blob: f4d20adaa0689954df668d816ae29b27c8105c59 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/bsearch.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_pm4_headers_vi.h"
#include "kfd_pm4_headers_aldebaran.h"
#include "cwsr_trap_handler.h"
#include "amdgpu_amdkfd.h"
#include "kfd_smi_events.h"
#include "kfd_svm.h"
#include "kfd_migrate.h"
#include "amdgpu.h"
#include "amdgpu_xcp.h"
#define MQD_SIZE_ALIGNED 768
/*
* kfd_locked is used to lock the kfd driver during suspend or reset
* once locked, kfd driver will stop any further GPU execution.
* create process (open) will return -EAGAIN.
*/
static int kfd_locked;
#ifdef CONFIG_DRM_AMDGPU_CIK
extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
#endif
extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
extern const struct kfd2kgd_calls arcturus_kfd2kgd;
extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size);
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
static int kfd_resume(struct kfd_node *kfd);
static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
{
uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
switch (sdma_version) {
case IP_VERSION(4, 0, 0):/* VEGA10 */
case IP_VERSION(4, 0, 1):/* VEGA12 */
case IP_VERSION(4, 1, 0):/* RAVEN */
case IP_VERSION(4, 1, 1):/* RAVEN */
case IP_VERSION(4, 1, 2):/* RENOIR */
case IP_VERSION(5, 2, 1):/* VANGOGH */
case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
kfd->device_info.num_sdma_queues_per_engine = 2;
break;
case IP_VERSION(4, 2, 0):/* VEGA20 */
case IP_VERSION(4, 2, 2):/* ARCTURUS */
case IP_VERSION(4, 4, 0):/* ALDEBARAN */
case IP_VERSION(4, 4, 2):
case IP_VERSION(4, 4, 5):
case IP_VERSION(5, 0, 0):/* NAVI10 */
case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
case IP_VERSION(5, 0, 2):/* NAVI14 */
case IP_VERSION(5, 0, 5):/* NAVI12 */
case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
case IP_VERSION(6, 0, 0):
case IP_VERSION(6, 0, 1):
case IP_VERSION(6, 0, 2):
case IP_VERSION(6, 0, 3):
case IP_VERSION(6, 1, 0):
case IP_VERSION(6, 1, 1):
case IP_VERSION(6, 1, 2):
case IP_VERSION(7, 0, 0):
case IP_VERSION(7, 0, 1):
kfd->device_info.num_sdma_queues_per_engine = 8;
break;
default:
dev_warn(kfd_device,
"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
sdma_version);
kfd->device_info.num_sdma_queues_per_engine = 8;
}
bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
switch (sdma_version) {
case IP_VERSION(6, 0, 0):
case IP_VERSION(6, 0, 1):
case IP_VERSION(6, 0, 2):
case IP_VERSION(6, 0, 3):
case IP_VERSION(6, 1, 0):
case IP_VERSION(6, 1, 1):
case IP_VERSION(6, 1, 2):
case IP_VERSION(7, 0, 0):
case IP_VERSION(7, 0, 1):
/* Reserve 1 for paging and 1 for gfx */
kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
kfd->adev->sdma.num_instances *
kfd->device_info.num_reserved_sdma_queues_per_engine);
break;
default:
break;
}
}
static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
{
uint32_t gc_version = KFD_GC_VERSION(kfd);
switch (gc_version) {
case IP_VERSION(9, 0, 1): /* VEGA10 */
case IP_VERSION(9, 1, 0): /* RAVEN */
case IP_VERSION(9, 2, 1): /* VEGA12 */
case IP_VERSION(9, 2, 2): /* RAVEN */
case IP_VERSION(9, 3, 0): /* RENOIR */
case IP_VERSION(9, 4, 0): /* VEGA20 */
case IP_VERSION(9, 4, 1): /* ARCTURUS */
case IP_VERSION(9, 4, 2): /* ALDEBARAN */
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
break;
case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
kfd->device_info.event_interrupt_class =
&event_interrupt_class_v9_4_3;
break;
case IP_VERSION(10, 3, 1): /* VANGOGH */
case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
case IP_VERSION(10, 1, 4):
case IP_VERSION(10, 1, 10): /* NAVI10 */
case IP_VERSION(10, 1, 2): /* NAVI12 */
case IP_VERSION(10, 1, 1): /* NAVI14 */
case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
break;
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
break;
case IP_VERSION(12, 0, 0):
case IP_VERSION(12, 0, 1):
/* GFX12_TODO: Change to v12 version. */
