blob: c7b452e12e4c882a1ad599dae3b58433d8204b3a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/super.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* super.c contains code to handle: - mount structures
* - super-block tables
* - filesystem drivers list
* - mount system call
* - umount system call
* - ustat system call
*
* GK 2/5/95 - Changed to support mounting the root fs via NFS
*
* Added kerneld support: Jacques Gelinas and Bjorn Ekwall
* Added change_root: Werner Almesberger & Hans Lermen, Feb '96
* Added options to /proc/mounts:
* Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
* Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
* Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
*/
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/writeback.h> /* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/rculist_bl.h>
#include <linux/fscrypt.h>
#include <linux/fsnotify.h>
#include <linux/lockdep.h>
#include <linux/user_namespace.h>
#include <linux/fs_context.h>
#include <uapi/linux/mount.h>
#include "internal.h"
static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
static LIST_HEAD(super_blocks);
static DEFINE_SPINLOCK(sb_lock);
static char *sb_writers_name[SB_FREEZE_LEVELS] = {
"sb_writers",
"sb_pagefaults",
"sb_internal",
};
static inline void __super_lock(struct super_block *sb, bool excl)
{
if (excl)
down_write(&sb->s_umount);
else
down_read(&sb->s_umount);
}
static inline void super_unlock(struct super_block *sb, bool excl)
{
if (excl)
up_write(&sb->s_umount);
else
up_read(&sb->s_umount);
}
static inline void __super_lock_excl(struct super_block *sb)
{
__super_lock(sb, true);
}
static inline void super_unlock_excl(struct super_block *sb)
{
super_unlock(sb, true);
}
static inline void super_unlock_shared(struct super_block *sb)
{
super_unlock(sb, false);
}
static inline bool wait_born(struct super_block *sb)
{
unsigned int flags;
/*
* Pairs with smp_store_release() in super_wake() and ensures
* that we see SB_BORN or SB_DYING after we're woken.
*/
flags = smp_load_acquire(&sb->s_flags);
return flags & (SB_BORN | SB_DYING);
}
/**
* super_lock - wait for superblock to become ready and lock it
* @sb: superblock to wait for
* @excl: whether exclusive access is required
*
* If the superblock has neither passed through vfs_get_tree() or
* generic_shutdown_super() yet wait for it to happen. Either superblock
* creation will succeed and SB_BORN is set by vfs_get_tree() or we're
* woken and we'll see SB_DYING.
*
* The caller must have acquired a temporary reference on @sb->s_count.
*
* Return: This returns true if SB_BORN was set, false if SB_DYING was
* set. The function acquires s_umount and returns with it held.
*/
static __must_check bool super_lock(struct super_block *sb, bool excl)
{
lockdep_assert_not_held(&sb->s_umount);
relock:
__super_lock(sb, excl);
/*
* Has gone through generic_shutdown_super() in the meantime.
* @sb->s_root is NULL and @sb->s_active is 0. No one needs to
* grab a reference to this. Tell them so.
*/
if (sb->s_flags & SB_DYING)
return false;
/* Has called ->get_tree() successfully. */
if (sb->s_flags & SB_BORN)
return true;
super_unlock(sb, excl);
/* wait until the superblock is ready or dying */
wait_var_event(&sb->s_flags, wait_born(sb));
/*
* Neither SB_BORN nor SB_DYING are ever unset so we never loop.
* Just reacquire @sb->s_umount for the caller.
*/
goto relock;
}
/* wait and acquire read-side of @sb->s_umount */
static inline bool super_lock_shared(struct super_block *sb)
{
return super_lock(sb, false);
}
/* wait and acquire write-side of @sb->s_umount */
static inline bool super_lock_excl(struct super_block *sb)
{
return super_lock(sb, true);
}
/* wake waiters */
#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
static void super_wake(struct super_block *sb, unsigned int flag)
{
WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
/*
* Pairs with smp_load_acquire() in super_lock() to make sure
* all initializations in the superblock are seen by the user
* seeing SB_BORN sent.
