| /* |
| * File Name: |
| * defxx.c |
| * |
| * Copyright Information: |
| * Copyright Digital Equipment Corporation 1996. |
| * |
| * This software may be used and distributed according to the terms of |
| * the GNU General Public License, incorporated herein by reference. |
| * |
| * Abstract: |
| * A Linux device driver supporting the Digital Equipment Corporation |
| * FDDI TURBOchannel, EISA and PCI controller families. Supported |
| * adapters include: |
| * |
| * DEC FDDIcontroller/TURBOchannel (DEFTA) |
| * DEC FDDIcontroller/EISA (DEFEA) |
| * DEC FDDIcontroller/PCI (DEFPA) |
| * |
| * The original author: |
| * LVS Lawrence V. Stefani <lstefani@yahoo.com> |
| * |
| * Maintainers: |
| * macro Maciej W. Rozycki <macro@orcam.me.uk> |
| * |
| * Credits: |
| * I'd like to thank Patricia Cross for helping me get started with |
| * Linux, David Davies for a lot of help upgrading and configuring |
| * my development system and for answering many OS and driver |
| * development questions, and Alan Cox for recommendations and |
| * integration help on getting FDDI support into Linux. LVS |
| * |
| * Driver Architecture: |
| * The driver architecture is largely based on previous driver work |
| * for other operating systems. The upper edge interface and |
| * functions were largely taken from existing Linux device drivers |
| * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C |
| * driver. |
| * |
| * Adapter Probe - |
| * The driver scans for supported EISA adapters by reading the |
| * SLOT ID register for each EISA slot and making a match |
| * against the expected value. |
| * |
| * Bus-Specific Initialization - |
| * This driver currently supports both EISA and PCI controller |
| * families. While the custom DMA chip and FDDI logic is similar |
| * or identical, the bus logic is very different. After |
| * initialization, the only bus-specific differences is in how the |
| * driver enables and disables interrupts. Other than that, the |
| * run-time critical code behaves the same on both families. |
| * It's important to note that both adapter families are configured |
| * to I/O map, rather than memory map, the adapter registers. |
| * |
| * Driver Open/Close - |
| * In the driver open routine, the driver ISR (interrupt service |
| * routine) is registered and the adapter is brought to an |
| * operational state. In the driver close routine, the opposite |
| * occurs; the driver ISR is deregistered and the adapter is |
| * brought to a safe, but closed state. Users may use consecutive |
| * commands to bring the adapter up and down as in the following |
| * example: |
| * ifconfig fddi0 up |
| * ifconfig fddi0 down |
| * ifconfig fddi0 up |
| * |
| * Driver Shutdown - |
| * Apparently, there is no shutdown or halt routine support under |
| * Linux. This routine would be called during "reboot" or |
| * "shutdown" to allow the driver to place the adapter in a safe |
| * state before a warm reboot occurs. To be really safe, the user |
| * should close the adapter before shutdown (eg. ifconfig fddi0 down) |
| * to ensure that the adapter DMA engine is taken off-line. However, |
| * the current driver code anticipates this problem and always issues |
| * a soft reset of the adapter at the beginning of driver initialization. |
| * A future driver enhancement in this area may occur in 2.1.X where |
| * Alan indicated that a shutdown handler may be implemented. |
| * |
| * Interrupt Service Routine - |
| * The driver supports shared interrupts, so the ISR is registered for |
| * each board with the appropriate flag and the pointer to that board's |
| * device structure. This provides the context during interrupt |
| * processing to support shared interrupts and multiple boards. |
| * |
| * Interrupt enabling/disabling can occur at many levels. At the host |
| * end, you can disable system interrupts, or disable interrupts at the |
| * PIC (on Intel systems). Across the bus, both EISA and PCI adapters |
| * have a bus-logic chip interrupt enable/disable as well as a DMA |
| * controller interrupt enable/disable. |
| * |
| * The driver currently enables and disables adapter interrupts at the |
| * bus-logic chip and assumes that Linux will take care of clearing or |
| * acknowledging any host-based interrupt chips. |
| * |
| * Control Functions - |
| * Control functions are those used to support functions such as adding |
| * or deleting multicast addresses, enabling or disabling packet |
| * reception filters, or other custom/proprietary commands. Presently, |
| * the driver supports the "get statistics", "set multicast list", and |
| * "set mac address" functions defined by Linux. A list of possible |
| * enhancements include: |
| * |
| * - Custom ioctl interface for executing port interface commands |
| * - Custom ioctl interface for adding unicast addresses to |
| * adapter CAM (to support bridge functions). |
| * - Custom ioctl interface for supporting firmware upgrades. |
| * |
| * Hardware (port interface) Support Routines - |
| * The driver function names that start with "dfx_hw_" represent |
| * low-level port interface routines that are called frequently. They |
| * include issuing a DMA or port control command to the adapter, |
| * resetting the adapter, or reading the adapter state. Since the |
| * driver initialization and run-time code must make calls into the |
| * port interface, these routines were written to be as generic and |
| * usable as possible. |
| * |
| * Receive Path - |
| * The adapter DMA engine supports a 256 entry receive descriptor block |
| * of which up to 255 entries can be used at any given time. The |
| * architecture is a standard producer, consumer, completion model in |
| * which the driver "produces" receive buffers to the adapter, the |
| * adapter "consumes" the receive buffers by DMAing incoming packet data, |
| * and the driver "completes" the receive buffers by servicing the |
| * incoming packet, then "produces" a new buffer and starts the cycle |
| * again. Receive buffers can be fragmented in up to 16 fragments |
| * (descriptor entries). For simplicity, this driver posts |
| * single-fragment receive buffers of 4608 bytes, then allocates a |
| * sk_buff, copies the data, then reposts the buffer. To reduce CPU |
| * utilization, a better approach would be to pass up the receive |
| * buffer (no extra copy) then allocate and post a replacement buffer. |
| * This is a performance enhancement that should be looked into at |
| * some point. |
| * |
| * Transmit Path - |
| * Like the receive path, the adapter DMA engine supports a 256 entry |
| * transmit descriptor block of which up to 255 entries can be used at |
| * any given time. Transmit buffers can be fragmented in up to 255 |
| * fragments (descriptor entries). This driver always posts one |
| * fragment per transmit packet request. |
| * |
| * The fragment contains the entire packet from FC to end of data. |
| * Before posting the buffer to the adapter, the driver sets a three-byte |
| * packet request header (PRH) which is required by the Motorola MAC chip |
| * used on the adapters. The PRH tells the MAC the type of token to |
| * receive/send, whether or not to generate and append the CRC, whether |
| * synchronous or asynchronous framing is used, etc. Since the PRH |
| * definition is not necessarily consistent across all FDDI chipsets, |
| * the driver, rather than the common FDDI packet handler routines, |
| * sets these bytes. |
| * |
| * To reduce the amount of descriptor fetches needed per transmit request, |
| * the driver takes advantage of the fact that there are at least three |
| * bytes available before the skb->data field on the outgoing transmit |
| * request. This is guaranteed by having fddi_setup() in net_init.c set |
| * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest |
| * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" |
| * bytes which we'll use to store the PRH. |
| * |
| * There's a subtle advantage to adding these pad bytes to the |
| * hard_header_len, it ensures that the data portion of the packet for |
| * an 802.2 SNAP frame is longword aligned. Other FDDI driver |
| * implementations may not need the extra padding and can start copying |
| * or DMAing directly from the FC byte which starts at skb->data. Should |
| * another driver implementation need ADDITIONAL padding, the net_init.c |
| * module should be updated and dev->hard_header_len should be increased. |
| * NOTE: To maintain the alignment on the data portion of the packet, |
| * dev->hard_header_len should always be evenly divisible by 4 and at |
| * least 24 bytes in size. |
| * |
| * Modification History: |
| * Date Name Description |
| * 16-Aug-96 LVS Created. |
| * 20-Aug-96 LVS Updated dfx_probe so that version information |
| * string is only displayed if 1 or more cards are |
| * found. Changed dfx_rcv_queue_process to copy |
| * 3 NULL bytes before FC to ensure that data is |
| * longword aligned in receive buffer. |
| * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable |
| * LLC group promiscuous mode if multicast list |
| * is too large. LLC individual/group promiscuous |
| * mode is now disabled if IFF_PROMISC flag not set. |
| * dfx_xmt_queue_pkt no longer checks for NULL skb |
| * on Alan Cox recommendation. Added node address |
| * override support. |
| * 12-Sep-96 LVS Reset current address to factory address during |
| * device open. Updated transmit path to post a |
| * single fragment which includes PRH->end of data. |
| * Mar 2000 AC Did various cleanups for 2.3.x |
| * Jun 2000 jgarzik PCI and resource alloc cleanups |
| * Jul 2000 tjeerd Much cleanup and some bug fixes |
| * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup |
| * Feb 2001 Skb allocation fixes |
| * Feb 2001 davej PCI enable cleanups. |
| * 04 Aug 2003 macro Converted to the DMA API. |
| * 14 Aug 2004 macro Fix device names reported. |
| * 14 Jun 2005 macro Use irqreturn_t. |
| * 23 Oct 2006 macro Big-endian host support. |
| * 14 Dec 2006 macro TURBOchannel support. |
| * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts. |
| * 10 Mar 2021 macro Dynamic MMIO vs port I/O. |
| */ |
| |
| /* Include files */ |
| #include <linux/bitops.h> |
| #include <linux/compiler.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/eisa.h> |
| #include <linux/errno.h> |
| #include <linux/fddidevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioport.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/pci.h> |
| #include <linux/skbuff.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/tc.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/io.h> |
| |
| #include "defxx.h" |
| |
| /* Version information string should be updated prior to each new release! */ |
| #define DRV_NAME "defxx" |
| #define DRV_VERSION "v1.12" |
| #define DRV_RELDATE "2021/03/10" |
| |
| static const char version[] = |
| DRV_NAME ": " DRV_VERSION " " DRV_RELDATE |
| " Lawrence V. Stefani and others\n"; |
| |
| #define DYNAMIC_BUFFERS 1 |
| |
| #define SKBUFF_RX_COPYBREAK 200 |
| /* |
| * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte |
| * alignment for compatibility with old EISA boards. |
| */ |
| #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) |
| |
| #ifdef CONFIG_EISA |
| #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) |
| #else |
| #define DFX_BUS_EISA(dev) 0 |
| #endif |
| |
| #ifdef CONFIG_TC |
| #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) |
| #else |
| #define DFX_BUS_TC(dev) 0 |
| #endif |
| |
| #if defined(CONFIG_EISA) || defined(CONFIG_PCI) |
| #define dfx_use_mmio bp->mmio |
| #else |
| #define dfx_use_mmio true |
| #endif |
| |
| /* Define module-wide (static) routines */ |
| |
| static void dfx_bus_init(struct net_device *dev); |
| static void dfx_bus_uninit(struct net_device *dev); |
| static void dfx_bus_config_check(DFX_board_t *bp); |
| |
| static int dfx_driver_init(struct net_device *dev, |
| const char *print_name, |
| resource_size_t bar_start); |
| static int dfx_adap_init(DFX_board_t *bp, int get_buffers); |
| |
| static int dfx_open(struct net_device *dev); |
| static int dfx_close(struct net_device *dev); |
| |
| static void dfx_int_pr_halt_id(DFX_board_t *bp); |
| static void dfx_int_type_0_process(DFX_board_t *bp); |
| static void dfx_int_common(struct net_device *dev); |
| static irqreturn_t dfx_interrupt(int irq, void *dev_id); |
| |
| static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); |
| static void dfx_ctl_set_multicast_list(struct net_device *dev); |
| static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); |
| static int dfx_ctl_update_cam(DFX_board_t *bp); |
| static int dfx_ctl_update_filters(DFX_board_t *bp); |
| |
| static int dfx_hw_dma_cmd_req(DFX_board_t *bp); |
| static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); |
| static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); |
| static int dfx_hw_adap_state_rd(DFX_board_t *bp); |
| static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); |
| |
| static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); |
| static void dfx_rcv_queue_process(DFX_board_t *bp); |
| #ifdef DYNAMIC_BUFFERS |
| static void dfx_rcv_flush(DFX_board_t *bp); |
| #else |
| static inline void dfx_rcv_flush(DFX_board_t *bp) {} |
| #endif |
| |
| static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, |
| struct net_device *dev); |
| static int dfx_xmt_done(DFX_board_t *bp); |
| static void dfx_xmt_flush(DFX_board_t *bp); |
| |
| /* Define module-wide (static) variables */ |
| |
| static struct pci_driver dfx_pci_driver; |
| static struct eisa_driver dfx_eisa_driver; |
| static struct tc_driver dfx_tc_driver; |
| |
| |
| /* |
| * ======================= |
| * = dfx_port_write_long = |
| * = dfx_port_read_long = |
| * ======================= |
| * |
| * Overview: |
| * Routines for reading and writing values from/to adapter |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * offset - register offset from base I/O address |
| * data - for dfx_port_write_long, this is a value to write; |
| * for dfx_port_read_long, this is a pointer to store |
| * the read value |
| * |
| * Functional Description: |
| * These routines perform the correct operation to read or write |
| * the adapter register. |
| * |
| * EISA port block base addresses are based on the slot number in which the |
| * controller is installed. For example, if the EISA controller is installed |
| * in slot 4, the port block base address is 0x4000. If the controller is |
| * installed in slot 2, the port block base address is 0x2000, and so on. |
| * This port block can be used to access PDQ, ESIC, and DEFEA on-board |
| * registers using the register offsets defined in DEFXX.H. |