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
break;
default:
dev_warn(kfd_device, "v9 event interrupt handler is set due to "
"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
}
}
static void kfd_device_info_init(struct kfd_dev *kfd,
bool vf, uint32_t gfx_target_version)
{
uint32_t gc_version = KFD_GC_VERSION(kfd);
uint32_t asic_type = kfd->adev->asic_type;
kfd->device_info.max_pasid_bits = 16;
kfd->device_info.max_no_of_hqd = 24;
kfd->device_info.num_of_watch_points = 4;
kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
kfd->device_info.gfx_target_version = gfx_target_version;
if (KFD_IS_SOC15(kfd)) {
kfd->device_info.doorbell_size = 8;
kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
kfd->device_info.supports_cwsr = true;
kfd_device_info_set_sdma_info(kfd);
kfd_device_info_set_event_interrupt_class(kfd);
if (gc_version < IP_VERSION(11, 0, 0)) {
/* Navi2x+, Navi1x+ */
if (gc_version == IP_VERSION(10, 3, 6))
kfd->device_info.no_atomic_fw_version = 14;
else if (gc_version == IP_VERSION(10, 3, 7))
kfd->device_info.no_atomic_fw_version = 3;
else if (gc_version >= IP_VERSION(10, 3, 0))
kfd->device_info.no_atomic_fw_version = 92;
else if (gc_version >= IP_VERSION(10, 1, 1))
kfd->device_info.no_atomic_fw_version = 145;
/* Navi1x+ */
if (gc_version >= IP_VERSION(10, 1, 1))
kfd->device_info.needs_pci_atomics = true;
} else if (gc_version < IP_VERSION(12, 0, 0)) {
/*
* PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
* MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
* PCIe atomics support.
*/
kfd->device_info.needs_pci_atomics = true;
kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
} else {
kfd->device_info.needs_pci_atomics = true;
}
} else {
kfd->device_info.doorbell_size = 4;
kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
kfd->device_info.num_sdma_queues_per_engine = 2;
if (asic_type != CHIP_KAVERI &&
asic_type != CHIP_HAWAII &&
asic_type != CHIP_TONGA)
kfd->device_info.supports_cwsr = true;
if (asic_type != CHIP_HAWAII && !vf)
kfd->device_info.needs_pci_atomics = true;
}
}
struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
{
struct kfd_dev *kfd = NULL;
const struct kfd2kgd_calls *f2g = NULL;
uint32_t gfx_target_version = 0;
switch (adev->asic_type) {
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_KAVERI:
gfx_target_version = 70000;
if (!vf)
f2g = &gfx_v7_kfd2kgd;
break;
#endif
case CHIP_CARRIZO:
gfx_target_version = 80001;
if (!vf)
f2g = &gfx_v8_kfd2kgd;
break;
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_HAWAII:
gfx_target_version = 70001;
if (!amdgpu_exp_hw_support)
pr_info(
"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
);
else if (!vf)
f2g = &gfx_v7_kfd2kgd;
break;
#endif
case CHIP_TONGA:
gfx_target_version = 80002;
if (!vf)
f2g = &gfx_v8_kfd2kgd;
break;
case CHIP_FIJI:
case CHIP_POLARIS10:
gfx_target_version = 80003;
f2g = &gfx_v8_kfd2kgd;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
gfx_target_version = 80003;
if (!vf)
f2g = &gfx_v8_kfd2kgd;
break;
default:
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
/* Vega 10 */
case IP_VERSION(9, 0, 1):
gfx_target_version = 90000;
f2g = &gfx_v9_kfd2kgd;
break;
/* Raven */
case IP_VERSION(9, 1, 0):
case IP_VERSION(9, 2, 2):
gfx_target_version = 90002;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Vega12 */
case IP_VERSION(9, 2, 1):
gfx_target_version = 90004;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Renoir */
case IP_VERSION(9, 3, 0):
gfx_target_version = 90012;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Vega20 */
case IP_VERSION(9, 4, 0):
gfx_target_version = 90006;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Arcturus */
case IP_VERSION(9, 4, 1):
gfx_target_version = 90008;
f2g = &arcturus_kfd2kgd;
break;
/* Aldebaran */
case IP_VERSION(9, 4, 2):
gfx_target_version = 90010;
f2g = &aldebaran_kfd2kgd;
break;
case IP_VERSION(9, 4, 3):
gfx_target_version = adev->rev_id >= 1 ? 90402
: adev->flags & AMD_IS_APU ? 90400