*/
smp_store_release(&sb->s_flags, sb->s_flags | flag);
/*
* Pairs with the barrier in prepare_to_wait_event() to make sure
* ___wait_var_event() either sees SB_BORN set or
* waitqueue_active() check in wake_up_var() sees the waiter.
*/
smp_mb();
wake_up_var(&sb->s_flags);
}
/*
* One thing we have to be careful of with a per-sb shrinker is that we don't
* drop the last active reference to the superblock from within the shrinker.
* If that happens we could trigger unregistering the shrinker from within the
* shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
* take a passive reference to the superblock to avoid this from occurring.
*/
static unsigned long super_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long fs_objects = 0;
long total_objects;
long freed = 0;
long dentries;
long inodes;
sb = container_of(shrink, struct super_block, s_shrink);
/*
* Deadlock avoidance. We may hold various FS locks, and we don't want
* to recurse into the FS that called us in clear_inode() and friends..
*/
if (!(sc->gfp_mask & __GFP_FS))
return SHRINK_STOP;
if (!super_trylock_shared(sb))
return SHRINK_STOP;
if (sb->s_op->nr_cached_objects)
fs_objects = sb->s_op->nr_cached_objects(sb, sc);
inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
total_objects = dentries + inodes + fs_objects + 1;
if (!total_objects)
total_objects = 1;
/* proportion the scan between the caches */
dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
/*
* prune the dcache first as the icache is pinned by it, then
* prune the icache, followed by the filesystem specific caches
*
* Ensure that we always scan at least one object - memcg kmem
* accounting uses this to fully empty the caches.
*/
sc->nr_to_scan = dentries + 1;
freed = prune_dcache_sb(sb, sc);
sc->nr_to_scan = inodes + 1;
freed += prune_icache_sb(sb, sc);
if (fs_objects) {
sc->nr_to_scan = fs_objects + 1;
freed += sb->s_op->free_cached_objects(sb, sc);
}
super_unlock_shared(sb);
return freed;
}
static unsigned long super_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct super_block *sb;
long total_objects = 0;
sb = container_of(shrink, struct super_block, s_shrink);
/*
* We don't call super_trylock_shared() here as it is a scalability
* bottleneck, so we're exposed to partial setup state. The shrinker
* rwsem does not protect filesystem operations backing
* list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
* change between super_cache_count and super_cache_scan, so we really
* don't need locks here.
*
* However, if we are currently mounting the superblock, the underlying
* filesystem might be in a state of partial construction and hence it
* is dangerous to access it. super_trylock_shared() uses a SB_BORN check
* to avoid this situation, so do the same here. The memory barrier is
* matched with the one in mount_fs() as we don't hold locks here.
*/
if (!(sb->s_flags & SB_BORN))
return 0;
smp_rmb();
if (sb->s_op && sb->s_op->nr_cached_objects)
total_objects = sb->s_op->nr_cached_objects(sb, sc);
total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
if (!total_objects)
return SHRINK_EMPTY;
total_objects = vfs_pressure_ratio(total_objects);
return total_objects;
}
static void destroy_super_work(struct work_struct *work)
{
struct super_block *s = container_of(work, struct super_block,
destroy_work);
int i;
for (i = 0; i < SB_FREEZE_LEVELS; i++)
percpu_free_rwsem(&s->s_writers.rw_sem[i]);
kfree(s);
}
static void destroy_super_rcu(struct rcu_head *head)
{
struct super_block *s = container_of(head, struct super_block, rcu);
INIT_WORK(&s->destroy_work, destroy_super_work);
schedule_work(&s->destroy_work);
}
/* Free a superblock that has never been seen by anyone */
static void destroy_unused_super(struct super_block *s)
{
if (!s)
return;
super_unlock_excl(s);
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
security_sb_free(s);
put_user_ns(s->s_user_ns);
kfree(s->s_subtype);
free_prealloced_shrinker(&s->s_shrink);
/* no delays needed */
destroy_super_work(&s->destroy_work);
}
/**
* alloc_super - create new superblock
* @type: filesystem type superblock should belong to
* @flags: the mount flags
* @user_ns: User namespace for the super_block
*
* Allocates and initializes a new &struct super_block. alloc_super()
* returns a pointer new superblock or %NULL if allocation had failed.