| * |
| * PCI port block base addresses are assigned by the PCI BIOS or system |
| * firmware. There is one 128 byte port block which can be accessed. It |
| * allows for I/O mapping of both PDQ and PFI registers using the register |
| * offsets defined in DEFXX.H. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * bp->base is a valid base I/O address for this adapter. |
| * offset is a valid register offset for this adapter. |
| * |
| * Side Effects: |
| * Rather than produce macros for these functions, these routines |
| * are defined using "inline" to ensure that the compiler will |
| * generate inline code and not waste a procedure call and return. |
| * This provides all the benefits of macros, but with the |
| * advantage of strict data type checking. |
| */ |
| |
| static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) |
| { |
| writel(data, bp->base.mem + offset); |
| mb(); |
| } |
| |
| static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) |
| { |
| outl(data, bp->base.port + offset); |
| } |
| |
| static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) |
| { |
| struct device __maybe_unused *bdev = bp->bus_dev; |
| |
| if (dfx_use_mmio) |
| dfx_writel(bp, offset, data); |
| else |
| dfx_outl(bp, offset, data); |
| } |
| |
| |
| static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) |
| { |
| mb(); |
| *data = readl(bp->base.mem + offset); |
| } |
| |
| static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) |
| { |
| *data = inl(bp->base.port + offset); |
| } |
| |
| static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) |
| { |
| struct device __maybe_unused *bdev = bp->bus_dev; |
| |
| if (dfx_use_mmio) |
| dfx_readl(bp, offset, data); |
| else |
| dfx_inl(bp, offset, data); |
| } |
| |
| |
| /* |
| * ================ |
| * = dfx_get_bars = |
| * ================ |
| * |
| * Overview: |
| * Retrieves the address ranges used to access control and status |
| * registers. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * bar_start - pointer to store the start addresses |
| * bar_len - pointer to store the lengths of the areas |
| * |
| * Assumptions: |
| * I am sure there are some. |
| * |
| * Side Effects: |
| * None |
| */ |
| static void dfx_get_bars(DFX_board_t *bp, |
| resource_size_t *bar_start, resource_size_t *bar_len) |
| { |
| struct device *bdev = bp->bus_dev; |
| int dfx_bus_pci = dev_is_pci(bdev); |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| int dfx_bus_tc = DFX_BUS_TC(bdev); |
| |
| if (dfx_bus_pci) { |
| int num = dfx_use_mmio ? 0 : 1; |
| |
| bar_start[0] = pci_resource_start(to_pci_dev(bdev), num); |
| bar_len[0] = pci_resource_len(to_pci_dev(bdev), num); |
| bar_start[2] = bar_start[1] = 0; |
| bar_len[2] = bar_len[1] = 0; |
| } |
| if (dfx_bus_eisa) { |
| unsigned long base_addr = to_eisa_device(bdev)->base_addr; |
| resource_size_t bar_lo; |
| resource_size_t bar_hi; |
| |
| if (dfx_use_mmio) { |
| bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2); |
| bar_lo <<= 8; |
| bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1); |
| bar_lo <<= 8; |
| bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0); |
| bar_lo <<= 8; |
| bar_start[0] = bar_lo; |
| bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2); |
| bar_hi <<= 8; |
| bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1); |
| bar_hi <<= 8; |
| bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0); |
| bar_hi <<= 8; |
| bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) + |
| 1; |
| } else { |
| bar_start[0] = base_addr; |
| bar_len[0] = PI_ESIC_K_CSR_IO_LEN; |
| } |
| bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF; |
| bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN; |
| bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR; |
| bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN; |
| } |
| if (dfx_bus_tc) { |
| bar_start[0] = to_tc_dev(bdev)->resource.start + |
| PI_TC_K_CSR_OFFSET; |
| bar_len[0] = PI_TC_K_CSR_LEN; |
| bar_start[2] = bar_start[1] = 0; |
| bar_len[2] = bar_len[1] = 0; |
| } |
| } |
| |
| static const struct net_device_ops dfx_netdev_ops = { |
| .ndo_open = dfx_open, |
| .ndo_stop = dfx_close, |
| .ndo_start_xmit = dfx_xmt_queue_pkt, |
| .ndo_get_stats = dfx_ctl_get_stats, |
| .ndo_set_rx_mode = dfx_ctl_set_multicast_list, |
| .ndo_set_mac_address = dfx_ctl_set_mac_address, |
| }; |
| |
| static void dfx_register_res_err(const char *print_name, bool mmio, |
| unsigned long start, unsigned long len) |
| { |
| pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n", |
| print_name, mmio ? "MMIO" : "I/O", len, start); |
| } |
| |
| /* |
| * ================ |
| * = dfx_register = |
| * ================ |
| * |
| * Overview: |
| * Initializes a supported FDDI controller |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bdev - pointer to device information |
| * |
| * Functional Description: |
| * |
| * Return Codes: |
| * 0 - This device (fddi0, fddi1, etc) configured successfully |
| * -EBUSY - Failed to get resources, or dfx_driver_init failed. |
| * |
| * Assumptions: |
| * It compiles so it should work :-( (PCI cards do :-) |
| * |
| * Side Effects: |
| * Device structures for FDDI adapters (fddi0, fddi1, etc) are |
| * initialized and the board resources are read and stored in |
| * the device structure. |
| */ |
| static int dfx_register(struct device *bdev) |
| { |
| static int version_disp; |
| int dfx_bus_pci = dev_is_pci(bdev); |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| const char *print_name = dev_name(bdev); |
| struct net_device *dev; |
| DFX_board_t *bp; /* board pointer */ |
| resource_size_t bar_start[3] = {0}; /* pointers to ports */ |
| resource_size_t bar_len[3] = {0}; /* resource length */ |
| int alloc_size; /* total buffer size used */ |
| struct resource *region; |
| int err = 0; |
| |
| if (!version_disp) { /* display version info if adapter is found */ |
| version_disp = 1; /* set display flag to TRUE so that */ |
| printk(version); /* we only display this string ONCE */ |
| } |
| |
| dev = alloc_fddidev(sizeof(*bp)); |
| if (!dev) { |
| printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", |
| print_name); |
| return -ENOMEM; |
| } |
| |
| /* Enable PCI device. */ |
| if (dfx_bus_pci) { |
| err = pci_enable_device(to_pci_dev(bdev)); |
| if (err) { |
| pr_err("%s: Cannot enable PCI device, aborting\n", |
| print_name); |
| goto err_out; |
| } |
| } |
| |
| SET_NETDEV_DEV(dev, bdev); |
| |
| bp = netdev_priv(dev); |
| bp->bus_dev = bdev; |
| dev_set_drvdata(bdev, dev); |
| |
| bp->mmio = true; |
| |
| dfx_get_bars(bp, bar_start, bar_len); |
| if (bar_len[0] == 0 || |
| (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) { |
| bp->mmio = false; |
| dfx_get_bars(bp, bar_start, bar_len); |
| } |
| |
| if (dfx_use_mmio) { |
| region = request_mem_region(bar_start[0], bar_len[0], |
| bdev->driver->name); |
| if (!region && (dfx_bus_eisa || dfx_bus_pci)) { |
| bp->mmio = false; |
| dfx_get_bars(bp, bar_start, bar_len); |
| } |
| } |
| if (!dfx_use_mmio) |
| region = request_region(bar_start[0], bar_len[0], |
| bdev->driver->name); |
| if (!region) { |
| dfx_register_res_err(print_name, dfx_use_mmio, |
| bar_start[0], bar_len[0]); |
| err = -EBUSY; |
| goto err_out_disable; |
| } |
| if (bar_start[1] != 0) { |
| region = request_region(bar_start[1], bar_len[1], |
| bdev->driver->name); |
| if (!region) { |
| dfx_register_res_err(print_name, 0, |
| bar_start[1], bar_len[1]); |
| err = -EBUSY; |
| goto err_out_csr_region; |
| } |
| } |
| if (bar_start[2] != 0) { |
| region = request_region(bar_start[2], bar_len[2], |
| bdev->driver->name); |
| if (!region) { |
| dfx_register_res_err(print_name, 0, |
| bar_start[2], bar_len[2]); |
| err = -EBUSY; |
| goto err_out_bh_region; |
| } |
| } |
| |
| /* Set up I/O base address. */ |
| if (dfx_use_mmio) { |
| bp->base.mem = ioremap(bar_start[0], bar_len[0]); |
| if (!bp->base.mem) { |
| printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); |
| err = -ENOMEM; |
| goto err_out_esic_region; |
| } |
| } else { |
| bp->base.port = bar_start[0]; |
| dev->base_addr = bar_start[0]; |
| } |
| |
| /* Initialize new device structure */ |
| dev->netdev_ops = &dfx_netdev_ops; |
| |
| if (dfx_bus_pci) |
| pci_set_master(to_pci_dev(bdev)); |
| |
| if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) { |
| err = -ENODEV; |
| goto err_out_unmap; |
| } |
| |
| err = register_netdev(dev); |
| if (err) |
| goto err_out_kfree; |
| |
| printk("%s: registered as %s\n", print_name, dev->name); |
| return 0; |
| |
| err_out_kfree: |
| alloc_size = sizeof(PI_DESCR_BLOCK) + |
| PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + |
| #ifndef DYNAMIC_BUFFERS |
| (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + |
| #endif |
| sizeof(PI_CONSUMER_BLOCK) + |
| (PI_ALIGN_K_DESC_BLK - 1); |
| if (bp->kmalloced) |
| dma_free_coherent(bdev, alloc_size, |
| bp->kmalloced, bp->kmalloced_dma); |
| |
| err_out_unmap: |
| if (dfx_use_mmio) |
| iounmap(bp->base.mem); |
| |
| err_out_esic_region: |
| if (bar_start[2] != 0) |
| release_region(bar_start[2], bar_len[2]); |
| |
| err_out_bh_region: |
| if (bar_start[1] != 0) |
| release_region(bar_start[1], bar_len[1]); |
| |
| err_out_csr_region: |
| if (dfx_use_mmio) |
| release_mem_region(bar_start[0], bar_len[0]); |
| else |
| release_region(bar_start[0], bar_len[0]); |
| |
| err_out_disable: |
| if (dfx_bus_pci) |
| pci_disable_device(to_pci_dev(bdev)); |
| |
| err_out: |
| free_netdev(dev); |
| return err; |
| } |
| |
| |
| /* |
| * ================ |
| * = dfx_bus_init = |
| * ================ |
| * |
| * Overview: |
| * Initializes the bus-specific controller logic. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * Determine and save adapter IRQ in device table, |
| * then perform bus-specific logic initialization. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * bp->base has already been set with the proper |
| * base I/O address for this device. |
| * |
| * Side Effects: |
| * Interrupts are enabled at the adapter bus-specific logic. |
| * Note: Interrupts at the DMA engine (PDQ chip) are not |
| * enabled yet. |
| */ |
| |
| static void dfx_bus_init(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| struct device *bdev = bp->bus_dev; |
| int dfx_bus_pci = dev_is_pci(bdev); |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| int dfx_bus_tc = DFX_BUS_TC(bdev); |
| u8 val; |
| |
| DBG_printk("In dfx_bus_init...\n"); |
| |
| /* Initialize a pointer back to the net_device struct */ |
| bp->dev = dev; |
| |
| /* Initialize adapter based on bus type */ |
| |
| if (dfx_bus_tc) |
| dev->irq = to_tc_dev(bdev)->interrupt; |
| if (dfx_bus_eisa) { |
| unsigned long base_addr = to_eisa_device(bdev)->base_addr; |
| |
| /* Disable the board before fiddling with the decoders. */ |
| outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL); |
| |
| /* Get the interrupt level from the ESIC chip. */ |
| val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| val &= PI_CONFIG_STAT_0_M_IRQ; |
| val >>= PI_CONFIG_STAT_0_V_IRQ; |
| |
| switch (val) { |
| case PI_CONFIG_STAT_0_IRQ_K_9: |
| dev->irq = 9; |
| break; |
| |
| case PI_CONFIG_STAT_0_IRQ_K_10: |
| dev->irq = 10; |
| break; |
| |
| case PI_CONFIG_STAT_0_IRQ_K_11: |
| dev->irq = 11; |
| break; |
| |
| case PI_CONFIG_STAT_0_IRQ_K_15: |
| dev->irq = 15; |
| break; |
| } |
| |
| /* |
| * Enable memory decoding (MEMCS1) and/or port decoding |
| * (IOCS1/IOCS0) as appropriate in Function Control |
| * Register. MEMCS1 or IOCS0 is used for PDQ registers, |
| * taking 16 32-bit words, while IOCS1 is used for the |
| * Burst Holdoff register, taking a single 32-bit word |
| * only. We use the slot-specific I/O range as per the |
| * ESIC spec, that is set bits 15:12 in the mask registers |
| * to mask them out. |
| */ |
| |
| /* Set the decode range of the board. */ |
| val = 0; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1); |
| val = PI_DEFEA_K_CSR_IO; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0); |
| |
| val = PI_IO_CMP_M_SLOT; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1); |
| val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0); |
| |
| val = 0; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1); |
| val = PI_DEFEA_K_BURST_HOLDOFF; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0); |
| |
| val = PI_IO_CMP_M_SLOT; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1); |
| val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3; |
| outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0); |
| |
| /* Enable the decoders. */ |
| val = PI_FUNCTION_CNTRL_M_IOCS1; |
| if (dfx_use_mmio) |
| val |= PI_FUNCTION_CNTRL_M_MEMCS1; |
| else |
| val |= PI_FUNCTION_CNTRL_M_IOCS0; |
| outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL); |
| |
| /* |
| * Enable access to the rest of the module |
| * (including PDQ and packet memory). |
| */ |
| val = PI_SLOT_CNTRL_M_ENB; |
| outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL); |
| |
| /* |
| * Map PDQ registers into memory or port space. This is |
| * done with a bit in the Burst Holdoff register. |
| */ |
| val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); |
| if (dfx_use_mmio) |
| val |= PI_BURST_HOLDOFF_M_MEM_MAP; |
| else |
| val &= ~PI_BURST_HOLDOFF_M_MEM_MAP; |
| outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF); |
| |
| /* Enable interrupts at EISA bus interface chip (ESIC) */ |
| val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| val |= PI_CONFIG_STAT_0_M_INT_ENB; |
| outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| } |
| if (dfx_bus_pci) { |
| struct pci_dev *pdev = to_pci_dev(bdev); |
| |
| /* Get the interrupt level from the PCI Configuration Table */ |
| |
| dev->irq = pdev->irq; |
| |
| /* Check Latency Timer and set if less than minimal */ |
| |
| pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); |
| if (val < PFI_K_LAT_TIMER_MIN) { |
| val = PFI_K_LAT_TIMER_DEF; |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); |
| } |
| |
| /* Enable interrupts at PCI bus interface chip (PFI) */ |
| val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; |
| dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); |
| } |
| } |
| |
| /* |
| * ================== |
| * = dfx_bus_uninit = |
| * ================== |
| * |
| * Overview: |
| * Uninitializes the bus-specific controller logic. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * Perform bus-specific logic uninitialization. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * bp->base has already been set with the proper |
| * base I/O address for this device. |
| * |
| * Side Effects: |
| * Interrupts are disabled at the adapter bus-specific logic. |
