = -ENOMEM; |
| goto resubmit; |
| } |
| |
| skb_put_data(skb, buf, len); |
| skb_queue_tail(&data->rx_skb_q, skb); |
| queue_work(data->workqueue, &data->rx_work); |
| |
| resubmit: |
| ret = btintel_pcie_submit_rx(data); |
| |
| return ret; |
| } |
| |
| /* Handles the MSI-X interrupt for rx queue 1 which is for RX */ |
| static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data) |
| { |
| u16 cr_hia, cr_tia; |
| struct rxq *rxq; |
| struct urbd1 *urbd1; |
| struct data_buf *buf; |
| int ret; |
| struct hci_dev *hdev = data->hdev; |
| |
| cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; |
| cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; |
| |
| bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia); |
| |
| /* Check CR_TIA and CR_HIA for change */ |
| if (cr_tia == cr_hia) { |
| bt_dev_warn(hdev, "RXQ: no new CD found"); |
| return; |
| } |
| |
| rxq = &data->rxq; |
| |
| /* The firmware sends multiple CD in a single MSI-X and it needs to |
| * process all received CDs in this interrupt. |
| */ |
| while (cr_tia != cr_hia) { |
| urbd1 = &rxq->urbd1s[cr_tia]; |
| ipc_print_urbd1(data->hdev, urbd1, cr_tia); |
| |
| buf = &rxq->bufs[urbd1->frbd_tag]; |
| if (!buf) { |
| bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d", |
| urbd1->frbd_tag); |
| return; |
| } |
| |
| ret = btintel_pcie_submit_rx_work(data, urbd1->status, |
| buf->data); |
| if (ret) { |
| bt_dev_err(hdev, "RXQ: failed to submit rx request"); |
| return; |
| } |
| |
| cr_tia = (cr_tia + 1) % rxq->count; |
| data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia; |
| ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); |
| } |
| } |
| |
| static irqreturn_t btintel_pcie_msix_isr(int irq, void *data) |
| { |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id) |
| { |
| struct msix_entry *entry = dev_id; |
| struct btintel_pcie_data *data = btintel_pcie_get_data(entry); |
| u32 intr_fh, intr_hw; |
| |
| spin_lock(&data->irq_lock); |
| intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES); |
| intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES); |
| |
| /* Clear causes registers to avoid being handling the same cause */ |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh); |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw); |
| spin_unlock(&data->irq_lock); |
| |
| if (unlikely(!(intr_fh | intr_hw))) { |
| /* Ignore interrupt, inta == 0 */ |
| return IRQ_NONE; |
| } |
| |
| /* This interrupt is triggered by the firmware after updating |
| * boot_stage register and image_response register |
| */ |
| if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0) |
| btintel_pcie_msix_gp0_handler(data); |
| |
| /* For TX */ |
| if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) |
| btintel_pcie_msix_tx_handle(data); |
| |
| /* For RX */ |
| if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) |
| btintel_pcie_msix_rx_handle(data); |
| |
| /* |
| * Before sending the interrupt the HW disables it to prevent a nested |
| * interrupt. This is done by writing 1 to the corresponding bit in |
| * the mask register. After handling the interrupt, it should be |
| * re-enabled by clearing this bit. This register is defined as write 1 |
| * clear (W1C) register, meaning that it's cleared by writing 1 |
| * to the bit. |
| */ |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST, |
| BIT(entry->entry)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* This function requests the irq for MSI-X and registers the handlers per irq. |
| * Currently, it requests only 1 irq for all interrupt causes. |
| */ |
| static int btintel_pcie_setup_irq(struct btintel_pcie_data *data) |
| { |
| int err; |
| int num_irqs, i; |
| |
| for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++) |
| data->msix_entries[i].entry = i; |
| |
| num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN, |
| BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX); |