: 90401;
f2g = &gc_9_4_3_kfd2kgd;
break;
case IP_VERSION(9, 4, 4):
gfx_target_version = 90402;
f2g = &gc_9_4_3_kfd2kgd;
break;
/* Navi10 */
case IP_VERSION(10, 1, 10):
gfx_target_version = 100100;
if (!vf)
f2g = &gfx_v10_kfd2kgd;
break;
/* Navi12 */
case IP_VERSION(10, 1, 2):
gfx_target_version = 100101;
f2g = &gfx_v10_kfd2kgd;
break;
/* Navi14 */
case IP_VERSION(10, 1, 1):
gfx_target_version = 100102;
if (!vf)
f2g = &gfx_v10_kfd2kgd;
break;
/* Cyan Skillfish */
case IP_VERSION(10, 1, 3):
case IP_VERSION(10, 1, 4):
gfx_target_version = 100103;
if (!vf)
f2g = &gfx_v10_kfd2kgd;
break;
/* Sienna Cichlid */
case IP_VERSION(10, 3, 0):
gfx_target_version = 100300;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Navy Flounder */
case IP_VERSION(10, 3, 2):
gfx_target_version = 100301;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Van Gogh */
case IP_VERSION(10, 3, 1):
gfx_target_version = 100303;
if (!vf)
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Dimgrey Cavefish */
case IP_VERSION(10, 3, 4):
gfx_target_version = 100302;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Beige Goby */
case IP_VERSION(10, 3, 5):
gfx_target_version = 100304;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Yellow Carp */
case IP_VERSION(10, 3, 3):
gfx_target_version = 100305;
if (!vf)
f2g = &gfx_v10_3_kfd2kgd;
break;
case IP_VERSION(10, 3, 6):
case IP_VERSION(10, 3, 7):
gfx_target_version = 100306;
if (!vf)
f2g = &gfx_v10_3_kfd2kgd;
break;
case IP_VERSION(11, 0, 0):
gfx_target_version = 110000;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
gfx_target_version = 110003;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 0, 2):
gfx_target_version = 110002;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 0, 3):
/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
gfx_target_version = 110001;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 0):
gfx_target_version = 110500;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 1):
gfx_target_version = 110501;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 2):
gfx_target_version = 110502;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(12, 0, 0):
gfx_target_version = 120000;
f2g = &gfx_v12_kfd2kgd;
break;
case IP_VERSION(12, 0, 1):
gfx_target_version = 120001;
f2g = &gfx_v12_kfd2kgd;
break;
default:
break;
}
break;
}
if (!f2g) {
if (amdgpu_ip_version(adev, GC_HWIP, 0))
dev_info(kfd_device,
"GC IP %06x %s not supported in kfd\n",
amdgpu_ip_version(adev, GC_HWIP, 0),
vf ? "VF" : "");
else
dev_info(kfd_device, "%s %s not supported in kfd\n",
amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
return NULL;
}
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
if (!kfd)
return NULL;
kfd->adev = adev;
kfd_device_info_init(kfd, vf, gfx_target_version);
kfd->init_complete = false;
kfd->kfd2kgd = f2g;
atomic_set(&kfd->compute_profile, 0);
mutex_init(&kfd->doorbell_mutex);
ida_init(&kfd->doorbell_ida);
return kfd;
}
static void kfd_cwsr_init(struct kfd_dev *kfd)
{
if (cwsr_enable && kfd->device_info.supports_cwsr) {
if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_arcturus_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx9_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_nv1x_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx10_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
/* The gfx11 cwsr trap handler must fit inside a single
page. */
BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx11_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
} else {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx12_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
}
kfd->cwsr_enabled = true;
}
}
static int kfd_gws_init(struct kfd_node *node)
{
int ret = 0;
struct kfd_dev *kfd = node->kfd;
uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
return 0;
if (hws_gws_support || (KFD_IS_SOC15(node) &&
((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
&& kfd->mec2_fw_version >= 0x81b3) ||