| */ |
| |
| static void dfx_bus_uninit(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| struct device *bdev = bp->bus_dev; |
| int dfx_bus_pci = dev_is_pci(bdev); |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| u8 val; |
| |
| DBG_printk("In dfx_bus_uninit...\n"); |
| |
| /* Uninitialize adapter based on bus type */ |
| |
| if (dfx_bus_eisa) { |
| unsigned long base_addr = to_eisa_device(bdev)->base_addr; |
| |
| /* Disable interrupts at EISA bus interface chip (ESIC) */ |
| val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| val &= ~PI_CONFIG_STAT_0_M_INT_ENB; |
| outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| |
| /* Disable the board. */ |
| outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL); |
| |
| /* Disable memory and port decoders. */ |
| outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL); |
| } |
| if (dfx_bus_pci) { |
| /* Disable interrupts at PCI bus interface chip (PFI) */ |
| dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); |
| } |
| } |
| |
| |
| /* |
| * ======================== |
| * = dfx_bus_config_check = |
| * ======================== |
| * |
| * Overview: |
| * Checks the configuration (burst size, full-duplex, etc.) If any parameters |
| * are illegal, then this routine will set new defaults. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later |
| * PDQ, and all FDDI PCI controllers, all values are legal. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * dfx_adap_init has NOT been called yet so burst size and other items have |
| * not been set. |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static void dfx_bus_config_check(DFX_board_t *bp) |
| { |
| struct device __maybe_unused *bdev = bp->bus_dev; |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| int status; /* return code from adapter port control call */ |
| u32 host_data; /* LW data returned from port control call */ |
| |
| DBG_printk("In dfx_bus_config_check...\n"); |
| |
| /* Configuration check only valid for EISA adapter */ |
| |
| if (dfx_bus_eisa) { |
| /* |
| * First check if revision 2 EISA controller. Rev. 1 cards used |
| * PDQ revision B, so no workaround needed in this case. Rev. 3 |
| * cards used PDQ revision E, so no workaround needed in this |
| * case, either. Only Rev. 2 cards used either Rev. D or E |
| * chips, so we must verify the chip revision on Rev. 2 cards. |
| */ |
| if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { |
| /* |
| * Revision 2 FDDI EISA controller found, |
| * so let's check PDQ revision of adapter. |
| */ |
| status = dfx_hw_port_ctrl_req(bp, |
| PI_PCTRL_M_SUB_CMD, |
| PI_SUB_CMD_K_PDQ_REV_GET, |
| 0, |
| &host_data); |
| if ((status != DFX_K_SUCCESS) || (host_data == 2)) |
| { |
| /* |
| * Either we couldn't determine the PDQ revision, or |
| * we determined that it is at revision D. In either case, |
| * we need to implement the workaround. |
| */ |
| |
| /* Ensure that the burst size is set to 8 longwords or less */ |
| |
| switch (bp->burst_size) |
| { |
| case PI_PDATA_B_DMA_BURST_SIZE_32: |
| case PI_PDATA_B_DMA_BURST_SIZE_16: |
| bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Ensure that full-duplex mode is not enabled */ |
| |
| bp->full_duplex_enb = PI_SNMP_K_FALSE; |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * =================== |
| * = dfx_driver_init = |
| * =================== |
| * |
| * Overview: |
| * Initializes remaining adapter board structure information |
| * and makes sure adapter is in a safe state prior to dfx_open(). |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * print_name - printable device name |
| * |
| * Functional Description: |
| * This function allocates additional resources such as the host memory |
| * blocks needed by the adapter (eg. descriptor and consumer blocks). |
| * Remaining bus initialization steps are also completed. The adapter |
| * is also reset so that it is in the DMA_UNAVAILABLE state. The OS |
| * must call dfx_open() to open the adapter and bring it on-line. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - initialization succeeded |
| * DFX_K_FAILURE - initialization failed - could not allocate memory |
| * or read adapter MAC address |
| * |
| * Assumptions: |
| * Memory allocated from dma_alloc_coherent() call is physically |
| * contiguous, locked memory. |
| * |
| * Side Effects: |
| * Adapter is reset and should be in DMA_UNAVAILABLE state before |
| * returning from this routine. |
| */ |
| |
| static int dfx_driver_init(struct net_device *dev, const char *print_name, |
| resource_size_t bar_start) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| struct device *bdev = bp->bus_dev; |
| int dfx_bus_pci = dev_is_pci(bdev); |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| int dfx_bus_tc = DFX_BUS_TC(bdev); |
| int alloc_size; /* total buffer size needed */ |
| char *top_v, *curr_v; /* virtual addrs into memory block */ |
| dma_addr_t top_p, curr_p; /* physical addrs into memory block */ |
| u32 data; /* host data register value */ |
| __le32 le32; |
| char *board_name = NULL; |
| |
| DBG_printk("In dfx_driver_init...\n"); |
| |
| /* Initialize bus-specific hardware registers */ |
| |
| dfx_bus_init(dev); |
| |
| /* |
| * Initialize default values for configurable parameters |
| * |
| * Note: All of these parameters are ones that a user may |
| * want to customize. It'd be nice to break these |
| * out into Space.c or someplace else that's more |
| * accessible/understandable than this file. |
| */ |
| |
| bp->full_duplex_enb = PI_SNMP_K_FALSE; |
| bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ |
| bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; |
| bp->rcv_bufs_to_post = RCV_BUFS_DEF; |
| |
| /* |
| * Ensure that HW configuration is OK |
| * |
| * Note: Depending on the hardware revision, we may need to modify |
| * some of the configurable parameters to workaround hardware |
| * limitations. We'll perform this configuration check AFTER |
| * setting the parameters to their default values. |
| */ |
| |
| dfx_bus_config_check(bp); |
| |
| /* Disable PDQ interrupts first */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| |
| /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ |
| |
| (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); |
| |
| /* Read the factory MAC address from the adapter then save it */ |
| |
| if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, |
| &data) != DFX_K_SUCCESS) { |
| printk("%s: Could not read adapter factory MAC address!\n", |
| print_name); |
| return DFX_K_FAILURE; |
| } |
| le32 = cpu_to_le32(data); |
| memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); |
| |
| if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, |
| &data) != DFX_K_SUCCESS) { |
| printk("%s: Could not read adapter factory MAC address!\n", |
| print_name); |
| return DFX_K_FAILURE; |
| } |
| le32 = cpu_to_le32(data); |
| memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); |
| |
| /* |
| * Set current address to factory address |
| * |
| * Note: Node address override support is handled through |
| * dfx_ctl_set_mac_address. |
| */ |
| |
| dev_addr_set(dev, bp->factory_mac_addr); |
| if (dfx_bus_tc) |
| board_name = "DEFTA"; |
| if (dfx_bus_eisa) |
| board_name = "DEFEA"; |
| if (dfx_bus_pci) |
| board_name = "DEFPA"; |
| pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", |
| print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O", |
| (long long)bar_start, dev->irq, dev->dev_addr); |
| |
| /* |
| * Get memory for descriptor block, consumer block, and other buffers |
| * that need to be DMA read or written to by the adapter. |
| */ |
| |
| alloc_size = sizeof(PI_DESCR_BLOCK) + |
| PI_CMD_REQ_K_SIZE_MAX + |
| PI_CMD_RSP_K_SIZE_MAX + |
| #ifndef DYNAMIC_BUFFERS |
| (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + |
| #endif |
| sizeof(PI_CONSUMER_BLOCK) + |
| (PI_ALIGN_K_DESC_BLK - 1); |
| bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size, |
| &bp->kmalloced_dma, |
| GFP_ATOMIC); |
| if (top_v == NULL) |
| return DFX_K_FAILURE; |
| |
| top_p = bp->kmalloced_dma; /* get physical address of buffer */ |
| |
| /* |
| * To guarantee the 8K alignment required for the descriptor block, 8K - 1 |
| * plus the amount of memory needed was allocated. The physical address |
| * is now 8K aligned. By carving up the memory in a specific order, |
| * we'll guarantee the alignment requirements for all other structures. |
| * |
| * Note: If the assumptions change regarding the non-paged, non-cached, |
| * physically contiguous nature of the memory block or the address |
| * alignments, then we'll need to implement a different algorithm |
| * for allocating the needed memory. |
| */ |
| |
| curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); |
| curr_v = top_v + (curr_p - top_p); |
| |
| /* Reserve space for descriptor block */ |
| |
| bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; |
| bp->descr_block_phys = curr_p; |
| curr_v += sizeof(PI_DESCR_BLOCK); |
| curr_p += sizeof(PI_DESCR_BLOCK); |
| |
| /* Reserve space for command request buffer */ |
| |
| bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; |
| bp->cmd_req_phys = curr_p; |
| curr_v += PI_CMD_REQ_K_SIZE_MAX; |
| curr_p += PI_CMD_REQ_K_SIZE_MAX; |
| |
| /* Reserve space for command response buffer */ |
| |
| bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; |
| bp->cmd_rsp_phys = curr_p; |
| curr_v += PI_CMD_RSP_K_SIZE_MAX; |
| curr_p += PI_CMD_RSP_K_SIZE_MAX; |
| |
| /* Reserve space for the LLC host receive queue buffers */ |
| |
| bp->rcv_block_virt = curr_v; |
| bp->rcv_block_phys = curr_p; |
| |
| #ifndef DYNAMIC_BUFFERS |
| curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); |
| curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); |
| #endif |
| |
| /* Reserve space for the consumer block */ |
| |
| bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; |
| bp->cons_block_phys = curr_p; |
| |
| /* Display virtual and physical addresses if debug driver */ |
| |
| DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n", |
| print_name, bp->descr_block_virt, &bp->descr_block_phys); |
| DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n", |
| print_name, bp->cmd_req_virt, &bp->cmd_req_phys); |
| DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n", |
| print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys); |
| DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n", |
| print_name, bp->rcv_block_virt, &bp->rcv_block_phys); |
| DBG_printk("%s: Consumer block virt = %p, phys = %pad\n", |
| print_name, bp->cons_block_virt, &bp->cons_block_phys); |
| |
| return DFX_K_SUCCESS; |
| } |
| |
| |
| /* |
| * ================= |
| * = dfx_adap_init = |
| * ================= |
| * |
| * Overview: |
| * Brings the adapter to the link avail/link unavailable state. |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * get_buffers - non-zero if buffers to be allocated |
| * |
| * Functional Description: |
| * Issues the low-level firmware/hardware calls necessary to bring |
| * the adapter up, or to properly reset and restore adapter during |
| * run-time. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - Adapter brought up successfully |
| * DFX_K_FAILURE - Adapter initialization failed |
| * |
| * Assumptions: |
| * bp->reset_type should be set to a valid reset type value before |
| * calling this routine. |
| * |
| * Side Effects: |
| * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state |
| * upon a successful return of this routine. |
| */ |
| |
| static int dfx_adap_init(DFX_board_t *bp, int get_buffers) |
| { |
| DBG_printk("In dfx_adap_init...\n"); |
| |
| /* Disable PDQ interrupts first */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| |
| /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ |
| |
| if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) |
| { |
| printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* |
| * When the PDQ is reset, some false Type 0 interrupts may be pending, |
| * so we'll acknowledge all Type 0 interrupts now before continuing. |
| */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); |
| |
| /* |
| * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state |
| * |
| * Note: We only need to clear host copies of these registers. The PDQ reset |
| * takes care of the on-board register values. |
| */ |
| |
| bp->cmd_req_reg.lword = 0; |
| bp->cmd_rsp_reg.lword = 0; |
| bp->rcv_xmt_reg.lword = 0; |
| |
| /* Clear consumer block before going to DMA_AVAILABLE state */ |
| |
| memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); |
| |
| /* Initialize the DMA Burst Size */ |
| |
| if (dfx_hw_port_ctrl_req(bp, |
| PI_PCTRL_M_SUB_CMD, |
| PI_SUB_CMD_K_BURST_SIZE_SET, |
| bp->burst_size, |
| NULL) != DFX_K_SUCCESS) |
| { |
| printk("%s: Could not set adapter burst size!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* |
| * Set base address of Consumer Block |
| * |
| * Assumption: 32-bit physical address of consumer block is 64 byte |
| * aligned. That is, bits 0-5 of the address must be zero. |
| */ |
| |
| if (dfx_hw_port_ctrl_req(bp, |
| PI_PCTRL_M_CONS_BLOCK, |
| bp->cons_block_phys, |
| 0, |
| NULL) != DFX_K_SUCCESS) |
| { |
| printk("%s: Could not set consumer block address!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* |
| * Set the base address of Descriptor Block and bring adapter |
| * to DMA_AVAILABLE state. |
| * |
| * Note: We also set the literal and data swapping requirements |
| * in this command. |
| * |
| * Assumption: 32-bit physical address of descriptor block |
| * is 8Kbyte aligned. |
| */ |
| if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, |
| (u32)(bp->descr_block_phys | |
| PI_PDATA_A_INIT_M_BSWAP_INIT), |
| 0, NULL) != DFX_K_SUCCESS) { |
| printk("%s: Could not set descriptor block address!\n", |
| bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* Set transmit flush timeout value */ |
| |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; |
| bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; |
| bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ |
| bp->cmd_req_virt->char_set.item[0].item_index = 0; |
| bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| { |
| printk("%s: DMA command request failed!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* Set the initial values for eFDXEnable and MACTReq MIB objects */ |
| |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; |
| bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; |
| bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; |
| bp->cmd_req_virt->snmp_set.item[0].item_index = 0; |
| bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; |
| bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; |
| bp->cmd_req_virt->snmp_set.item[1].item_index = 0; |
| bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| { |
| printk("%s: DMA command request failed!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* Initialize adapter CAM */ |
| |
| if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
| { |
| printk("%s: Adapter CAM update failed!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* Initialize adapter filters */ |
| |
| if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) |
| { |
| printk("%s: Adapter filters update failed!\n", bp->dev->name); |
| return DFX_K_FAILURE; |
| } |
| |
| /* |
| * Remove any existing dynamic buffers (i.e. if the adapter is being |
| * reinitialized) |
| */ |
| |
| if (get_buffers) |
| dfx_rcv_flush(bp); |
| |
| /* Initialize receive descriptor block and produce buffers */ |
| |
| if (dfx_rcv_init(bp, get_buffers)) |
| { |
| printk("%s: Receive buffer allocation failed\n", bp->dev->name); |
| if (get_buffers) |
| dfx_rcv_flush(bp); |
| return DFX_K_FAILURE; |
| } |
| |
| /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ |
| |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_START; |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| { |
| printk("%s: Start command failed\n", bp->dev->name); |
| if (get_buffers) |
| dfx_rcv_flush(bp); |
| return DFX_K_FAILURE; |
| } |
| |
| /* Initialization succeeded, reenable PDQ interrupts */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); |
| return DFX_K_SUCCESS; |
| } |
| |
| |
| /* |
| * ============ |
| * = dfx_open = |
| * ============ |
| * |
| * Overview: |
| * Opens the adapter |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * This function brings the adapter to an operational state. |
| * |
| * Return Codes: |
| * 0 - Adapter was successfully opened |
| * -EAGAIN - Could not register IRQ or adapter initialization failed |
| * |
| * Assumptions: |
| * This routine should only be called for a device that was |
| * initialized successfully. |
| * |
| * Side Effects: |
| * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state |
| * if the open is successful. |
| */ |
| |
| static int dfx_open(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| int ret; |
| |
| DBG_printk("In dfx_open...\n"); |
| |
| /* Register IRQ - support shared interrupts by passing device ptr */ |
| |
| ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, |
| dev); |
| if (ret) { |
| printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); |
| return ret; |
| } |
| |
| /* |
| * Set current address to factory MAC address |
| * |
| * Note: We've already done this step in dfx_driver_init. |
| * However, it's possible that a user has set a node |
| * address override, then closed and reopened the |
| * adapter. Unless we reset the device address field |
| * now, we'll continue to use the existing modified |
| * address. |
| */ |
| |
| dev_addr_set(dev, bp->factory_mac_addr); |
| |
| /* Clear local unicast/multicast address tables and counts */ |
| |
| memset(bp->uc_table, 0, sizeof(bp->uc_table)); |
| memset(bp->mc_table, 0, sizeof(bp->mc_table)); |
| bp->uc_count = 0; |
| bp->mc_count = 0; |
| |
| /* Disable promiscuous filter settings */ |
| |
| bp->ind_group_prom = PI_FSTATE_K_BLOCK; |
| bp->group_prom = PI_FSTATE_K_BLOCK; |
| |
| spin_lock_init(&bp->lock); |
| |
| /* Reset and initialize adapter */ |
| |
| bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ |
| if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) |
| { |
| printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); |
| free_irq(dev->irq, dev); |
| return -EAGAIN; |
| } |
| |
| /* Set device structure info */ |
| netif_start_queue(dev); |
| return 0; |
| } |
| |
| |
| /* |
| * ============= |
| * = dfx_close = |
| * ============= |
| * |
| * Overview: |
| * Closes the device/module. |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * This routine closes the adapter and brings it to a safe state. |
| * The interrupt service routine is deregistered with the OS. |
| * The adapter can be opened again with another call to dfx_open(). |
| * |
| * Return Codes: |
| * Always return 0. |
| * |
| * Assumptions: |
| * No further requests for this adapter are made after this routine is |
| * called. dfx_open() can be called to reset and reinitialize the |
| * adapter. |
| * |
| * Side Effects: |
| * Adapter should be in DMA_UNAVAILABLE state upon completion of this |
| * routine. |
| */ |
| |
| static int dfx_close(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| |
| DBG_printk("In dfx_close...\n"); |
| |
| /* Disable PDQ interrupts first */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| |
| /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ |
| |
| (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); |
| |
| /* |
| * Flush any pending transmit buffers |
| * |
| * Note: It's important that we flush the transmit buffers |
| * BEFORE we clear our copy of the Type 2 register. |
| * Otherwise, we'll have no idea how many buffers |
| * we need to free. |
| */ |
| |
| dfx_xmt_flush(bp); |
| |
| /* |
| * Clear Type 1 and Type 2 registers after adapter reset |
| * |
| * Note: Even though we're closing the adapter, it's |
| * possible that an interrupt will occur after |
| * dfx_close is called. Without some assurance to |
| * the contrary we want to make sure that we don't |
| * process receive and transmit LLC frames and update |
| * the Type 2 register with bad information. |
| */ |
| |
| bp->cmd_req_reg.lword = 0; |
| bp->cmd_rsp_reg.lword = 0; |
| bp->rcv_xmt_reg.lword = 0; |
| |
| /* Clear consumer block for the same reason given above */ |
| |
| memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); |
| |
| /* Release all dynamically allocate skb in the receive ring. */ |
| |
| dfx_rcv_flush(bp); |
| |
| /* Clear device structure flags */ |
| |
| netif_stop_queue(dev); |
| |
| /* Deregister (free) IRQ */ |
| |
| free_irq(dev->irq, dev); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * ====================== |
| * = dfx_int_pr_halt_id = |
| * ====================== |
| * |
| * Overview: |
| * Displays halt id's in string form. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Determine current halt id and display appropriate string. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static void dfx_int_pr_halt_id(DFX_board_t *bp) |
| { |
| PI_UINT32 port_status; /* PDQ port status register value */ |
| PI_UINT32 halt_id; /* PDQ port status halt ID */ |
| |
| /* Read the latest port status */ |
| |
| dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); |
| |
| /* Display halt state transition information */ |
| |
| halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; |
| switch (halt_id) |
| { |
| case PI_HALT_ID_K_SELFTEST_TIMEOUT: |
| printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_PARITY_ERROR: |
| printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_HOST_DIR_HALT: |
| printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_SW_FAULT: |
| printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_HW_FAULT: |
| printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_PC_TRACE: |
| printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_DMA_ERROR: |
| printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_IMAGE_CRC_ERROR: |
| printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); |
| break; |
| |
| case PI_HALT_ID_K_BUS_EXCEPTION: |
| printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); |
| break; |
| |
| default: |
| printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); |
| break; |
| } |
| } |
| |
| |
| /* |
| * ========================== |
| * = dfx_int_type_0_process = |
| * ========================== |
| * |
| * Overview: |
| * Processes Type 0 interrupts. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Processes all enabled Type 0 interrupts. If the reason for the interrupt |
| * is a serious fault on the adapter, then an error message is displayed |
| * and the adapter is reset. |
| * |
| * One tricky potential timing window is the rapid succession of "link avail" |
| * "link unavail" state change interrupts. The acknowledgement of the Type 0 |
| * interrupt must be done before reading the state from the Port Status |
| * register. This is true because a state change could occur after reading |
| * the data, but before acknowledging the interrupt. If this state change |
| * does happen, it would be lost because the driver is using the old state, |
| * and it will never know about the new state because it subsequently |
| * acknowledges the state change interrupt. |
| * |
| * INCORRECT CORRECT |
| * read type 0 int reasons read type 0 int reasons |
| * read adapter state ack type 0 interrupts |
| * ack type 0 interrupts read adapter state |
| * ... process interrupt ... ... process interrupt ... |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * An adapter reset may occur if the adapter has any Type 0 error interrupts |
| * or if the port status indicates that the adapter is halted. The driver |
| * is responsible for reinitializing the adapter with the current CAM |
| * contents and adapter filter settings. |
| */ |
| |
| static void dfx_int_type_0_process(DFX_board_t *bp) |
| |
| { |
| PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ |
| PI_UINT32 state; /* current adap state (from port status) */ |
| |
| /* |
| * Read host interrupt Type 0 register to determine which Type 0 |
| * interrupts are pending. Immediately write it back out to clear |
| * those interrupts. |
| */ |
| |
| dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); |
| dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); |
| |
| /* Check for Type 0 error interrupts */ |
| |
| if (type_0_status & (PI_TYPE_0_STAT_M_NXM | |
| PI_TYPE_0_STAT_M_PM_PAR_ERR | |
| PI_TYPE_0_STAT_M_BUS_PAR_ERR)) |
| { |
| /* Check for Non-Existent Memory error */ |
| |
| if (type_0_status & PI_TYPE_0_STAT_M_NXM) |
| printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); |
| |
| /* Check for Packet Memory Parity error */ |
| |
| if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) |
| printk("%s: Packet Memory Parity Error\n", bp->dev->name); |
| |
| /* Check for Host Bus Parity error */ |
| |
| if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) |
| printk("%s: Host Bus Parity Error\n", bp->dev->name); |
| |
| /* Reset adapter and bring it back on-line */ |
| |
| bp->link_available = PI_K_FALSE; /* link is no longer available */ |
| bp->reset_type = 0; /* rerun on-board diagnostics */ |
| printk("%s: Resetting adapter...\n", bp->dev->name); |
| if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) |
| { |
| printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); |
| dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| return; |
| } |
| printk("%s: Adapter reset successful!\n", bp->dev->name); |
| return; |
| } |
| |
| /* Check for transmit flush interrupt */ |
| |
| if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) |
| { |
| /* Flush any pending xmt's and acknowledge the flush interrupt */ |
| |
| bp->link_available = PI_K_FALSE; /* link is no longer available */ |
| dfx_xmt_flush(bp); /* flush any outstanding packets */ |
| (void) dfx_hw_port_ctrl_req(bp, |
| PI_PCTRL_M_XMT_DATA_FLUSH_DONE, |
| 0, |
| 0, |
| NULL); |
| } |
| |
| /* Check for adapter state change */ |
| |
| if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) |
| { |
| /* Get latest adapter state */ |
| |
| state = dfx_hw_adap_state_rd(bp); /* get adapter state */ |
| if (state == PI_STATE_K_HALTED) |
| { |
| /* |
| * Adapter has transitioned to HALTED state, try to reset |
| * adapter to bring it back on-line. If reset fails, |
| * leave the adapter in the broken state. |
| */ |
| |
| printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); |
| dfx_int_pr_halt_id(bp); /* display halt id as string */ |
| |
| /* Reset adapter and bring it back on-line */ |
| |
| bp->link_available = PI_K_FALSE; /* link is no longer available */ |
| bp->reset_type = 0; /* rerun on-board diagnostics */ |
| printk("%s: Resetting adapter...\n", bp->dev->name); |
| if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) |
| { |
| printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); |
| dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| return; |
| } |
| printk("%s: Adapter reset successful!\n", bp->dev->name); |
| } |
| else if (state == PI_STATE_K_LINK_AVAIL) |
| { |
| bp->link_available = PI_K_TRUE; /* set link available flag */ |
| } |
| } |
| } |
| |
| |
| /* |
| * ================== |
| * = dfx_int_common = |
| * ================== |
| * |
| * Overview: |
| * Interrupt service routine (ISR) |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * This is the ISR which processes incoming adapter interrupts. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * This routine assumes PDQ interrupts have not been disabled. |
| * When interrupts are disabled at the PDQ, the Port Status register |
| * is automatically cleared. This routine uses the Port Status |
| * register value to determine whether a Type 0 interrupt occurred, |
| * so it's important that adapter interrupts are not normally |
| * enabled/disabled at the PDQ. |
| * |
| * It's vital that this routine is NOT reentered for the |
| * same board and that the OS is not in another section of |
| * code (eg. dfx_xmt_queue_pkt) for the same board on a |
| * different thread. |
| * |
| * Side Effects: |
| * Pending interrupts are serviced. Depending on the type of |
| * interrupt, acknowledging and clearing the interrupt at the |
| * PDQ involves writing a register to clear the interrupt bit |
| * or updating completion indices. |
| */ |
| |
| static void dfx_int_common(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| PI_UINT32 port_status; /* Port Status register */ |
| |
| /* Process xmt interrupts - frequent case, so always call this routine */ |
| |
| if(dfx_xmt_done(bp)) /* free consumed xmt packets */ |
| netif_wake_queue(dev); |
| |
| /* Process rcv interrupts - frequent case, so always call this routine */ |
| |
| dfx_rcv_queue_process(bp); /* service received LLC frames */ |
| |
| /* |
| * Transmit and receive producer and completion indices are updated on the |
| * adapter by writing to the Type 2 Producer register. Since the frequent |
| * case is that we'll be processing either LLC transmit or receive buffers, |
| * we'll optimize I/O writes by doing a single register write here. |
| */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); |
| |
| /* Read PDQ Port Status register to find out which interrupts need processing */ |
| |
| dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); |