*/
static struct super_block *alloc_super(struct file_system_type *type, int flags,
struct user_namespace *user_ns)
{
struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
static const struct super_operations default_op;
int i;
if (!s)
return NULL;
INIT_LIST_HEAD(&s->s_mounts);
s->s_user_ns = get_user_ns(user_ns);
init_rwsem(&s->s_umount);
lockdep_set_class(&s->s_umount, &type->s_umount_key);
/*
* sget() can have s_umount recursion.
*
* When it cannot find a suitable sb, it allocates a new
* one (this one), and tries again to find a suitable old
* one.
*
* In case that succeeds, it will acquire the s_umount
* lock of the old one. Since these are clearly distrinct
* locks, and this object isn't exposed yet, there's no
* risk of deadlocks.
*
* Annotate this by putting this lock in a different
* subclass.
*/
down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
if (security_sb_alloc(s))
goto fail;
for (i = 0; i < SB_FREEZE_LEVELS; i++) {
if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
sb_writers_name[i],
&type->s_writers_key[i]))
goto fail;
}
s->s_bdi = &noop_backing_dev_info;
s->s_flags = flags;
if (s->s_user_ns != &init_user_ns)
s->s_iflags |= SB_I_NODEV;
INIT_HLIST_NODE(&s->s_instances);
INIT_HLIST_BL_HEAD(&s->s_roots);
mutex_init(&s->s_sync_lock);
INIT_LIST_HEAD(&s->s_inodes);
spin_lock_init(&s->s_inode_list_lock);
INIT_LIST_HEAD(&s->s_inodes_wb);
spin_lock_init(&s->s_inode_wblist_lock);
s->s_count = 1;
atomic_set(&s->s_active, 1);
mutex_init(&s->s_vfs_rename_mutex);
lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
init_rwsem(&s->s_dquot.dqio_sem);
s->s_maxbytes = MAX_NON_LFS;
s->s_op = &default_op;
s->s_time_gran = 1000000000;
s->s_time_min = TIME64_MIN;
s->s_time_max = TIME64_MAX;
s->s_shrink.seeks = DEFAULT_SEEKS;
s->s_shrink.scan_objects = super_cache_scan;
s->s_shrink.count_objects = super_cache_count;
s->s_shrink.batch = 1024;
s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
goto fail;
if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
goto fail;
if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
goto fail;
return s;
fail:
destroy_unused_super(s);
return NULL;
}
/* Superblock refcounting */
/*
* Drop a superblock's refcount. The caller must hold sb_lock.
*/
static void __put_super(struct super_block *s)
{
if (!--s->s_count) {
list_del_init(&s->s_list);
WARN_ON(s->s_dentry_lru.node);
WARN_ON(s->s_inode_lru.node);
WARN_ON(!list_empty(&s->s_mounts));
security_sb_free(s);
put_user_ns(s->s_user_ns);
kfree(s->s_subtype);
call_rcu(&s->rcu, destroy_super_rcu);
}
}
/**
* put_super - drop a temporary reference to superblock
* @sb: superblock in question
*
* Drops a temporary reference, frees superblock if there's no
* references left.
*/
void put_super(struct super_block *sb)
{
spin_lock(&sb_lock);
__put_super(sb);
spin_unlock(&sb_lock);
}
static void kill_super_notify(struct super_block *sb)
{
lockdep_assert_not_held(&sb->s_umount);
/* already notified earlier */
if (sb->s_flags & SB_DEAD)
return;
/*
* Remove it from @fs_supers so it isn't found by new
* sget{_fc}() walkers anymore. Any concurrent mounter still
* managing to grab a temporary reference is guaranteed to
* already see SB_DYING and will wait until we notify them about
* SB_DEAD.