(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
&& kfd->mec2_fw_version >= 0x1b3) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
&& kfd->mec2_fw_version >= 0x30) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
&& kfd->mec2_fw_version >= 0x28) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
&& kfd->mec2_fw_version >= 0x6b) ||
(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
&& mes_rev >= 68))))
ret = amdgpu_amdkfd_alloc_gws(node->adev,
node->adev->gds.gws_size, &node->gws);
return ret;
}
static void kfd_smi_init(struct kfd_node *dev)
{
INIT_LIST_HEAD(&dev->smi_clients);
spin_lock_init(&dev->smi_lock);
}
static int kfd_init_node(struct kfd_node *node)
{
int err = -1;
if (kfd_interrupt_init(node)) {
dev_err(kfd_device, "Error initializing interrupts\n");
goto kfd_interrupt_error;
}
node->dqm = device_queue_manager_init(node);
if (!node->dqm) {
dev_err(kfd_device, "Error initializing queue manager\n");
goto device_queue_manager_error;
}
if (kfd_gws_init(node)) {
dev_err(kfd_device, "Could not allocate %d gws\n",
node->adev->gds.gws_size);
goto gws_error;
}
if (kfd_resume(node))
goto kfd_resume_error;
if (kfd_topology_add_device(node)) {
dev_err(kfd_device, "Error adding device to topology\n");
goto kfd_topology_add_device_error;
}
kfd_smi_init(node);
return 0;
kfd_topology_add_device_error:
kfd_resume_error:
gws_error:
device_queue_manager_uninit(node->dqm);
device_queue_manager_error:
kfd_interrupt_exit(node);
kfd_interrupt_error:
if (node->gws)
amdgpu_amdkfd_free_gws(node->adev, node->gws);
/* Cleanup the node memory here */
kfree(node);
return err;
}
static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
{
struct kfd_node *knode;
unsigned int i;
for (i = 0; i < num_nodes; i++) {
knode = kfd->nodes[i];
device_queue_manager_uninit(knode->dqm);
kfd_interrupt_exit(knode);
kfd_topology_remove_device(knode);
if (knode->gws)
amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
kfree(knode);
kfd->nodes[i] = NULL;
}
}
static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
unsigned int kfd_node_idx)
{
struct amdgpu_device *adev = node->adev;
uint32_t xcc_mask = node->xcc_mask;
uint32_t xcc, mapped_xcc;
/*
* Interrupt bitmap is setup for processing interrupts from
* different XCDs and AIDs.
* Interrupt bitmap is defined as follows:
* 1. Bits 0-15 - correspond to the NodeId field.
* Each bit corresponds to NodeId number. For example, if
* a KFD node has interrupt bitmap set to 0x7, then this
* KFD node will process interrupts with NodeId = 0, 1 and 2
* in the IH cookie.
* 2. Bits 16-31 - unused.
*
* Please note that the kfd_node_idx argument passed to this
* function is not related to NodeId field received in the
* IH cookie.
*
* In CPX mode, a KFD node will process an interrupt if:
* - the Node Id matches the corresponding bit set in
* Bits 0-15.
* - AND VMID reported in the interrupt lies within the
* VMID range of the node.
*/
for_each_inst(xcc, xcc_mask) {
mapped_xcc = GET_INST(GC, xcc);
node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
}
dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
node->interrupt_bitmap);
}
bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources)
{
unsigned int size, map_process_packet_size, i;
struct kfd_node *node;
uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
unsigned int max_proc_per_quantum;
int partition_mode;
int xcp_idx;
kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
KGD_ENGINE_MEC1);
kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
KGD_ENGINE_MEC2);
kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
KGD_ENGINE_SDMA1);
kfd->shared_resources = *gpu_resources;
kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
if (kfd->num_nodes == 0) {
dev_err(kfd_device,
"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
kfd->adev->gfx.num_xcc_per_xcp);
goto out;
}
/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
* 32 and 64-bit requests are possible and must be
* supported.