| |
| /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ |
| |
| if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) |
| dfx_int_type_0_process(bp); /* process Type 0 interrupts */ |
| } |
| |
| |
| /* |
| * ================= |
| * = dfx_interrupt = |
| * ================= |
| * |
| * Overview: |
| * Interrupt processing routine |
| * |
| * Returns: |
| * Whether a valid interrupt was seen. |
| * |
| * Arguments: |
| * irq - interrupt vector |
| * dev_id - pointer to device information |
| * |
| * Functional Description: |
| * This routine calls the interrupt processing routine for this adapter. It |
| * disables and reenables adapter interrupts, as appropriate. We can support |
| * shared interrupts since the incoming dev_id pointer provides our device |
| * structure context. |
| * |
| * Return Codes: |
| * IRQ_HANDLED - an IRQ was handled. |
| * IRQ_NONE - no IRQ was handled. |
| * |
| * Assumptions: |
| * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC |
| * on Intel-based systems) is done by the operating system outside this |
| * routine. |
| * |
| * System interrupts are enabled through this call. |
| * |
| * Side Effects: |
| * Interrupts are disabled, then reenabled at the adapter. |
| */ |
| |
| static irqreturn_t dfx_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| DFX_board_t *bp = netdev_priv(dev); |
| struct device *bdev = bp->bus_dev; |
| int dfx_bus_pci = dev_is_pci(bdev); |
| int dfx_bus_eisa = DFX_BUS_EISA(bdev); |
| int dfx_bus_tc = DFX_BUS_TC(bdev); |
| |
| /* Service adapter interrupts */ |
| |
| if (dfx_bus_pci) { |
| u32 status; |
| |
| dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); |
| if (!(status & PFI_STATUS_M_PDQ_INT)) |
| return IRQ_NONE; |
| |
| spin_lock(&bp->lock); |
| |
| /* Disable PDQ-PFI interrupts at PFI */ |
| dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, |
| PFI_MODE_M_DMA_ENB); |
| |
| /* Call interrupt service routine for this adapter */ |
| dfx_int_common(dev); |
| |
| /* Clear PDQ interrupt status bit and reenable interrupts */ |
| dfx_port_write_long(bp, PFI_K_REG_STATUS, |
| PFI_STATUS_M_PDQ_INT); |
| dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, |
| (PFI_MODE_M_PDQ_INT_ENB | |
| PFI_MODE_M_DMA_ENB)); |
| |
| spin_unlock(&bp->lock); |
| } |
| if (dfx_bus_eisa) { |
| unsigned long base_addr = to_eisa_device(bdev)->base_addr; |
| u8 status; |
| |
| status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| if (!(status & PI_CONFIG_STAT_0_M_PEND)) |
| return IRQ_NONE; |
| |
| spin_lock(&bp->lock); |
| |
| /* Disable interrupts at the ESIC */ |
| status &= ~PI_CONFIG_STAT_0_M_INT_ENB; |
| outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| |
| /* Call interrupt service routine for this adapter */ |
| dfx_int_common(dev); |
| |
| /* Reenable interrupts at the ESIC */ |
| status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| status |= PI_CONFIG_STAT_0_M_INT_ENB; |
| outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); |
| |
| spin_unlock(&bp->lock); |
| } |
| if (dfx_bus_tc) { |
| u32 status; |
| |
| dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); |
| if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | |
| PI_PSTATUS_M_XMT_DATA_PENDING | |
| PI_PSTATUS_M_SMT_HOST_PENDING | |
| PI_PSTATUS_M_UNSOL_PENDING | |
| PI_PSTATUS_M_CMD_RSP_PENDING | |
| PI_PSTATUS_M_CMD_REQ_PENDING | |
| PI_PSTATUS_M_TYPE_0_PENDING))) |
| return IRQ_NONE; |
| |
| spin_lock(&bp->lock); |
| |
| /* Call interrupt service routine for this adapter */ |
| dfx_int_common(dev); |
| |
| spin_unlock(&bp->lock); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| /* |
| * ===================== |
| * = dfx_ctl_get_stats = |
| * ===================== |
| * |
| * Overview: |
| * Get statistics for FDDI adapter |
| * |
| * Returns: |
| * Pointer to FDDI statistics structure |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * Gets current MIB objects from adapter, then |
| * returns FDDI statistics structure as defined |
| * in if_fddi.h. |
| * |
| * Note: Since the FDDI statistics structure is |
| * still new and the device structure doesn't |
| * have an FDDI-specific get statistics handler, |
| * we'll return the FDDI statistics structure as |
| * a pointer to an Ethernet statistics structure. |
| * That way, at least the first part of the statistics |
| * structure can be decoded properly, and it allows |
| * "smart" applications to perform a second cast to |
| * decode the FDDI-specific statistics. |
| * |
| * We'll have to pay attention to this routine as the |
| * device structure becomes more mature and LAN media |
| * independent. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| |
| /* Fill the bp->stats structure with driver-maintained counters */ |
| |
| bp->stats.gen.rx_packets = bp->rcv_total_frames; |
| bp->stats.gen.tx_packets = bp->xmt_total_frames; |
| bp->stats.gen.rx_bytes = bp->rcv_total_bytes; |
| bp->stats.gen.tx_bytes = bp->xmt_total_bytes; |
| bp->stats.gen.rx_errors = bp->rcv_crc_errors + |
| bp->rcv_frame_status_errors + |
| bp->rcv_length_errors; |
| bp->stats.gen.tx_errors = bp->xmt_length_errors; |
| bp->stats.gen.rx_dropped = bp->rcv_discards; |
| bp->stats.gen.tx_dropped = bp->xmt_discards; |
| bp->stats.gen.multicast = bp->rcv_multicast_frames; |
| bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ |
| |
| /* Get FDDI SMT MIB objects */ |
| |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| return (struct net_device_stats *)&bp->stats; |
| |
| /* Fill the bp->stats structure with the SMT MIB object values */ |
| |
| memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); |
| bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; |
| bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; |
| bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; |
| memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); |
| bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; |
| bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; |
| bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; |
| bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; |
| bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; |
| bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; |
| bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; |
| bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; |
| bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; |
| bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; |
| bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; |
| bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; |
| bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; |
| bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; |
| bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; |
| bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; |
| bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; |
| bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; |
| bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; |
| bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; |
| bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; |
| bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; |
| bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; |
| bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; |
| memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); |
| memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); |
| memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); |
| memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); |
| bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; |
| bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; |
| bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; |
| memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); |
| bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; |
| bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; |
| bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; |
| bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; |
| bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; |
| bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; |
| bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; |
| bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; |
| bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; |
| bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; |
| bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; |
| bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; |
| bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; |
| bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; |
| bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; |
| bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; |
| memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); |
| bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; |
| bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; |
| bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; |
| bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; |
| bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; |
| bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; |
| bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; |
| bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; |
| bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; |
| bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; |
| memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); |
| memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); |
| bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; |
| bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; |
| bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; |
| bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; |
| bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; |
| bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; |
| bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; |
| bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; |
| bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; |
| bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; |
| bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; |
| bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; |
| bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; |
| bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; |
| bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; |
| bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; |
| bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; |
| bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; |
| bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; |
| bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; |
| bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; |
| bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; |
| bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; |
| bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; |
| bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; |
| bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; |
| |
| /* Get FDDI counters */ |
| |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| return (struct net_device_stats *)&bp->stats; |
| |
| /* Fill the bp->stats structure with the FDDI counter values */ |
| |
| bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; |
| bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; |
| bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; |
| bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; |
| bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; |
| bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; |
| bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; |
| bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; |
| bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; |
| bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; |
| bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; |
| |
| return (struct net_device_stats *)&bp->stats; |
| } |
| |
| |
| /* |
| * ============================== |
| * = dfx_ctl_set_multicast_list = |
| * ============================== |
| * |
| * Overview: |
| * Enable/Disable LLC frame promiscuous mode reception |
| * on the adapter and/or update multicast address table. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * This routine follows a fairly simple algorithm for setting the |
| * adapter filters and CAM: |
| * |
| * if IFF_PROMISC flag is set |
| * enable LLC individual/group promiscuous mode |
| * else |
| * disable LLC individual/group promiscuous mode |
| * if number of incoming multicast addresses > |
| * (CAM max size - number of unicast addresses in CAM) |
| * enable LLC group promiscuous mode |
| * set driver-maintained multicast address count to zero |
| * else |
| * disable LLC group promiscuous mode |
| * set driver-maintained multicast address count to incoming count |
| * update adapter CAM |
| * update adapter filters |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * Multicast addresses are presented in canonical (LSB) format. |
| * |
| * Side Effects: |
| * On-board adapter CAM and filters are updated. |
| */ |
| |
| static void dfx_ctl_set_multicast_list(struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| int i; /* used as index in for loop */ |
| struct netdev_hw_addr *ha; |
| |
| /* Enable LLC frame promiscuous mode, if necessary */ |
| |
| if (dev->flags & IFF_PROMISC) |
| bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ |
| |
| /* Else, update multicast address table */ |
| |
| else |
| { |
| bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ |
| /* |
| * Check whether incoming multicast address count exceeds table size |
| * |
| * Note: The adapters utilize an on-board 64 entry CAM for |
| * supporting perfect filtering of multicast packets |
| * and bridge functions when adding unicast addresses. |
| * There is no hash function available. To support |
| * additional multicast addresses, the all multicast |
| * filter (LLC group promiscuous mode) must be enabled. |
| * |
| * The firmware reserves two CAM entries for SMT-related |
| * multicast addresses, which leaves 62 entries available. |
| * The following code ensures that we're not being asked |
| * to add more than 62 addresses to the CAM. If we are, |
| * the driver will enable the all multicast filter. |
| * Should the number of multicast addresses drop below |
| * the high water mark, the filter will be disabled and |
| * perfect filtering will be used. |
| */ |
| |
| if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) |
| { |
| bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ |
| bp->mc_count = 0; /* Don't add mc addrs to CAM */ |
| } |
| else |
| { |
| bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ |
| bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */ |
| } |
| |
| /* Copy addresses to multicast address table, then update adapter CAM */ |
| |
| i = 0; |
| netdev_for_each_mc_addr(ha, dev) |
| memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], |
| ha->addr, FDDI_K_ALEN); |
| |
| if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
| { |
| DBG_printk("%s: Could not update multicast address table!\n", dev->name); |
| } |
| else |
| { |
| DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); |
| } |
| } |
| |
| /* Update adapter filters */ |
| |
| if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) |
| { |
| DBG_printk("%s: Could not update adapter filters!\n", dev->name); |
| } |
| else |
| { |
| DBG_printk("%s: Adapter filters updated!\n", dev->name); |
| } |
| } |
| |
| |
| /* |
| * =========================== |
| * = dfx_ctl_set_mac_address = |
| * =========================== |
| * |
| * Overview: |
| * Add node address override (unicast address) to adapter |
| * CAM and update dev_addr field in device table. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * dev - pointer to device information |
| * addr - pointer to sockaddr structure containing unicast address to add |
| * |
| * Functional Description: |
| * The adapter supports node address overrides by adding one or more |
| * unicast addresses to the adapter CAM. This is similar to adding |
| * multicast addresses. In this routine we'll update the driver and |
| * device structures with the new address, then update the adapter CAM |
| * to ensure that the adapter will copy and strip frames destined and |
| * sourced by that address. |
| * |
| * Return Codes: |
| * Always returns zero. |
| * |
| * Assumptions: |
| * The address pointed to by addr->sa_data is a valid unicast |
| * address and is presented in canonical (LSB) format. |
| * |
| * Side Effects: |
| * On-board adapter CAM is updated. On-board adapter filters |
| * may be updated. |
| */ |
| |
| static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) |
| { |
| struct sockaddr *p_sockaddr = (struct sockaddr *)addr; |
| DFX_board_t *bp = netdev_priv(dev); |
| |
| /* Copy unicast address to driver-maintained structs and update count */ |
| |
| dev_addr_set(dev, p_sockaddr->sa_data); /* update device struct */ |
| memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ |
| bp->uc_count = 1; |
| |
| /* |
| * Verify we're not exceeding the CAM size by adding unicast address |
| * |
| * Note: It's possible that before entering this routine we've |
| * already filled the CAM with 62 multicast addresses. |
| * Since we need to place the node address override into |
| * the CAM, we have to check to see that we're not |
| * exceeding the CAM size. If we are, we have to enable |
| * the LLC group (multicast) promiscuous mode filter as |
| * in dfx_ctl_set_multicast_list. |
| */ |
| |
| if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) |
| { |
| bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ |
| bp->mc_count = 0; /* Don't add mc addrs to CAM */ |
| |
| /* Update adapter filters */ |
| |
| if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) |
| { |
| DBG_printk("%s: Could not update adapter filters!\n", dev->name); |
| } |
| else |
| { |
| DBG_printk("%s: Adapter filters updated!\n", dev->name); |
| } |
| } |
| |
| /* Update adapter CAM with new unicast address */ |
| |
| if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
| { |
| DBG_printk("%s: Could not set new MAC address!\n", dev->name); |
| } |
| else |
| { |
| DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); |
| } |
| return 0; /* always return zero */ |
| } |
| |
| |
| /* |
| * ====================== |
| * = dfx_ctl_update_cam = |
| * ====================== |
| * |
| * Overview: |
| * Procedure to update adapter CAM (Content Addressable Memory) |
| * with desired unicast and multicast address entries. |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Updates adapter CAM with current contents of board structure |
| * unicast and multicast address tables. Since there are only 62 |
| * free entries in CAM, this routine ensures that the command |
| * request buffer is not overrun. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - Request succeeded |
| * DFX_K_FAILURE - Request failed |
| * |
| * Assumptions: |
| * All addresses being added (unicast and multicast) are in canonical |
| * order. |
| * |
| * Side Effects: |
| * On-board adapter CAM is updated. |
| */ |
| |
| static int dfx_ctl_update_cam(DFX_board_t *bp) |
| { |
| int i; /* used as index */ |
| PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ |
| |
| /* |
| * Fill in command request information |
| * |
| * Note: Even though both the unicast and multicast address |
| * table entries are stored as contiguous 6 byte entries, |
| * the firmware address filter set command expects each |
| * entry to be two longwords (8 bytes total). We must be |
| * careful to only copy the six bytes of each unicast and |
| * multicast table entry into each command entry. This |
| * is also why we must first clear the entire command |
| * request buffer. |
| */ |
| |
| memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; |
| p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; |
| |
| /* Now add unicast addresses to command request buffer, if any */ |
| |
| for (i=0; i < (int)bp->uc_count; i++) |
| { |
| if (i < PI_CMD_ADDR_FILTER_K_SIZE) |
| { |
| memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); |
| p_addr++; /* point to next command entry */ |
| } |
| } |
| |
| /* Now add multicast addresses to command request buffer, if any */ |
| |
| for (i=0; i < (int)bp->mc_count; i++) |
| { |
| if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) |
| { |
| memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); |
| p_addr++; /* point to next command entry */ |
| } |
| } |
| |
| /* Issue command to update adapter CAM, then return */ |
| |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| return DFX_K_FAILURE; |
| return DFX_K_SUCCESS; |
| } |
| |
| |
| /* |
| * ========================== |
| * = dfx_ctl_update_filters = |
| * ========================== |
| * |
| * Overview: |
| * Procedure to update adapter filters with desired |
| * filter settings. |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Enables or disables filter using current filter settings. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - Request succeeded. |
| * DFX_K_FAILURE - Request failed. |
| * |
| * Assumptions: |
| * We must always pass up packets destined to the broadcast |
| * address (FF-FF-FF-FF-FF-FF), so we'll always keep the |
| * broadcast filter enabled. |
| * |
| * Side Effects: |
| * On-board adapter filters are updated. |
| */ |
| |
| static int dfx_ctl_update_filters(DFX_board_t *bp) |
| { |
| int i = 0; /* used as index */ |
| |
| /* Fill in command request information */ |
| |
| bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; |
| |
| /* Initialize Broadcast filter - * ALWAYS ENABLED * */ |
| |
| bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; |
| bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; |
| |
| /* Initialize LLC Individual/Group Promiscuous filter */ |
| |
| bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; |
| bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; |
| |
| /* Initialize LLC Group Promiscuous filter */ |
| |
| bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; |
| bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; |
| |
| /* Terminate the item code list */ |
| |
| bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; |
| |
| /* Issue command to update adapter filters, then return */ |
| |
| if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| return DFX_K_FAILURE; |
| return DFX_K_SUCCESS; |
| } |
| |
| |
| /* |
| * ====================== |
| * = dfx_hw_dma_cmd_req = |
| * ====================== |
| * |
| * Overview: |
| * Sends PDQ DMA command to adapter firmware |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * The command request and response buffers are posted to the adapter in the manner |
| * described in the PDQ Port Specification: |
| * |
| * 1. Command Response Buffer is posted to adapter. |
| * 2. Command Request Buffer is posted to adapter. |
| * 3. Command Request consumer index is polled until it indicates that request |
| * buffer has been DMA'd to adapter. |
| * 4. Command Response consumer index is polled until it indicates that response |
| * buffer has been DMA'd from adapter. |
| * |
| * This ordering ensures that a response buffer is already available for the firmware |
| * to use once it's done processing the request buffer. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - DMA command succeeded |
| * DFX_K_OUTSTATE - Adapter is NOT in proper state |
| * DFX_K_HW_TIMEOUT - DMA command timed out |
| * |
| * Assumptions: |
| * Command request buffer has already been filled with desired DMA command. |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static int dfx_hw_dma_cmd_req(DFX_board_t *bp) |
| { |
| int status; /* adapter status */ |
| int timeout_cnt; /* used in for loops */ |
| |
| /* Make sure the adapter is in a state that we can issue the DMA command in */ |
| |
| status = dfx_hw_adap_state_rd(bp); |
| if ((status == PI_STATE_K_RESET) || |
| (status == PI_STATE_K_HALTED) || |
| (status == PI_STATE_K_DMA_UNAVAIL) || |
| (status == PI_STATE_K_UPGRADE)) |
| return DFX_K_OUTSTATE; |
| |
| /* Put response buffer on the command response queue */ |
| |
| bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | |
| ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); |
| bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; |
| |
| /* Bump (and wrap) the producer index and write out to register */ |
| |
| bp->cmd_rsp_reg.index.prod += 1; |
| bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; |
| dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); |
| |
| /* Put request buffer on the command request queue */ |
| |
| bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | |
| PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); |
| bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; |
| |
| /* Bump (and wrap) the producer index and write out to register */ |
| |
| bp->cmd_req_reg.index.prod += 1; |
| bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; |
| dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); |
| |
| /* |
| * Here we wait for the command request consumer index to be equal |
| * to the producer, indicating that the adapter has DMAed the request. |
| */ |
| |
| for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) |
| { |
| if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) |
| break; |
| udelay(100); /* wait for 100 microseconds */ |
| } |
| if (timeout_cnt == 0) |
| return DFX_K_HW_TIMEOUT; |
| |
| /* Bump (and wrap) the completion index and write out to register */ |
| |
| bp->cmd_req_reg.index.comp += 1; |
| bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; |
| dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); |
| |
| /* |
| * Here we wait for the command response consumer index to be equal |
| * to the producer, indicating that the adapter has DMAed the response. |
| */ |
| |
| for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) |
| { |
| if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) |
| break; |
| udelay(100); /* wait for 100 microseconds */ |
| } |
| if (timeout_cnt == 0) |
| return DFX_K_HW_TIMEOUT; |
| |
| /* Bump (and wrap) the completion index and write out to register */ |
| |
| bp->cmd_rsp_reg.index.comp += 1; |
| bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; |
| dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); |
| return DFX_K_SUCCESS; |
| } |
| |
| |
| /* |
| * ======================== |
| * = dfx_hw_port_ctrl_req = |
| * ======================== |
| * |
| * Overview: |
| * Sends PDQ port control command to adapter firmware |
| * |
| * Returns: |
| * Host data register value in host_data if ptr is not NULL |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * command - port control command |
| * data_a - port data A register value |
| * data_b - port data B register value |
| * host_data - ptr to host data register value |
| * |
| * Functional Description: |
| * Send generic port control command to adapter by writing |
| * to various PDQ port registers, then polling for completion. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - port control command succeeded |
| * DFX_K_HW_TIMEOUT - port control command timed out |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static int dfx_hw_port_ctrl_req( |
| DFX_board_t *bp, |
| PI_UINT32 command, |
| PI_UINT32 data_a, |
| PI_UINT32 data_b, |
| PI_UINT32 *host_data |
| ) |
| |
| { |
| PI_UINT32 port_cmd; /* Port Control command register value */ |
| int timeout_cnt; /* used in for loops */ |
| |
| /* Set Command Error bit in command longword */ |
| |
| port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); |
| |
| /* Issue port command to the adapter */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); |
| dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); |
| dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); |
| |
| /* Now wait for command to complete */ |
| |
| if (command == PI_PCTRL_M_BLAST_FLASH) |
| timeout_cnt = 600000; /* set command timeout count to 60 seconds */ |
| else |
| timeout_cnt = 20000; /* set command timeout count to 2 seconds */ |
| |
| for (; timeout_cnt > 0; timeout_cnt--) |
| { |
| dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); |
| if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) |
| break; |
| udelay(100); /* wait for 100 microseconds */ |
| } |
| if (timeout_cnt == 0) |
| return DFX_K_HW_TIMEOUT; |
| |
| /* |
| * If the address of host_data is non-zero, assume caller has supplied a |
| * non NULL pointer, and return the contents of the HOST_DATA register in |
| * it. |
| */ |
| |
| if (host_data != NULL) |
| dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); |
| return DFX_K_SUCCESS; |
| } |
| |
| |
| /* |
| * ===================== |
| * = dfx_hw_adap_reset = |
| * ===================== |
| * |
| * Overview: |
| * Resets adapter |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * type - type of reset to perform |
| * |
| * Functional Description: |
| * Issue soft reset to adapter by writing to PDQ Port Reset |
| * register. Use incoming reset type to tell adapter what |
| * kind of reset operation to perform. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * This routine merely issues a soft reset to the adapter. |