*/
spin_lock(&sb_lock);
hlist_del_init(&sb->s_instances);
spin_unlock(&sb_lock);
/*
* Let concurrent mounts know that this thing is really dead.
* We don't need @sb->s_umount here as every concurrent caller
* will see SB_DYING and either discard the superblock or wait
* for SB_DEAD.
*/
super_wake(sb, SB_DEAD);
}
/**
* deactivate_locked_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Drops an active reference to superblock, converting it into a temporary
* one if there is no other active references left. In that case we
* tell fs driver to shut it down and drop the temporary reference we
* had just acquired.
*
* Caller holds exclusive lock on superblock; that lock is released.
*/
void deactivate_locked_super(struct super_block *s)
{
struct file_system_type *fs = s->s_type;
if (atomic_dec_and_test(&s->s_active)) {
unregister_shrinker(&s->s_shrink);
fs->kill_sb(s);
kill_super_notify(s);
/*
* Since list_lru_destroy() may sleep, we cannot call it from
* put_super(), where we hold the sb_lock. Therefore we destroy
* the lru lists right now.
*/
list_lru_destroy(&s->s_dentry_lru);
list_lru_destroy(&s->s_inode_lru);
put_filesystem(fs);
put_super(s);
} else {
super_unlock_excl(s);
}
}
EXPORT_SYMBOL(deactivate_locked_super);
/**
* deactivate_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Variant of deactivate_locked_super(), except that superblock is *not*
* locked by caller. If we are going to drop the final active reference,
* lock will be acquired prior to that.
*/
void deactivate_super(struct super_block *s)
{
if (!atomic_add_unless(&s->s_active, -1, 1)) {
__super_lock_excl(s);
deactivate_locked_super(s);
}
}
EXPORT_SYMBOL(deactivate_super);
/**
* grab_super - acquire an active reference
* @s: reference we are trying to make active
*
* Tries to acquire an active reference. grab_super() is used when we
* had just found a superblock in super_blocks or fs_type->fs_supers
* and want to turn it into a full-blown active reference. grab_super()
* is called with sb_lock held and drops it. Returns 1 in case of
* success, 0 if we had failed (superblock contents was already dead or
* dying when grab_super() had been called). Note that this is only
* called for superblocks not in rundown mode (== ones still on ->fs_supers
* of their type), so increment of ->s_count is OK here.
*/
static int grab_super(struct super_block *s) __releases(sb_lock)
{
bool born;
s->s_count++;
spin_unlock(&sb_lock);
born = super_lock_excl(s);
if (born && atomic_inc_not_zero(&s->s_active)) {
put_super(s);
return 1;
}
super_unlock_excl(s);
put_super(s);
return 0;
}
static inline bool wait_dead(struct super_block *sb)
{
unsigned int flags;
/*
* Pairs with memory barrier in super_wake() and ensures
* that we see SB_DEAD after we're woken.
*/
flags = smp_load_acquire(&sb->s_flags);
return flags & SB_DEAD;
}
/**
* grab_super_dead - acquire an active reference to a superblock
* @sb: superblock to acquire
*
* Acquire a temporary reference on a superblock and try to trade it for
* an active reference. This is used in sget{_fc}() to wait for a
* superblock to either become SB_BORN or for it to pass through
* sb->kill() and be marked as SB_DEAD.
*
* Return: This returns true if an active reference could be acquired,
* false if not.
*/
static bool grab_super_dead(struct super_block *sb)
{
sb->s_count++;
if (grab_super(sb)) {
put_super(sb);
lockdep_assert_held(&sb->s_umount);
return true;
}
wait_var_event(&sb->s_flags, wait_dead(sb));
lockdep_assert_not_held(&sb->s_umount);
put_super(sb);
return false;
}
/*
* super_trylock_shared - try to grab ->s_umount shared
* @sb: reference we are trying to grab
*
* Try to prevent fs shutdown. This is used in places where we
* cannot take an active reference but we need to ensure that the
* filesystem is not shut down while we are working on it. It returns
* false if we cannot acquire s_umount or if we lose the race and
* filesystem already got into shutdown, and returns true with the s_umount
* lock held in read mode in case of success. On successful return,
* the caller must drop the s_umount lock when done.