*/
kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
if (!kfd->pci_atomic_requested &&
kfd->device_info.needs_pci_atomics &&
(!kfd->device_info.no_atomic_fw_version ||
kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
dev_info(kfd_device,
"skipped device %x:%x, PCI rejects atomics %d<%d\n",
kfd->adev->pdev->vendor, kfd->adev->pdev->device,
kfd->mec_fw_version,
kfd->device_info.no_atomic_fw_version);
return false;
}
first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
/* For GFX9.4.3, we need special handling for VMIDs depending on
* partition mode.
* In CPX mode, the VMID range needs to be shared between XCDs.
* Additionally, there are 13 VMIDs (3-15) available for KFD. To
* divide them equally, we change starting VMID to 4 and not use
* VMID 3.
* If the VMID range changes for GFX9.4.3, then this code MUST be
* revisited.
*/
if (kfd->adev->xcp_mgr) {
partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
AMDGPU_XCP_FL_LOCKED);
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
kfd->num_nodes != 1) {
vmid_num_kfd /= 2;
first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
}
}
/* Verify module parameters regarding mapped process number*/
if (hws_max_conc_proc >= 0)
max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
else
max_proc_per_quantum = vmid_num_kfd;
/* calculate max size of mqds needed for queues */
size = max_num_of_queues_per_device *
kfd->device_info.mqd_size_aligned;
/*
* calculate max size of runlist packet.
* There can be only 2 packets at once
*/
map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
sizeof(struct pm4_mes_map_process_aldebaran) :
sizeof(struct pm4_mes_map_process);
size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
+ sizeof(struct pm4_mes_runlist)) * 2;
/* Add size of HIQ & DIQ */
size += KFD_KERNEL_QUEUE_SIZE * 2;
/* add another 512KB for all other allocations on gart (HPD, fences) */
size += 512 * 1024;
if (amdgpu_amdkfd_alloc_gtt_mem(
kfd->adev, size, &kfd->gtt_mem,
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
false)) {
dev_err(kfd_device, "Could not allocate %d bytes\n", size);
goto alloc_gtt_mem_failure;
}
dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
/* Initialize GTT sa with 512 byte chunk size */
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
goto kfd_gtt_sa_init_error;
}
if (kfd_doorbell_init(kfd)) {
dev_err(kfd_device,
"Error initializing doorbell aperture\n");
goto kfd_doorbell_error;
}
if (amdgpu_use_xgmi_p2p)
kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
/*
* For GFX9.4.3, the KFD abstracts all partitions within a socket as
* xGMI connected in the topology so assign a unique hive id per
* device based on the pci device location if device is in PCIe mode.
*/
if (!kfd->hive_id &&
(KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
kfd->num_nodes > 1)
kfd->hive_id = pci_dev_id(kfd->adev->pdev);
kfd->noretry = kfd->adev->gmc.noretry;
kfd_cwsr_init(kfd);
dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
kfd->num_nodes);
/* Allocate the KFD nodes */
for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
if (!node)
goto node_alloc_error;
node->node_id = i;
node->adev = kfd->adev;
node->kfd = kfd;
node->kfd2kgd = kfd->kfd2kgd;
node->vm_info.vmid_num_kfd = vmid_num_kfd;
node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
/* TODO : Check if error handling is needed */
if (node->xcp) {
amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
&node->xcc_mask);
++xcp_idx;
} else {
node->xcc_mask =
(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
}
if (node->xcp) {
dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
node->node_id, node->xcp->mem_id,
KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
}
if ((KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
partition_mode == AMDGPU_CPX_PARTITION_MODE &&
kfd->num_nodes != 1) {
/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
* 4-9 and second XCD gets VMID range 10-15.