| * It is expected that after this routine returns, the caller |
| * will appropriately poll the Port Status register for the |
| * adapter to enter the proper state. |
| * |
| * Side Effects: |
| * Internal adapter registers are cleared. |
| */ |
| |
| static void dfx_hw_adap_reset( |
| DFX_board_t *bp, |
| PI_UINT32 type |
| ) |
| |
| { |
| /* Set Reset type and assert reset */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ |
| dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); |
| |
| /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ |
| |
| udelay(20); |
| |
| /* Deassert reset */ |
| |
| dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); |
| } |
| |
| |
| /* |
| * ======================== |
| * = dfx_hw_adap_state_rd = |
| * ======================== |
| * |
| * Overview: |
| * Returns current adapter state |
| * |
| * Returns: |
| * Adapter state per PDQ Port Specification |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Reads PDQ Port Status register and returns adapter state. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static int dfx_hw_adap_state_rd(DFX_board_t *bp) |
| { |
| PI_UINT32 port_status; /* Port Status register value */ |
| |
| dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); |
| return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; |
| } |
| |
| |
| /* |
| * ===================== |
| * = dfx_hw_dma_uninit = |
| * ===================== |
| * |
| * Overview: |
| * Brings adapter to DMA_UNAVAILABLE state |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * type - type of reset to perform |
| * |
| * Functional Description: |
| * Bring adapter to DMA_UNAVAILABLE state by performing the following: |
| * 1. Set reset type bit in Port Data A Register then reset adapter. |
| * 2. Check that adapter is in DMA_UNAVAILABLE state. |
| * |
| * Return Codes: |
| * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state |
| * DFX_K_HW_TIMEOUT - adapter did not reset properly |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * Internal adapter registers are cleared. |
| */ |
| |
| static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) |
| { |
| int timeout_cnt; /* used in for loops */ |
| |
| /* Set reset type bit and reset adapter */ |
| |
| dfx_hw_adap_reset(bp, type); |
| |
| /* Now wait for adapter to enter DMA_UNAVAILABLE state */ |
| |
| for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) |
| { |
| if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) |
| break; |
| udelay(100); /* wait for 100 microseconds */ |
| } |
| if (timeout_cnt == 0) |
| return DFX_K_HW_TIMEOUT; |
| return DFX_K_SUCCESS; |
| } |
| |
| /* |
| * Align an sk_buff to a boundary power of 2 |
| * |
| */ |
| #ifdef DYNAMIC_BUFFERS |
| static void my_skb_align(struct sk_buff *skb, int n) |
| { |
| unsigned long x = (unsigned long)skb->data; |
| unsigned long v; |
| |
| v = ALIGN(x, n); /* Where we want to be */ |
| |
| skb_reserve(skb, v - x); |
| } |
| #endif |
| |
| /* |
| * ================ |
| * = dfx_rcv_init = |
| * ================ |
| * |
| * Overview: |
| * Produces buffers to adapter LLC Host receive descriptor block |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * get_buffers - non-zero if buffers to be allocated |
| * |
| * Functional Description: |
| * This routine can be called during dfx_adap_init() or during an adapter |
| * reset. It initializes the descriptor block and produces all allocated |
| * LLC Host queue receive buffers. |
| * |
| * Return Codes: |
| * Return 0 on success or -ENOMEM if buffer allocation failed (when using |
| * dynamic buffer allocation). If the buffer allocation failed, the |
| * already allocated buffers will not be released and the caller should do |
| * this. |
| * |
| * Assumptions: |
| * The PDQ has been reset and the adapter and driver maintained Type 2 |
| * register indices are cleared. |
| * |
| * Side Effects: |
| * Receive buffers are posted to the adapter LLC queue and the adapter |
| * is notified. |
| */ |
| |
| static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) |
| { |
| int i, j; /* used in for loop */ |
| |
| /* |
| * Since each receive buffer is a single fragment of same length, initialize |
| * first longword in each receive descriptor for entire LLC Host descriptor |
| * block. Also initialize second longword in each receive descriptor with |
| * physical address of receive buffer. We'll always allocate receive |
| * buffers in powers of 2 so that we can easily fill the 256 entry descriptor |
| * block and produce new receive buffers by simply updating the receive |
| * producer index. |
| * |
| * Assumptions: |
| * To support all shipping versions of PDQ, the receive buffer size |
| * must be mod 128 in length and the physical address must be 128 byte |
| * aligned. In other words, bits 0-6 of the length and address must |
| * be zero for the following descriptor field entries to be correct on |
| * all PDQ-based boards. We guaranteed both requirements during |
| * driver initialization when we allocated memory for the receive buffers. |
| */ |
| |
| if (get_buffers) { |
| #ifdef DYNAMIC_BUFFERS |
| for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) |
| for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) |
| { |
| struct sk_buff *newskb; |
| dma_addr_t dma_addr; |
| |
| newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, |
| GFP_NOIO); |
| if (!newskb) |
| return -ENOMEM; |
| /* |
| * align to 128 bytes for compatibility with |
| * the old EISA boards. |
| */ |
| |
| my_skb_align(newskb, 128); |
| dma_addr = dma_map_single(bp->bus_dev, |
| newskb->data, |
| PI_RCV_DATA_K_SIZE_MAX, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(bp->bus_dev, dma_addr)) { |
| dev_kfree_skb(newskb); |
| return -ENOMEM; |
| } |
| bp->descr_block_virt->rcv_data[i + j].long_0 = |
| (u32)(PI_RCV_DESCR_M_SOP | |
| ((PI_RCV_DATA_K_SIZE_MAX / |
| PI_ALIGN_K_RCV_DATA_BUFF) << |
| PI_RCV_DESCR_V_SEG_LEN)); |
| bp->descr_block_virt->rcv_data[i + j].long_1 = |
| (u32)dma_addr; |
| |
| /* |
| * p_rcv_buff_va is only used inside the |
| * kernel so we put the skb pointer here. |
| */ |
| bp->p_rcv_buff_va[i+j] = (char *) newskb; |
| } |
| #else |
| for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) |
| for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) |
| { |
| bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | |
| ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); |
| bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); |
| bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); |
| } |
| #endif |
| } |
| |
| /* Update receive producer and Type 2 register */ |
| |
| bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; |
| dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); |
| return 0; |
| } |
| |
| |
| /* |
| * ========================= |
| * = dfx_rcv_queue_process = |
| * ========================= |
| * |
| * Overview: |
| * Process received LLC frames. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Received LLC frames are processed until there are no more consumed frames. |
| * Once all frames are processed, the receive buffers are returned to the |
| * adapter. Note that this algorithm fixes the length of time that can be spent |
| * in this routine, because there are a fixed number of receive buffers to |
| * process and buffers are not produced until this routine exits and returns |
| * to the ISR. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * None |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static void dfx_rcv_queue_process( |
| DFX_board_t *bp |
| ) |
| |
| { |
| PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ |
| char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ |
| u32 descr, pkt_len; /* FMC descriptor field and packet length */ |
| struct sk_buff *skb = NULL; /* pointer to a sk_buff to hold incoming packet data */ |
| |
| /* Service all consumed LLC receive frames */ |
| |
| p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); |
| while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) |
| { |
| /* Process any errors */ |
| dma_addr_t dma_addr; |
| int entry; |
| |
| entry = bp->rcv_xmt_reg.index.rcv_comp; |
| #ifdef DYNAMIC_BUFFERS |
| p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); |
| #else |
| p_buff = bp->p_rcv_buff_va[entry]; |
| #endif |
| dma_addr = bp->descr_block_virt->rcv_data[entry].long_1; |
| dma_sync_single_for_cpu(bp->bus_dev, |
| dma_addr + RCV_BUFF_K_DESCR, |
| sizeof(u32), |
| DMA_FROM_DEVICE); |
| memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); |
| |
| if (descr & PI_FMC_DESCR_M_RCC_FLUSH) |
| { |
| if (descr & PI_FMC_DESCR_M_RCC_CRC) |
| bp->rcv_crc_errors++; |
| else |
| bp->rcv_frame_status_errors++; |
| } |
| else |
| { |
| int rx_in_place = 0; |
| |
| /* The frame was received without errors - verify packet length */ |
| |
| pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); |
| pkt_len -= 4; /* subtract 4 byte CRC */ |
| if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) |
| bp->rcv_length_errors++; |
| else{ |
| #ifdef DYNAMIC_BUFFERS |
| struct sk_buff *newskb = NULL; |
| |
| if (pkt_len > SKBUFF_RX_COPYBREAK) { |
| dma_addr_t new_dma_addr; |
| |
| newskb = netdev_alloc_skb(bp->dev, |
| NEW_SKB_SIZE); |
| if (newskb){ |
| my_skb_align(newskb, 128); |
| new_dma_addr = dma_map_single( |
| bp->bus_dev, |
| newskb->data, |
| PI_RCV_DATA_K_SIZE_MAX, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error( |
| bp->bus_dev, |
| new_dma_addr)) { |
| dev_kfree_skb(newskb); |
| newskb = NULL; |
| } |
| } |
| if (newskb) { |
| rx_in_place = 1; |
| |
| skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; |
| dma_unmap_single(bp->bus_dev, |
| dma_addr, |
| PI_RCV_DATA_K_SIZE_MAX, |
| DMA_FROM_DEVICE); |
| skb_reserve(skb, RCV_BUFF_K_PADDING); |
| bp->p_rcv_buff_va[entry] = (char *)newskb; |
| bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr; |
| } |
| } |
| if (!newskb) |
| #endif |
| /* Alloc new buffer to pass up, |
| * add room for PRH. */ |
| skb = netdev_alloc_skb(bp->dev, |
| pkt_len + 3); |
| if (skb == NULL) |
| { |
| printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); |
| bp->rcv_discards++; |
| break; |
| } |
| else { |
| if (!rx_in_place) { |
| /* Receive buffer allocated, pass receive packet up */ |
| dma_sync_single_for_cpu( |
| bp->bus_dev, |
| dma_addr + |
| RCV_BUFF_K_PADDING, |
| pkt_len + 3, |
| DMA_FROM_DEVICE); |
| |
| skb_copy_to_linear_data(skb, |
| p_buff + RCV_BUFF_K_PADDING, |
| pkt_len + 3); |
| } |
| |
| skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ |
| skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ |
| skb->protocol = fddi_type_trans(skb, bp->dev); |
| bp->rcv_total_bytes += skb->len; |
| netif_rx(skb); |
| |
| /* Update the rcv counters */ |
| bp->rcv_total_frames++; |
| if (*(p_buff + RCV_BUFF_K_DA) & 0x01) |
| bp->rcv_multicast_frames++; |
| } |
| } |
| } |
| |
| /* |
| * Advance the producer (for recycling) and advance the completion |
| * (for servicing received frames). Note that it is okay to |
| * advance the producer without checking that it passes the |
| * completion index because they are both advanced at the same |
| * rate. |
| */ |
| |
| bp->rcv_xmt_reg.index.rcv_prod += 1; |
| bp->rcv_xmt_reg.index.rcv_comp += 1; |
| } |
| } |
| |
| |
| /* |
| * ===================== |
| * = dfx_xmt_queue_pkt = |
| * ===================== |
| * |
| * Overview: |
| * Queues packets for transmission |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * skb - pointer to sk_buff to queue for transmission |
| * dev - pointer to device information |
| * |
| * Functional Description: |
| * Here we assume that an incoming skb transmit request |
| * is contained in a single physically contiguous buffer |
| * in which the virtual address of the start of packet |
| * (skb->data) can be converted to a physical address |
| * by using dma_map_single(). |
| * |
| * Since the adapter architecture requires a three byte |
| * packet request header to prepend the start of packet, |
| * we'll write the three byte field immediately prior to |
| * the FC byte. This assumption is valid because we've |
| * ensured that dev->hard_header_len includes three pad |
| * bytes. By posting a single fragment to the adapter, |
| * we'll reduce the number of descriptor fetches and |
| * bus traffic needed to send the request. |
| * |
| * Also, we can't free the skb until after it's been DMA'd |
| * out by the adapter, so we'll queue it in the driver and |
| * return it in dfx_xmt_done. |
| * |
| * Return Codes: |
| * 0 - driver queued packet, link is unavailable, or skbuff was bad |
| * 1 - caller should requeue the sk_buff for later transmission |
| * |
| * Assumptions: |
| * First and foremost, we assume the incoming skb pointer |
| * is NOT NULL and is pointing to a valid sk_buff structure. |
| * |
| * The outgoing packet is complete, starting with the |
| * frame control byte including the last byte of data, |
| * but NOT including the 4 byte CRC. We'll let the |
| * adapter hardware generate and append the CRC. |
| * |
| * The entire packet is stored in one physically |
| * contiguous buffer which is not cached and whose |
| * 32-bit physical address can be determined. |
| * |
| * It's vital that this routine is NOT reentered for the |
| * same board and that the OS is not in another section of |
| * code (eg. dfx_int_common) for the same board on a |
| * different thread. |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| DFX_board_t *bp = netdev_priv(dev); |
| u8 prod; /* local transmit producer index */ |
| PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ |
| XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ |
| dma_addr_t dma_addr; |
| unsigned long flags; |
| |
| netif_stop_queue(dev); |
| |
| /* |
| * Verify that incoming transmit request is OK |
| * |
| * Note: The packet size check is consistent with other |
| * Linux device drivers, although the correct packet |
| * size should be verified before calling the |
| * transmit routine. |
| */ |
| |
| if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) |
| { |
| printk("%s: Invalid packet length - %u bytes\n", |
| dev->name, skb->len); |
| bp->xmt_length_errors++; /* bump error counter */ |
| netif_wake_queue(dev); |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; /* return "success" */ |
| } |
| /* |
| * See if adapter link is available, if not, free buffer |
| * |
| * Note: If the link isn't available, free buffer and return 0 |
| * rather than tell the upper layer to requeue the packet. |
| * The methodology here is that by the time the link |
| * becomes available, the packet to be sent will be |