| if (num_irqs < 0) |
| return num_irqs; |
| |
| data->alloc_vecs = num_irqs; |
| data->msix_enabled = 1; |
| data->def_irq = 0; |
| |
| /* setup irq handler */ |
| for (i = 0; i < data->alloc_vecs; i++) { |
| struct msix_entry *msix_entry; |
| |
| msix_entry = &data->msix_entries[i]; |
| msix_entry->vector = pci_irq_vector(data->pdev, i); |
| |
| err = devm_request_threaded_irq(&data->pdev->dev, |
| msix_entry->vector, |
| btintel_pcie_msix_isr, |
| btintel_pcie_irq_msix_handler, |
| IRQF_SHARED, |
| KBUILD_MODNAME, |
| msix_entry); |
| if (err) { |
| pci_free_irq_vectors(data->pdev); |
| data->alloc_vecs = 0; |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| struct btintel_pcie_causes_list { |
| u32 cause; |
| u32 mask_reg; |
| u8 cause_num; |
| }; |
| |
| static struct btintel_pcie_causes_list causes_list[] = { |
| { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 }, |
| { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 }, |
| { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 }, |
| }; |
| |
| /* This function configures the interrupt masks for both HW_INT_CAUSES and |
| * FH_INT_CAUSES which are meaningful to us. |
| * |
| * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver |
| * need to call this function again to configure since the masks |
| * are reset to 0xFFFFFFFF after reset. |
| */ |
| static void btintel_pcie_config_msix(struct btintel_pcie_data *data) |
| { |
| int i; |
| int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE; |
| |
| /* Set Non Auto Clear Cause */ |
| for (i = 0; i < ARRAY_SIZE(causes_list); i++) { |
| btintel_pcie_wr_reg8(data, |
| BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num), |
| val); |
| btintel_pcie_clr_reg_bits(data, |
| causes_list[i].mask_reg, |
| causes_list[i].cause); |
| } |
| |
| /* Save the initial interrupt mask */ |
| data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK); |
| data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK); |
| } |
| |
| static int btintel_pcie_config_pcie(struct pci_dev *pdev, |
| struct btintel_pcie_data *data) |
| { |
| int err; |
| |
| err = pcim_enable_device(pdev); |
| if (err) |
| return err; |
| |
| pci_set_master(pdev); |
| |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); |
| if (err) { |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) |
| return err; |
| } |
| |
| err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME); |
| if (err) |
| return err; |
| |
| data->base_addr = pcim_iomap_table(pdev)[0]; |
| if (!data->base_addr) |
| return -ENODEV; |
| |
| err = btintel_pcie_setup_irq(data); |
| if (err) |
| return err; |
| |
| /* Configure MSI-X with causes list */ |
| btintel_pcie_config_msix(data); |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_init_ci(struct btintel_pcie_data *data, |
| struct ctx_info *ci) |
| { |
| ci->version = 0x1; |
| ci->size = sizeof(*ci); |
| ci->config = 0x0000; |
| ci->addr_cr_hia = data->ia.cr_hia_p_addr; |
| ci->addr_tr_tia = data->ia.tr_tia_p_addr; |
| ci->addr_cr_tia = data->ia.cr_tia_p_addr; |
| ci->addr_tr_hia = data->ia.tr_hia_p_addr; |
| ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES; |
| ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES; |
| ci->addr_urbdq0 = data->txq.urbd0s_p_addr; |
| ci->addr_tfdq = data->txq.tfds_p_addr; |
| ci->num_tfdq = data->txq.count; |
| ci->num_urbdq0 = data->txq.count; |
| ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM; |
| ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM; |
| ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K; |
| ci->addr_frbdq = data->rxq.frbds_p_addr; |
| ci->num_frbdq = data->rxq.count; |
| ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; |
| ci->addr_urbdq1 = data->rxq.urbd1s_p_addr; |
| ci->num_urbdq1 = data->rxq.count; |
| ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; |
| } |
| |
| static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data, |
| struct txq *txq) |
| { |