*
* Note that unlike get_super() et.al. this one does *not* bump ->s_count.
* The reason why it's safe is that we are OK with doing trylock instead
* of down_read(). There's a couple of places that are OK with that, but
* it's very much not a general-purpose interface.
*/
bool super_trylock_shared(struct super_block *sb)
{
if (down_read_trylock(&sb->s_umount)) {
if (!(sb->s_flags & SB_DYING) && sb->s_root &&
(sb->s_flags & SB_BORN))
return true;
super_unlock_shared(sb);
}
return false;
}
/**
* retire_super - prevents superblock from being reused
* @sb: superblock to retire
*
* The function marks superblock to be ignored in superblock test, which
* prevents it from being reused for any new mounts. If the superblock has
* a private bdi, it also unregisters it, but doesn't reduce the refcount
* of the superblock to prevent potential races. The refcount is reduced
* by generic_shutdown_super(). The function can not be called
* concurrently with generic_shutdown_super(). It is safe to call the
* function multiple times, subsequent calls have no effect.
*
* The marker will affect the re-use only for block-device-based
* superblocks. Other superblocks will still get marked if this function
* is used, but that will not affect their reusability.
*/
void retire_super(struct super_block *sb)
{
WARN_ON(!sb->s_bdev);
__super_lock_excl(sb);
if (sb->s_iflags & SB_I_PERSB_BDI) {
bdi_unregister(sb->s_bdi);
sb->s_iflags &= ~SB_I_PERSB_BDI;
}
sb->s_iflags |= SB_I_RETIRED;
super_unlock_excl(sb);
}
EXPORT_SYMBOL(retire_super);
/**
* generic_shutdown_super - common helper for ->kill_sb()
* @sb: superblock to kill
*
* generic_shutdown_super() does all fs-independent work on superblock
* shutdown. Typical ->kill_sb() should pick all fs-specific objects
* that need destruction out of superblock, call generic_shutdown_super()
* and release aforementioned objects. Note: dentries and inodes _are_
* taken care of and do not need specific handling.
*
* Upon calling this function, the filesystem may no longer alter or
* rearrange the set of dentries belonging to this super_block, nor may it
* change the attachments of dentries to inodes.
*/
void generic_shutdown_super(struct super_block *sb)
{
const struct super_operations *sop = sb->s_op;
if (sb->s_root) {
shrink_dcache_for_umount(sb);
sync_filesystem(sb);
sb->s_flags &= ~SB_ACTIVE;
cgroup_writeback_umount();
/* Evict all inodes with zero refcount. */
evict_inodes(sb);
/*
* Clean up and evict any inodes that still have references due
* to fsnotify or the security policy.
*/
fsnotify_sb_delete(sb);
security_sb_delete(sb);
/*
* Now that all potentially-encrypted inodes have been evicted,
* the fscrypt keyring can be destroyed.
*/
fscrypt_destroy_keyring(sb);
if (sb->s_dio_done_wq) {
destroy_workqueue(sb->s_dio_done_wq);
sb->s_dio_done_wq = NULL;
}
if (sop->put_super)
sop->put_super(sb);
if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
"VFS: Busy inodes after unmount of %s (%s)",
sb->s_id, sb->s_type->name)) {
/*
* Adding a proper bailout path here would be hard, but
* we can at least make it more likely that a later
* iput_final() or such crashes cleanly.
*/
struct inode *inode;
spin_lock(&sb->s_inode_list_lock);
list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
inode->i_op = VFS_PTR_POISON;
inode->i_sb = VFS_PTR_POISON;
inode->i_mapping = VFS_PTR_POISON;
}
spin_unlock(&sb->s_inode_list_lock);
}
}
/*
* Broadcast to everyone that grabbed a temporary reference to this
* superblock before we removed it from @fs_supers that the superblock
* is dying. Every walker of @fs_supers outside of sget{_fc}() will now
* discard this superblock and treat it as dead.