| * fairly stale. By simply dropping the packet, the |
| * higher layer protocols will eventually time out |
| * waiting for response packets which it won't receive. |
| */ |
| |
| if (bp->link_available == PI_K_FALSE) |
| { |
| if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ |
| bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ |
| else |
| { |
| bp->xmt_discards++; /* bump error counter */ |
| dev_kfree_skb(skb); /* free sk_buff now */ |
| netif_wake_queue(dev); |
| return NETDEV_TX_OK; /* return "success" */ |
| } |
| } |
| |
| /* Write the three PRH bytes immediately before the FC byte */ |
| |
| skb_push(skb, 3); |
| skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ |
| skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ |
| skb->data[2] = DFX_PRH2_BYTE; /* specification */ |
| |
| dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(bp->bus_dev, dma_addr)) { |
| skb_pull(skb, 3); |
| return NETDEV_TX_BUSY; |
| } |
| |
| spin_lock_irqsave(&bp->lock, flags); |
| |
| /* Get the current producer and the next free xmt data descriptor */ |
| |
| prod = bp->rcv_xmt_reg.index.xmt_prod; |
| p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); |
| |
| /* |
| * Get pointer to auxiliary queue entry to contain information |
| * for this packet. |
| * |
| * Note: The current xmt producer index will become the |
| * current xmt completion index when we complete this |
| * packet later on. So, we'll get the pointer to the |
| * next auxiliary queue entry now before we bump the |
| * producer index. |
| */ |
| |
| p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ |
| |
| /* |
| * Write the descriptor with buffer info and bump producer |
| * |
| * Note: Since we need to start DMA from the packet request |
| * header, we'll add 3 bytes to the DMA buffer length, |
| * and we'll determine the physical address of the |
| * buffer from the PRH, not skb->data. |
| * |
| * Assumptions: |
| * 1. Packet starts with the frame control (FC) byte |
| * at skb->data. |
| * 2. The 4-byte CRC is not appended to the buffer or |
| * included in the length. |
| * 3. Packet length (skb->len) is from FC to end of |
| * data, inclusive. |
| * 4. The packet length does not exceed the maximum |
| * FDDI LLC frame length of 4491 bytes. |
| * 5. The entire packet is contained in a physically |
| * contiguous, non-cached, locked memory space |
| * comprised of a single buffer pointed to by |
| * skb->data. |
| * 6. The physical address of the start of packet |
| * can be determined from the virtual address |
| * by using dma_map_single() and is only 32-bits |
| * wide. |
| */ |
| |
| p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); |
| p_xmt_descr->long_1 = (u32)dma_addr; |
| |
| /* |
| * Verify that descriptor is actually available |
| * |
| * Note: If descriptor isn't available, return 1 which tells |
| * the upper layer to requeue the packet for later |
| * transmission. |
| * |
| * We need to ensure that the producer never reaches the |
| * completion, except to indicate that the queue is empty. |
| */ |
| |
| if (prod == bp->rcv_xmt_reg.index.xmt_comp) |
| { |
| skb_pull(skb,3); |
| spin_unlock_irqrestore(&bp->lock, flags); |
| return NETDEV_TX_BUSY; /* requeue packet for later */ |
| } |
| |
| /* |
| * Save info for this packet for xmt done indication routine |
| * |
| * Normally, we'd save the producer index in the p_xmt_drv_descr |
| * structure so that we'd have it handy when we complete this |
| * packet later (in dfx_xmt_done). However, since the current |
| * transmit architecture guarantees a single fragment for the |
| * entire packet, we can simply bump the completion index by |
| * one (1) for each completed packet. |
| * |
| * Note: If this assumption changes and we're presented with |
| * an inconsistent number of transmit fragments for packet |
| * data, we'll need to modify this code to save the current |
| * transmit producer index. |
| */ |
| |
| p_xmt_drv_descr->p_skb = skb; |
| |
| /* Update Type 2 register */ |
| |
| bp->rcv_xmt_reg.index.xmt_prod = prod; |
| dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); |
| spin_unlock_irqrestore(&bp->lock, flags); |
| netif_wake_queue(dev); |
| return NETDEV_TX_OK; /* packet queued to adapter */ |
| } |
| |
| |
| /* |
| * ================ |
| * = dfx_xmt_done = |
| * ================ |
| * |
| * Overview: |
| * Processes all frames that have been transmitted. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * For all consumed transmit descriptors that have not |
| * yet been completed, we'll free the skb we were holding |
| * onto using dev_kfree_skb and bump the appropriate |
| * counters. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * The Type 2 register is not updated in this routine. It is |
| * assumed that it will be updated in the ISR when dfx_xmt_done |
| * returns. |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static int dfx_xmt_done(DFX_board_t *bp) |
| { |
| XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ |
| PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ |
| u8 comp; /* local transmit completion index */ |
| int freed = 0; /* buffers freed */ |
| |
| /* Service all consumed transmit frames */ |
| |
| p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); |
| while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) |
| { |
| /* Get pointer to the transmit driver descriptor block information */ |
| |
| p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); |
| |
| /* Increment transmit counters */ |
| |
| bp->xmt_total_frames++; |
| bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; |
| |
| /* Return skb to operating system */ |
| comp = bp->rcv_xmt_reg.index.xmt_comp; |
| dma_unmap_single(bp->bus_dev, |
| bp->descr_block_virt->xmt_data[comp].long_1, |
| p_xmt_drv_descr->p_skb->len, |
| DMA_TO_DEVICE); |
| dev_consume_skb_irq(p_xmt_drv_descr->p_skb); |
| |
| /* |
| * Move to start of next packet by updating completion index |
| * |
| * Here we assume that a transmit packet request is always |
| * serviced by posting one fragment. We can therefore |
| * simplify the completion code by incrementing the |
| * completion index by one. This code will need to be |
| * modified if this assumption changes. See comments |
| * in dfx_xmt_queue_pkt for more details. |
| */ |
| |
| bp->rcv_xmt_reg.index.xmt_comp += 1; |
| freed++; |
| } |
| return freed; |
| } |
| |
| |
| /* |
| * ================= |
| * = dfx_rcv_flush = |
| * ================= |
| * |
| * Overview: |
| * Remove all skb's in the receive ring. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * Free's all the dynamically allocated skb's that are |
| * currently attached to the device receive ring. This |
| * function is typically only used when the device is |
| * initialized or reinitialized. |
| * |
| * Return Codes: |
| * None |
| * |
| * Side Effects: |
| * None |
| */ |
| #ifdef DYNAMIC_BUFFERS |
| static void dfx_rcv_flush( DFX_board_t *bp ) |
| { |
| int i, j; |
| |
| for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) |
| for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) |
| { |
| struct sk_buff *skb; |
| skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; |
| if (skb) { |
| dma_unmap_single(bp->bus_dev, |
| bp->descr_block_virt->rcv_data[i+j].long_1, |
| PI_RCV_DATA_K_SIZE_MAX, |
| DMA_FROM_DEVICE); |
| dev_kfree_skb(skb); |
| } |
| bp->p_rcv_buff_va[i+j] = NULL; |
| } |
| |
| } |
| #endif /* DYNAMIC_BUFFERS */ |
| |
| /* |
| * ================= |
| * = dfx_xmt_flush = |
| * ================= |
| * |
| * Overview: |
| * Processes all frames whether they've been transmitted |
| * or not. |
| * |
| * Returns: |
| * None |
| * |
| * Arguments: |
| * bp - pointer to board information |
| * |
| * Functional Description: |
| * For all produced transmit descriptors that have not |
| * yet been completed, we'll free the skb we were holding |
| * onto using dev_kfree_skb and bump the appropriate |
| * counters. Of course, it's possible that some of |
| * these transmit requests actually did go out, but we |
| * won't make that distinction here. Finally, we'll |
| * update the consumer index to match the producer. |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * This routine does NOT update the Type 2 register. It |
| * is assumed that this routine is being called during a |
| * transmit flush interrupt, or a shutdown or close routine. |
| * |
| * Side Effects: |
| * None |
| */ |
| |
| static void dfx_xmt_flush( DFX_board_t *bp ) |
| { |
| u32 prod_cons; /* rcv/xmt consumer block longword */ |
| XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ |
| u8 comp; /* local transmit completion index */ |
| |
| /* Flush all outstanding transmit frames */ |
| |
| while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) |
| { |
| /* Get pointer to the transmit driver descriptor block information */ |
| |
| p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); |
| |
| /* Return skb to operating system */ |
| comp = bp->rcv_xmt_reg.index.xmt_comp; |
| dma_unmap_single(bp->bus_dev, |
| bp->descr_block_virt->xmt_data[comp].long_1, |
| p_xmt_drv_descr->p_skb->len, |
| DMA_TO_DEVICE); |
| dev_kfree_skb(p_xmt_drv_descr->p_skb); |
| |
| /* Increment transmit error counter */ |
| |
| bp->xmt_discards++; |
| |
| /* |
| * Move to start of next packet by updating completion index |
| * |
| * Here we assume that a transmit packet request is always |
| * serviced by posting one fragment. We can therefore |
| * simplify the completion code by incrementing the |
| * completion index by one. This code will need to be |
| * modified if this assumption changes. See comments |
| * in dfx_xmt_queue_pkt for more details. |
| */ |
| |
| bp->rcv_xmt_reg.index.xmt_comp += 1; |
| } |
| |
| /* Update the transmit consumer index in the consumer block */ |
| |
| prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); |
| prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); |
| bp->cons_block_virt->xmt_rcv_data = prod_cons; |
| } |
| |
| /* |
| * ================== |
| * = dfx_unregister = |
| * ================== |
| * |
| * Overview: |
| * Shuts down an FDDI controller |
| * |
| * Returns: |
| * Condition code |
| * |
| * Arguments: |
| * bdev - pointer to device information |
| * |
| * Functional Description: |
| * |
| * Return Codes: |
| * None |
| * |
| * Assumptions: |
| * It compiles so it should work :-( (PCI cards do :-) |
| * |
| * Side Effects: |
| * Device structures for FDDI adapters (fddi0, fddi1, etc) are |
| * freed. |
| */ |
| static void dfx_unregister(struct device *bdev) |
| { |
| struct net_device *dev = dev_get_drvdata(bdev); |
| DFX_board_t *bp = netdev_priv(dev); |
| int dfx_bus_pci = dev_is_pci(bdev); |
| resource_size_t bar_start[3] = {0}; /* pointers to ports */ |
| resource_size_t bar_len[3] = {0}; /* resource lengths */ |
| int alloc_size; /* total buffer size used */ |
| |
| unregister_netdev(dev); |
| |
| alloc_size = sizeof(PI_DESCR_BLOCK) + |
| PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + |
| #ifndef DYNAMIC_BUFFERS |
| (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + |
| #endif |
| sizeof(PI_CONSUMER_BLOCK) + |
| (PI_ALIGN_K_DESC_BLK - 1); |
| if (bp->kmalloced) |
| dma_free_coherent(bdev, alloc_size, |
| bp->kmalloced, bp->kmalloced_dma); |
| |
| dfx_bus_uninit(dev); |
| |
| dfx_get_bars(bp, bar_start, bar_len); |
| if (bar_start[2] != 0) |
| release_region(bar_start[2], bar_len[2]); |
| if (bar_start[1] != 0) |
| release_region(bar_start[1], bar_len[1]); |
| if (dfx_use_mmio) { |
| iounmap(bp->base.mem); |
| release_mem_region(bar_start[0], bar_len[0]); |
| } else |
| release_region(bar_start[0], bar_len[0]); |
| |
| if (dfx_bus_pci) |
| pci_disable_device(to_pci_dev(bdev)); |
| |
| free_netdev(dev); |
| } |
| |
| |
| static int __maybe_unused dfx_dev_register(struct device *); |
| static int __maybe_unused dfx_dev_unregister(struct device *); |
| |
| #ifdef CONFIG_PCI |
| static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *); |
| static void dfx_pci_unregister(struct pci_dev *); |
| |
| static const struct pci_device_id dfx_pci_table[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(pci, dfx_pci_table); |
| |
| static struct pci_driver dfx_pci_driver = { |
| .name = DRV_NAME, |
| .id_table = dfx_pci_table, |
| .probe = dfx_pci_register, |
| .remove = dfx_pci_unregister, |
| }; |
| |
| static int dfx_pci_register(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| return dfx_register(&pdev->dev); |
| } |
| |
| static void dfx_pci_unregister(struct pci_dev *pdev) |
| { |
| dfx_unregister(&pdev->dev); |
| } |
| #endif /* CONFIG_PCI */ |
| |
| #ifdef CONFIG_EISA |
| static const struct eisa_device_id dfx_eisa_table[] = { |
| { "DEC3001", DEFEA_PROD_ID_1 }, |
| { "DEC3002", DEFEA_PROD_ID_2 }, |
| { "DEC3003", DEFEA_PROD_ID_3 }, |
| { "DEC3004", DEFEA_PROD_ID_4 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); |
| |
| static struct eisa_driver dfx_eisa_driver = { |
| .id_table = dfx_eisa_table, |
| .driver = { |
| .name = DRV_NAME, |
| .bus = &eisa_bus_type, |
| .probe = dfx_dev_register, |
| .remove = dfx_dev_unregister, |
| }, |
| }; |
| #endif /* CONFIG_EISA */ |
| |
| #ifdef CONFIG_TC |
| static struct tc_device_id const dfx_tc_table[] = { |
| { "DEC ", "PMAF-FA " }, |
| { "DEC ", "PMAF-FD " }, |
| { "DEC ", "PMAF-FS " }, |
| { "DEC ", "PMAF-FU " }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(tc, dfx_tc_table); |
| |
| static struct tc_driver dfx_tc_driver = { |
| .id_table = dfx_tc_table, |
| .driver = { |
| .name = DRV_NAME, |
| .bus = &tc_bus_type, |
| .probe = dfx_dev_register, |
| .remove = dfx_dev_unregister, |
| }, |
| }; |
| #endif /* CONFIG_TC */ |
| |
| static int __maybe_unused dfx_dev_register(struct device *dev) |
| { |
| int status; |
| |
| status = dfx_register(dev); |
| if (!status) |
| get_device(dev); |
| return status; |
| } |
| |
| static int __maybe_unused dfx_dev_unregister(struct device *dev) |
| { |
| put_device(dev); |
| dfx_unregister(dev); |
| return 0; |
| } |
| |
| |
| static int dfx_init(void) |
| { |
| int status; |
| |
| status = pci_register_driver(&dfx_pci_driver); |
| if (!status) |
| status = eisa_driver_register(&dfx_eisa_driver); |
| if (!status) |
| status = tc_register_driver(&dfx_tc_driver); |
| return status; |
| } |
| |
| static void dfx_cleanup(void) |
| { |
| tc_unregister_driver(&dfx_tc_driver); |
| eisa_driver_unregister(&dfx_eisa_driver); |
| pci_unregister_driver(&dfx_pci_driver); |
| } |
| |
| module_init(dfx_init); |
| module_exit(dfx_cleanup); |
| MODULE_AUTHOR("Lawrence V. Stefani"); |
| MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " |
| DRV_VERSION " " DRV_RELDATE); |
| MODULE_LICENSE("GPL"); |