| /* Free data buffers first */ |
| dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| txq->buf_v_addr, txq->buf_p_addr); |
| kfree(txq->bufs); |
| } |
| |
| static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data, |
| struct txq *txq) |
| { |
| int i; |
| struct data_buf *buf; |
| |
| /* Allocate the same number of buffers as the descriptor */ |
| txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL); |
| if (!txq->bufs) |
| return -ENOMEM; |
| |
| /* Allocate full chunk of data buffer for DMA first and do indexing and |
| * initialization next, so it can be freed easily |
| */ |
| txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, |
| txq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| &txq->buf_p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!txq->buf_v_addr) { |
| kfree(txq->bufs); |
| return -ENOMEM; |
| } |
| memset(txq->buf_v_addr, 0, txq->count * BTINTEL_PCIE_BUFFER_SIZE); |
| |
| /* Setup the allocated DMA buffer to bufs. Each data_buf should |
| * have virtual address and physical address |
| */ |
| for (i = 0; i < txq->count; i++) { |
| buf = &txq->bufs[i]; |
| buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| } |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data, |
| struct rxq *rxq) |
| { |
| /* Free data buffers first */ |
| dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| rxq->buf_v_addr, rxq->buf_p_addr); |
| kfree(rxq->bufs); |
| } |
| |
| static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data, |
| struct rxq *rxq) |
| { |
| int i; |
| struct data_buf *buf; |
| |
| /* Allocate the same number of buffers as the descriptor */ |
| rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL); |
| if (!rxq->bufs) |
| return -ENOMEM; |
| |
| /* Allocate full chunk of data buffer for DMA first and do indexing and |
| * initialization next, so it can be freed easily |
| */ |
| rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, |
| rxq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| &rxq->buf_p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!rxq->buf_v_addr) { |
| kfree(rxq->bufs); |
| return -ENOMEM; |
| } |
| memset(rxq->buf_v_addr, 0, rxq->count * BTINTEL_PCIE_BUFFER_SIZE); |
| |
| /* Setup the allocated DMA buffer to bufs. Each data_buf should |
| * have virtual address and physical address |
| */ |
| for (i = 0; i < rxq->count; i++) { |
| buf = &rxq->bufs[i]; |
| buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| } |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_setup_ia(struct btintel_pcie_data *data, |
| dma_addr_t p_addr, void *v_addr, |
| struct ia *ia) |
| { |
| /* TR Head Index Array */ |
| ia->tr_hia_p_addr = p_addr; |
| ia->tr_hia = v_addr; |
| |
| /* TR Tail Index Array */ |
| ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; |
| ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; |
| |
| /* CR Head index Array */ |
| ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); |
| ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); |
| |
| /* CR Tail Index Array */ |
| ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); |
| ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); |
| } |
| |
| static void btintel_pcie_free(struct btintel_pcie_data *data) |
| { |
| btintel_pcie_free_rxq_bufs(data, &data->rxq); |
| btintel_pcie_free_txq_bufs(data, &data->txq); |
| |
| dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); |
| dma_pool_destroy(data->dma_pool); |
| } |
| |
| /* Allocate tx and rx queues, any related data structures and buffers. |
| */ |
| static int btintel_pcie_alloc(struct btintel_pcie_data *data) |
| { |
| int err = 0; |
| size_t total; |
| dma_addr_t p_addr; |
| void *v_addr; |
| |
| /* Allocate the chunk of DMA memory for descriptors, index array, and |
| * context information, instead of allocating individually. |
| * The DMA memory for data buffer is allocated while setting up the |
| * each queue. |
| * |