*
* We leave the superblock on @fs_supers so it can be found by
* sget{_fc}() until we passed sb->kill_sb().
*/
super_wake(sb, SB_DYING);
super_unlock_excl(sb);
if (sb->s_bdi != &noop_backing_dev_info) {
if (sb->s_iflags & SB_I_PERSB_BDI)
bdi_unregister(sb->s_bdi);
bdi_put(sb->s_bdi);
sb->s_bdi = &noop_backing_dev_info;
}
}
EXPORT_SYMBOL(generic_shutdown_super);
bool mount_capable(struct fs_context *fc)
{
if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
return capable(CAP_SYS_ADMIN);
else
return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
}
/**
* sget_fc - Find or create a superblock
* @fc: Filesystem context.
* @test: Comparison callback
* @set: Setup callback
*
* Create a new superblock or find an existing one.
*
* The @test callback is used to find a matching existing superblock.
* Whether or not the requested parameters in @fc are taken into account
* is specific to the @test callback that is used. They may even be
* completely ignored.
*
* If an extant superblock is matched, it will be returned unless:
*
* (1) the namespace the filesystem context @fc and the extant
* superblock's namespace differ
*
* (2) the filesystem context @fc has requested that reusing an extant
* superblock is not allowed
*
* In both cases EBUSY will be returned.
*
* If no match is made, a new superblock will be allocated and basic
* initialisation will be performed (s_type, s_fs_info and s_id will be
* set and the @set callback will be invoked), the superblock will be
* published and it will be returned in a partially constructed state
* with SB_BORN and SB_ACTIVE as yet unset.
*
* Return: On success, an extant or newly created superblock is
* returned. On failure an error pointer is returned.
*/
struct super_block *sget_fc(struct fs_context *fc,
int (*test)(struct super_block *, struct fs_context *),
int (*set)(struct super_block *, struct fs_context *))
{
struct super_block *s = NULL;
struct super_block *old;
struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
int err;
retry:
spin_lock(&sb_lock);
if (test) {
hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
if (test(old, fc))
goto share_extant_sb;
}
}
if (!s) {
spin_unlock(&sb_lock);
s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
if (!s)
return ERR_PTR(-ENOMEM);
goto retry;
}
s->s_fs_info = fc->s_fs_info;
err = set(s, fc);
if (err) {
s->s_fs_info = NULL;
spin_unlock(&sb_lock);
destroy_unused_super(s);
return ERR_PTR(err);
}
fc->s_fs_info = NULL;
s->s_type = fc->fs_type;
s->s_iflags |= fc->s_iflags;
strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
/*
* Make the superblock visible on @super_blocks and @fs_supers.
* It's in a nascent state and users should wait on SB_BORN or
* SB_DYING to be set.
*/
list_add_tail(&s->s_list, &super_blocks);
hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
spin_unlock(&sb_lock);
get_filesystem(s->s_type);
register_shrinker_prepared(&s->s_shrink);
return s;
share_extant_sb:
if (user_ns != old->s_user_ns || fc->exclusive) {
spin_unlock(&sb_lock);
destroy_unused_super(s);
if (fc->exclusive)
warnfc(fc, "reusing existing filesystem not allowed");
else
warnfc(fc, "reusing existing filesystem in another namespace not allowed");
return ERR_PTR(-EBUSY);
}
if (!grab_super_dead(old))
goto retry;
destroy_unused_super(s);
return old;
}
EXPORT_SYMBOL(sget_fc);
/**
* sget - find or create a superblock
* @type: filesystem type superblock should belong to
* @test: comparison callback
* @set: setup callback
* @flags: mount flags
* @data: argument to each of them
*/
struct super_block *sget(struct file_system_type *type,
int (*test)(struct super_block *,void *),
int (*set)(struct super_block *,void *),
int flags,
void *data)
{
struct user_namespace *user_ns = current_user_ns();
struct super_block *s = NULL;
struct super_block *old;
int err;
/* We don't yet pass the user namespace of the parent
* mount through to here so always use &init_user_ns
* until that changes.