*/
node->vm_info.first_vmid_kfd = (i%2 == 0) ?
first_vmid_kfd :
first_vmid_kfd+vmid_num_kfd;
node->vm_info.last_vmid_kfd = (i%2 == 0) ?
last_vmid_kfd-vmid_num_kfd :
last_vmid_kfd;
node->compute_vmid_bitmap =
((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
} else {
node->vm_info.first_vmid_kfd = first_vmid_kfd;
node->vm_info.last_vmid_kfd = last_vmid_kfd;
node->compute_vmid_bitmap =
gpu_resources->compute_vmid_bitmap;
}
node->max_proc_per_quantum = max_proc_per_quantum;
atomic_set(&node->sram_ecc_flag, 0);
amdgpu_amdkfd_get_local_mem_info(kfd->adev,
&node->local_mem_info, node->xcp);
if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4))
kfd_setup_interrupt_bitmap(node, i);
/* Initialize the KFD node */
if (kfd_init_node(node)) {
dev_err(kfd_device, "Error initializing KFD node\n");
goto node_init_error;
}
kfd->nodes[i] = node;
}
svm_range_set_max_pages(kfd->adev);
spin_lock_init(&kfd->watch_points_lock);
kfd->init_complete = true;
dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
kfd->adev->pdev->device);
pr_debug("Starting kfd with the following scheduling policy %d\n",
node->dqm->sched_policy);
goto out;
node_init_error:
node_alloc_error:
kfd_cleanup_nodes(kfd, i);
kfd_doorbell_fini(kfd);
kfd_doorbell_error:
kfd_gtt_sa_fini(kfd);
kfd_gtt_sa_init_error:
amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
alloc_gtt_mem_failure:
dev_err(kfd_device,
"device %x:%x NOT added due to errors\n",
kfd->adev->pdev->vendor, kfd->adev->pdev->device);
out:
return kfd->init_complete;
}
void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
if (kfd->init_complete) {
/* Cleanup KFD nodes */
kfd_cleanup_nodes(kfd, kfd->num_nodes);
/* Cleanup common/shared resources */
kfd_doorbell_fini(kfd);
ida_destroy(&kfd->doorbell_ida);
kfd_gtt_sa_fini(kfd);
amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
}
kfree(kfd);
}
int kgd2kfd_pre_reset(struct kfd_dev *kfd,
struct amdgpu_reset_context *reset_context)
{
struct kfd_node *node;
int i;
if (!kfd->init_complete)
return 0;
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
kfd_smi_event_update_gpu_reset(node, false, reset_context);
}
kgd2kfd_suspend(kfd, false);
for (i = 0; i < kfd->num_nodes; i++)
kfd_signal_reset_event(kfd->nodes[i]);
return 0;
}
/*
* Fix me. KFD won't be able to resume existing process for now.
* We will keep all existing process in a evicted state and
* wait the process to be terminated.
*/
int kgd2kfd_post_reset(struct kfd_dev *kfd)
{
int ret;
struct kfd_node *node;
int i;
if (!kfd->init_complete)
return 0;
for (i = 0; i < kfd->num_nodes; i++) {
ret = kfd_resume(kfd->nodes[i]);
if (ret)
return ret;
}
mutex_lock(&kfd_processes_mutex);
--kfd_locked;
mutex_unlock(&kfd_processes_mutex);
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
atomic_set(&node->sram_ecc_flag, 0);
kfd_smi_event_update_gpu_reset(node, true, NULL);
}
return 0;
}
bool kfd_is_locked(void)
{
lockdep_assert_held(&kfd_processes_mutex);
return (kfd_locked > 0);
}
void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
{
struct kfd_node *node;
int i;
if (!kfd->init_complete)
return;
/* for runtime suspend, skip locking kfd */
if (!run_pm) {
mutex_lock(&kfd_processes_mutex);
/* For first KFD device suspend all the KFD processes */
if (++kfd_locked == 1)
kfd_suspend_all_processes();
mutex_unlock(&kfd_processes_mutex);
}
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
node->dqm->ops.stop(node->dqm);
}
}
int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
{
int ret, i;
if (!kfd->init_complete)
return 0;
for (i = 0; i < kfd->num_nodes; i++) {
ret = kfd_resume(kfd->nodes[i]);
if (ret)
return ret;
}
/* for runtime resume, skip unlocking kfd */
if (!run_pm) {
mutex_lock(&kfd_processes_mutex);
if (--kfd_locked == 0)
ret = kfd_resume_all_processes();
WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
mutex_unlock(&kfd_processes_mutex);
}
return ret;
}
static int kfd_resume(struct kfd_node *node)
{
int err = 0;
err = node->dqm->ops.start(node->dqm);
if (err)
dev_err(kfd_device,
"Error starting queue manager for device %x:%x\n",
node->adev->pdev->vendor, node->adev->pdev->device);
return err;
}
static inline void kfd_queue_work(struct workqueue_struct *wq,
struct work_struct *work)
{
int cpu, new_cpu;
cpu = new_cpu = smp_processor_id();
do {
new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
if (cpu_to_node(new_cpu) == numa_node_id())
break;
} while (cpu != new_cpu);
queue_work_on(new_cpu, wq, work);
}
/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
bool is_patched = false;
unsigned long flags;
struct kfd_node *node;
if (!kfd->init_complete)
return;
if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
dev_err_once(kfd_device, "Ring entry too small\n");
return;
}
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
spin_lock_irqsave(&node->interrupt_lock, flags);
if (node->interrupts_active
&& interrupt_is_wanted(node, ih_ring_entry,
patched_ihre, &is_patched)
&& enqueue_ih_ring_entry(node,
is_patched ? patched_ihre : ih_ring_entry)) {
kfd_queue_work(node->ih_wq, &node->interrupt_work);
spin_unlock_irqrestore(&node->interrupt_lock, flags);
return;
}
spin_unlock_irqrestore(&node->interrupt_lock, flags);
}
}
int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
{
struct kfd_process *p;
int r;
/* Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are
* running so the lookup function increments the process ref count.