| * Total size is sum of the following |
| * + size of TFD * Number of descriptors in queue |
| * + size of URBD0 * Number of descriptors in queue |
| * + size of FRBD * Number of descriptors in queue |
| * + size of URBD1 * Number of descriptors in queue |
| * + size of index * Number of queues(2) * type of index array(4) |
| * + size of context information |
| */ |
| total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd) |
| + sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT; |
| |
| /* Add the sum of size of index array and size of ci struct */ |
| total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info); |
| |
| /* Allocate DMA Pool */ |
| data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev, |
| total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0); |
| if (!data->dma_pool) { |
| err = -ENOMEM; |
| goto exit_error; |
| } |
| |
| v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN, |
| &p_addr); |
| if (!v_addr) { |
| dma_pool_destroy(data->dma_pool); |
| err = -ENOMEM; |
| goto exit_error; |
| } |
| |
| data->dma_p_addr = p_addr; |
| data->dma_v_addr = v_addr; |
| |
| /* Setup descriptor count */ |
| data->txq.count = BTINTEL_DESCS_COUNT; |
| data->rxq.count = BTINTEL_DESCS_COUNT; |
| |
| /* Setup tfds */ |
| data->txq.tfds_p_addr = p_addr; |
| data->txq.tfds = v_addr; |
| |
| p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup urbd0 */ |
| data->txq.urbd0s_p_addr = p_addr; |
| data->txq.urbd0s = v_addr; |
| |
| p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup FRBD*/ |
| data->rxq.frbds_p_addr = p_addr; |
| data->rxq.frbds = v_addr; |
| |
| p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup urbd1 */ |
| data->rxq.urbd1s_p_addr = p_addr; |
| data->rxq.urbd1s = v_addr; |
| |
| p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup data buffers for txq */ |
| err = btintel_pcie_setup_txq_bufs(data, &data->txq); |
| if (err) |
| goto exit_error_pool; |
| |
| /* Setup data buffers for rxq */ |
| err = btintel_pcie_setup_rxq_bufs(data, &data->rxq); |
| if (err) |
| goto exit_error_txq; |
| |
| /* Setup Index Array */ |
| btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia); |
| |
| /* Setup Context Information */ |
| p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; |
| v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; |
| |
| data->ci = v_addr; |
| data->ci_p_addr = p_addr; |
| |
| /* Initialize the CI */ |
| btintel_pcie_init_ci(data, data->ci); |
| |
| return 0; |
| |
| exit_error_txq: |
| btintel_pcie_free_txq_bufs(data, &data->txq); |
| exit_error_pool: |
| dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); |
| dma_pool_destroy(data->dma_pool); |
| exit_error: |
| return err; |
| } |
| |
| static int btintel_pcie_open(struct hci_dev *hdev) |
| { |
| bt_dev_dbg(hdev, ""); |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_close(struct hci_dev *hdev) |
| { |
| bt_dev_dbg(hdev, ""); |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) |
| { |
| struct sk_buff *skb; |
| struct hci_event_hdr *hdr; |
| struct hci_ev_cmd_complete *evt; |
| |
| skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); |
| hdr->evt = HCI_EV_CMD_COMPLETE; |
| hdr->plen = sizeof(*evt) + 1; |
| |
| evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); |
| evt->ncmd = 0x01; |
| evt->opcode = cpu_to_le16(opcode); |
| |
| *(u8 *)skb_put(skb, 1) = 0x00; |
| |
| hci_skb_pkt_type(skb) = HCI_EVENT_PKT; |
| |
| return hci_recv_frame(hdev, skb); |
| } |
| |
| static int btintel_pcie_send_frame(struct hci_dev *hdev, |
| struct sk_buff *skb) |
| { |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| int ret; |
| u32 type; |
| |
| /* Due to the fw limitation, the type header of the packet should be |
| * 4 bytes unlike 1 byte for UART. In UART, the firmware can read |
| * the first byte to get the packet type and redirect the rest of data |
| * packet to the right handler. |
| * |
| * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data |