*/
if (flags & SB_SUBMOUNT)
user_ns = &init_user_ns;
retry:
spin_lock(&sb_lock);
if (test) {
hlist_for_each_entry(old, &type->fs_supers, s_instances) {
if (!test(old, data))
continue;
if (user_ns != old->s_user_ns) {
spin_unlock(&sb_lock);
destroy_unused_super(s);
return ERR_PTR(-EBUSY);
}
if (!grab_super_dead(old))
goto retry;
destroy_unused_super(s);
return old;
}
}
if (!s) {
spin_unlock(&sb_lock);
s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
if (!s)
return ERR_PTR(-ENOMEM);
goto retry;
}
err = set(s, data);
if (err) {
spin_unlock(&sb_lock);
destroy_unused_super(s);
return ERR_PTR(err);
}
s->s_type = type;
strscpy(s->s_id, type->name, sizeof(s->s_id));
list_add_tail(&s->s_list, &super_blocks);
hlist_add_head(&s->s_instances, &type->fs_supers);
spin_unlock(&sb_lock);
get_filesystem(type);
register_shrinker_prepared(&s->s_shrink);
return s;
}
EXPORT_SYMBOL(sget);
void drop_super(struct super_block *sb)
{
super_unlock_shared(sb);
put_super(sb);
}
EXPORT_SYMBOL(drop_super);
void drop_super_exclusive(struct super_block *sb)
{
super_unlock_excl(sb);
put_super(sb);
}
EXPORT_SYMBOL(drop_super_exclusive);
static void __iterate_supers(void (*f)(struct super_block *))
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
/* Pairs with memory marrier in super_wake(). */
if (smp_load_acquire(&sb->s_flags) & SB_DYING)
continue;
sb->s_count++;
spin_unlock(&sb_lock);
f(sb);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
/**
* iterate_supers - call function for all active superblocks
* @f: function to call
* @arg: argument to pass to it
*
* Scans the superblock list and calls given function, passing it
* locked superblock and given argument.
*/
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
bool born;
sb->s_count++;
spin_unlock(&sb_lock);
born = super_lock_shared(sb);
if (born && sb->s_root)
f(sb, arg);
super_unlock_shared(sb);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
/**
* iterate_supers_type - call function for superblocks of given type
* @type: fs type
* @f: function to call
* @arg: argument to pass to it
*
* Scans the superblock list and calls given function, passing it
* locked superblock and given argument.
*/
void iterate_supers_type(struct file_system_type *type,
void (*f)(struct super_block *, void *), void *arg)
{
struct super_block *sb, *p = NULL;
spin_lock(&sb_lock);
hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
bool born;
sb->s_count++;
spin_unlock(&sb_lock);
born = super_lock_shared(sb);
if (born && sb->s_root)
f(sb, arg);
super_unlock_shared(sb);
spin_lock(&sb_lock);
if (p)
__put_super(p);
p = sb;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
}
EXPORT_SYMBOL(iterate_supers_type);
/**
* get_active_super - get an active reference to the superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device given. Returns the superblock with an active
* reference or %NULL if none was found.
*/
struct super_block *get_active_super(struct block_device *bdev)
{
struct super_block *sb;
if (!bdev)
return NULL;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (sb->s_bdev == bdev) {
if (!grab_super(sb))
return NULL;
super_unlock_excl(sb);
return sb;
}
}
spin_unlock(&sb_lock);
return NULL;
}
struct super_block *user_get_super(dev_t dev, bool excl)
{
struct super_block *sb;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (sb->s_dev == dev) {
bool born;
sb->s_count++;
spin_unlock(&sb_lock);
/* still alive? */
born = super_lock(sb, excl);
if (born && sb->s_root)
return sb;
super_unlock(sb, excl);
/* nope, got unmounted */
spin_lock(&sb_lock);
__put_super(sb);
break;
}
}
spin_unlock(&sb_lock);
return NULL;
}
/**
* reconfigure_super - asks filesystem to change superblock parameters
* @fc: The superblock and configuration
*
* Alters the configuration parameters of a live superblock.