*/
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ESRCH;
WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
r = kfd_process_evict_queues(p, trigger);
kfd_unref_process(p);
return r;
}
int kgd2kfd_resume_mm(struct mm_struct *mm)
{
struct kfd_process *p;
int r;
/* Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are
* running so the lookup function increments the process ref count.
*/
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ESRCH;
r = kfd_process_restore_queues(p);
kfd_unref_process(p);
return r;
}
/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
* prepare for safe eviction of KFD BOs that belong to the specified
* process.
*
* @mm: mm_struct that identifies the specified KFD process
* @fence: eviction fence attached to KFD process BOs
*
*/
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
struct dma_fence *fence)
{
struct kfd_process *p;
unsigned long active_time;
unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
if (!fence)
return -EINVAL;
if (dma_fence_is_signaled(fence))
return 0;
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ENODEV;
if (fence->seqno == p->last_eviction_seqno)
goto out;
p->last_eviction_seqno = fence->seqno;
/* Avoid KFD process starvation. Wait for at least
* PROCESS_ACTIVE_TIME_MS before evicting the process again
*/
active_time = get_jiffies_64() - p->last_restore_timestamp;
if (delay_jiffies > active_time)
delay_jiffies -= active_time;
else
delay_jiffies = 0;
/* During process initialization eviction_work.dwork is initialized
* to kfd_evict_bo_worker
*/
WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
p->lead_thread->pid, delay_jiffies);
schedule_delayed_work(&p->eviction_work, delay_jiffies);
out:
kfd_unref_process(p);
return 0;
}
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size)
{
if (WARN_ON(buf_size < chunk_size))
return -EINVAL;
if (WARN_ON(buf_size == 0))
return -EINVAL;
if (WARN_ON(chunk_size == 0))
return -EINVAL;
kfd->gtt_sa_chunk_size = chunk_size;
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
GFP_KERNEL);
if (!kfd->gtt_sa_bitmap)
return -ENOMEM;
pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
mutex_init(&kfd->gtt_sa_lock);
return 0;
}
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
{
mutex_destroy(&kfd->gtt_sa_lock);
bitmap_free(kfd->gtt_sa_bitmap);
}
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return start_addr + bit_num * chunk_size;
}
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
}
int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
struct kfd_mem_obj **mem_obj)
{
unsigned int found, start_search, cur_size;
struct kfd_dev *kfd = node->kfd;
if (size == 0)
return -EINVAL;
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
return -ENOMEM;
*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if (!(*mem_obj))
return -ENOMEM;
pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
start_search = 0;
mutex_lock(&kfd->gtt_sa_lock);
kfd_gtt_restart_search:
/* Find the first chunk that is free */
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks,
start_search);
pr_debug("Found = %d\n", found);
/* If there wasn't any free chunk, bail out */
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Update fields of mem_obj */
(*mem_obj)->range_start = found;
(*mem_obj)->range_end = found;
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
kfd->gtt_start_gpu_addr,
found,
kfd->gtt_sa_chunk_size);
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
kfd->gtt_start_cpu_ptr,
found,
kfd->gtt_sa_chunk_size);
pr_debug("gpu_addr = %p, cpu_addr = %p\n",
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
/* If we need only one chunk, mark it as allocated and get out */
if (size <= kfd->gtt_sa_chunk_size) {
pr_debug("Single bit\n");
__set_bit(found, kfd->gtt_sa_bitmap);
goto kfd_gtt_out;
}
/* Otherwise, try to see if we have enough contiguous chunks */
cur_size = size - kfd->gtt_sa_chunk_size;
do {
(*mem_obj)->range_end =