| * from DMA memory and by the time it reads the first 4 bytes, it has |
| * already consumed some part of packet. Thus the packet type indicator |
| * for iBT PCIe is 4 bytes. |
| * |
| * Luckily, when HCI core creates the skb, it allocates 8 bytes of |
| * head room for profile and driver use, and before sending the data |
| * to the device, append the iBT PCIe packet type in the front. |
| */ |
| switch (hci_skb_pkt_type(skb)) { |
| case HCI_COMMAND_PKT: |
| type = BTINTEL_PCIE_HCI_CMD_PKT; |
| if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
| struct hci_command_hdr *cmd = (void *)skb->data; |
| __u16 opcode = le16_to_cpu(cmd->opcode); |
| |
| /* When the 0xfc01 command is issued to boot into |
| * the operational firmware, it will actually not |
| * send a command complete event. To keep the flow |
| * control working inject that event here. |
| */ |
| if (opcode == 0xfc01) |
| btintel_pcie_inject_cmd_complete(hdev, opcode); |
| } |
| hdev->stat.cmd_tx++; |
| break; |
| case HCI_ACLDATA_PKT: |
| type = BTINTEL_PCIE_HCI_ACL_PKT; |
| hdev->stat.acl_tx++; |
| break; |
| case HCI_SCODATA_PKT: |
| type = BTINTEL_PCIE_HCI_SCO_PKT; |
| hdev->stat.sco_tx++; |
| break; |
| default: |
| bt_dev_err(hdev, "Unknown HCI packet type"); |
| return -EILSEQ; |
| } |
| memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type, |
| BTINTEL_PCIE_HCI_TYPE_LEN); |
| |
| ret = btintel_pcie_send_sync(data, skb); |
| if (ret) { |
| hdev->stat.err_tx++; |
| bt_dev_err(hdev, "Failed to send frame (%d)", ret); |
| goto exit_error; |
| } |
| hdev->stat.byte_tx += skb->len; |
| kfree_skb(skb); |
| |
| exit_error: |
| return ret; |
| } |
| |
| static void btintel_pcie_release_hdev(struct btintel_pcie_data *data) |
| { |
| struct hci_dev *hdev; |
| |
| hdev = data->hdev; |
| hci_unregister_dev(hdev); |
| hci_free_dev(hdev); |
| data->hdev = NULL; |
| } |
| |
| static int btintel_pcie_setup(struct hci_dev *hdev) |
| { |
| const u8 param[1] = { 0xFF }; |
| struct intel_version_tlv ver_tlv; |
| struct sk_buff *skb; |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version command failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| /* Check the status */ |
| if (skb->data[0]) { |
| bt_dev_err(hdev, "Intel Read Version command failed (%02x)", |
| skb->data[0]); |
| err = -EIO; |
| goto exit_error; |
| } |
| |
| /* Apply the common HCI quirks for Intel device */ |
| set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); |
| set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); |
| set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); |
| |
| /* Set up the quality report callback for Intel devices */ |
| hdev->set_quality_report = btintel_set_quality_report; |
| |
| memset(&ver_tlv, 0, sizeof(ver_tlv)); |
| /* For TLV type device, parse the tlv data */ |
| err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); |
| if (err) { |
| bt_dev_err(hdev, "Failed to parse TLV version information"); |
| goto exit_error; |
| } |
| |
| switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) { |
| case 0x37: |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", |
| INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); |
| err = -EINVAL; |
| goto exit_error; |
| } |
| |
| /* Check for supported iBT hardware variants of this firmware |
| * loading method. |
| * |
| * This check has been put in place to ensure correct forward |
| * compatibility options when newer hardware variants come |
| * along. |
| */ |
| switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { |
| case 0x1e: /* BzrI */ |
| /* Display version information of TLV type */ |
| btintel_version_info_tlv(hdev, &ver_tlv); |
| |
| /* Apply the device specific HCI quirks for TLV based devices |
| * |
| * All TLV based devices support WBS |
| */ |
| set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); |
| |
| /* Apply LE States quirk from solar onwards */ |