find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks, ++found);
/*
* If next free chunk is not contiguous than we need to
* restart our search from the last free chunk we found (which
* wasn't contiguous to the previous ones
*/
if ((*mem_obj)->range_end != found) {
start_search = found;
goto kfd_gtt_restart_search;
}
/*
* If we reached end of buffer, bail out with error
*/
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Check if we don't need another chunk */
if (cur_size <= kfd->gtt_sa_chunk_size)
cur_size = 0;
else
cur_size -= kfd->gtt_sa_chunk_size;
} while (cur_size > 0);
pr_debug("range_start = %d, range_end = %d\n",
(*mem_obj)->range_start, (*mem_obj)->range_end);
/* Mark the chunks as allocated */
bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
(*mem_obj)->range_end - (*mem_obj)->range_start + 1);
kfd_gtt_out:
mutex_unlock(&kfd->gtt_sa_lock);
return 0;
kfd_gtt_no_free_chunk:
pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(*mem_obj);
return -ENOMEM;
}
int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
{
struct kfd_dev *kfd = node->kfd;
/* Act like kfree when trying to free a NULL object */
if (!mem_obj)
return 0;
pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
mem_obj, mem_obj->range_start, mem_obj->range_end);
mutex_lock(&kfd->gtt_sa_lock);
/* Mark the chunks as free */
bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
mem_obj->range_end - mem_obj->range_start + 1);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return 0;
}
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
{
/*
* TODO: Currently update SRAM ECC flag for first node.
* This needs to be updated later when we can
* identify SRAM ECC error on other nodes also.
*/
if (kfd)
atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
}
void kfd_inc_compute_active(struct kfd_node *node)
{
if (atomic_inc_return(&node->kfd->compute_profile) == 1)
amdgpu_amdkfd_set_compute_idle(node->adev, false);
}
void kfd_dec_compute_active(struct kfd_node *node)
{
int count = atomic_dec_return(&node->kfd->compute_profile);
if (count == 0)
amdgpu_amdkfd_set_compute_idle(node->adev, true);
WARN_ONCE(count < 0, "Compute profile ref. count error");
}
void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
{
/*
* TODO: For now, raise the throttling event only on first node.
* This will need to change after we are able to determine
* which node raised the throttling event.
*/
if (kfd && kfd->init_complete)
kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
throttle_bitmask);
}
/* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
* kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
* When the device has more than two engines, we reserve two for PCIe to enable
* full-duplex and the rest are used as XGMI.
*/
unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
{
/* If XGMI is not supported, all SDMA engines are PCIe */
if (!node->adev->gmc.xgmi.supported)
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
}
unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
{
/* After reserved for PCIe, the rest of engines are XGMI */
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
kfd_get_num_sdma_engines(node);
}
int kgd2kfd_check_and_lock_kfd(void)
{
mutex_lock(&kfd_processes_mutex);
if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
mutex_unlock(&kfd_processes_mutex);
return -EBUSY;
}
++kfd_locked;
mutex_unlock(&kfd_processes_mutex);
return 0;
}
void kgd2kfd_unlock_kfd(void)
{
mutex_lock(&kfd_processes_mutex);
--kfd_locked;
mutex_unlock(&kfd_processes_mutex);
}
#if defined(CONFIG_DEBUG_FS)
/* This function will send a package to HIQ to hang the HWS
* which will trigger a GPU reset and bring the HWS back to normal state
*/
int kfd_debugfs_hang_hws(struct kfd_node *dev)
{
if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
pr_err("HWS is not enabled");
return -EINVAL;
}
return dqm_debugfs_hang_hws(dev->dqm);
}
#endif