| set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); |
| |
| /* Setup MSFT Extension support */ |
| btintel_set_msft_opcode(hdev, |
| INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
| |
| err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); |
| if (err) |
| goto exit_error; |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", |
| INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
| err = -EINVAL; |
| break; |
| } |
| |
| exit_error: |
| kfree_skb(skb); |
| |
| return err; |
| } |
| |
| static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data) |
| { |
| int err; |
| struct hci_dev *hdev; |
| |
| hdev = hci_alloc_dev(); |
| if (!hdev) |
| return -ENOMEM; |
| |
| hdev->bus = HCI_PCI; |
| hci_set_drvdata(hdev, data); |
| |
| data->hdev = hdev; |
| SET_HCIDEV_DEV(hdev, &data->pdev->dev); |
| |
| hdev->manufacturer = 2; |
| hdev->open = btintel_pcie_open; |
| hdev->close = btintel_pcie_close; |
| hdev->send = btintel_pcie_send_frame; |
| hdev->setup = btintel_pcie_setup; |
| hdev->shutdown = btintel_shutdown_combined; |
| hdev->hw_error = btintel_hw_error; |
| hdev->set_diag = btintel_set_diag; |
| hdev->set_bdaddr = btintel_set_bdaddr; |
| |
| err = hci_register_dev(hdev); |
| if (err < 0) { |
| BT_ERR("Failed to register to hdev (%d)", err); |
| goto exit_error; |
| } |
| |
| return 0; |
| |
| exit_error: |
| hci_free_dev(hdev); |
| return err; |
| } |
| |
| static int btintel_pcie_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int err; |
| struct btintel_pcie_data *data; |
| |
| if (!pdev) |
| return -ENODEV; |
| |
| data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->pdev = pdev; |
| |
| spin_lock_init(&data->irq_lock); |
| spin_lock_init(&data->hci_rx_lock); |
| |
| init_waitqueue_head(&data->gp0_wait_q); |
| data->gp0_received = false; |
| |
| init_waitqueue_head(&data->tx_wait_q); |
| data->tx_wait_done = false; |
| |
| data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI); |
| if (!data->workqueue) |
| return -ENOMEM; |
| |
| skb_queue_head_init(&data->rx_skb_q); |
| INIT_WORK(&data->rx_work, btintel_pcie_rx_work); |
| |
| data->boot_stage_cache = 0x00; |
| data->img_resp_cache = 0x00; |
| |
| err = btintel_pcie_config_pcie(pdev, data); |
| if (err) |
| goto exit_error; |
| |
| pci_set_drvdata(pdev, data); |
| |
| err = btintel_pcie_alloc(data); |
| if (err) |
| goto exit_error; |
| |
| err = btintel_pcie_enable_bt(data); |
| if (err) |
| goto exit_error; |
| |
| /* CNV information (CNVi and CNVr) is in CSR */ |
| data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG); |
| |
| data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG); |
| |
| err = btintel_pcie_start_rx(data); |
| if (err) |
| goto exit_error; |
| |
| err = btintel_pcie_setup_hdev(data); |
| if (err) |
| goto exit_error; |
| |
| bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi, |
| data->cnvr); |
| return 0; |
| |
| exit_error: |
| /* reset device before exit */ |
| btintel_pcie_reset_bt(data); |
| |
| pci_clear_master(pdev); |
| |
| pci_set_drvdata(pdev, NULL); |
| |
| return err; |
| } |
| |
| static void btintel_pcie_remove(struct pci_dev *pdev) |
| { |
| struct btintel_pcie_data *data; |
| |
| data = pci_get_drvdata(pdev); |
| |
| btintel_pcie_reset_bt(data); |
| |
| pci_free_irq_vectors(pdev); |
| |
| btintel_pcie_release_hdev(data); |
| |
| flush_work(&data->rx_work); |
| |
| destroy_workqueue(data->workqueue); |
| |
| btintel_pcie_free(data); |
| |
| pci_clear_master(pdev); |
| |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| static struct pci_driver btintel_pcie_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = btintel_pcie_table, |
| .probe = btintel_pcie_probe, |
| .remove = btintel_pcie_remove, |
| }; |
| module_pci_driver(btintel_pcie_driver); |
| |
| MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>"); |
| MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION); |
| MODULE_VERSION(VERSION); |
| MODULE_LICENSE("GPL"); |