*/
int reconfigure_super(struct fs_context *fc)
{
struct super_block *sb = fc->root->d_sb;
int retval;
bool remount_ro = false;
bool remount_rw = false;
bool force = fc->sb_flags & SB_FORCE;
if (fc->sb_flags_mask & ~MS_RMT_MASK)
return -EINVAL;
if (sb->s_writers.frozen != SB_UNFROZEN)
return -EBUSY;
retval = security_sb_remount(sb, fc->security);
if (retval)
return retval;
if (fc->sb_flags_mask & SB_RDONLY) {
#ifdef CONFIG_BLOCK
if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
bdev_read_only(sb->s_bdev))
return -EACCES;
#endif
remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
}
if (remount_ro) {
if (!hlist_empty(&sb->s_pins)) {
super_unlock_excl(sb);
group_pin_kill(&sb->s_pins);
__super_lock_excl(sb);
if (!sb->s_root)
return 0;
if (sb->s_writers.frozen != SB_UNFROZEN)
return -EBUSY;
remount_ro = !sb_rdonly(sb);
}
}
shrink_dcache_sb(sb);
/* If we are reconfiguring to RDONLY and current sb is read/write,
* make sure there are no files open for writing.
*/
if (remount_ro) {
if (force) {
sb_start_ro_state_change(sb);
} else {
retval = sb_prepare_remount_readonly(sb);
if (retval)
return retval;
}
} else if (remount_rw) {
/*
* Protect filesystem's reconfigure code from writes from
* userspace until reconfigure finishes.
*/
sb_start_ro_state_change(sb);
}
if (fc->ops->reconfigure) {
retval = fc->ops->reconfigure(fc);
if (retval) {
if (!force)
goto cancel_readonly;
/* If forced remount, go ahead despite any errors */
WARN(1, "forced remount of a %s fs returned %i\n",
sb->s_type->name, retval);
}
}
WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
(fc->sb_flags & fc->sb_flags_mask)));
sb_end_ro_state_change(sb);
/*
* Some filesystems modify their metadata via some other path than the
* bdev buffer cache (eg. use a private mapping, or directories in
* pagecache, etc). Also file data modifications go via their own
* mappings. So If we try to mount readonly then copy the filesystem
* from bdev, we could get stale data, so invalidate it to give a best
* effort at coherency.
*/
if (remount_ro && sb->s_bdev)
invalidate_bdev(sb->s_bdev);
return 0;
cancel_readonly:
sb_end_ro_state_change(sb);
return retval;
}
static void do_emergency_remount_callback(struct super_block *sb)
{
bool born = super_lock_excl(sb);
if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
struct fs_context *fc;
fc = fs_context_for_reconfigure(sb->s_root,
SB_RDONLY | SB_FORCE, SB_RDONLY);
if (!IS_ERR(fc)) {
if (parse_monolithic_mount_data(fc, NULL) == 0)
(void)reconfigure_super(fc);
put_fs_context(fc);
}
}
super_unlock_excl(sb);
}
static void do_emergency_remount(struct work_struct *work)
{
__iterate_supers(do_emergency_remount_callback);
kfree(work);
printk("Emergency Remount complete\n");
}
void emergency_remount(void)
{
struct work_struct *work;
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work) {
INIT_WORK(work, do_emergency_remount);
schedule_work(work);
}
}
static void do_thaw_all_callback(struct super_block *sb)
{
bool born = super_lock_excl(sb);
if (born && sb->s_root) {
if (IS_ENABLED(CONFIG_BLOCK))
while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
} else {
super_unlock_excl(sb);
}
}
static void do_thaw_all(struct work_struct *work)
{
__iterate_supers(do_thaw_all_callback);
kfree(work);
printk(KERN_WARNING "Emergency Thaw complete\n");
}
/**
* emergency_thaw_all -- forcibly thaw every frozen filesystem
*
* Used for emergency unfreeze of all filesystems via SysRq
*/
void emergency_thaw_all(void)
{
struct work_struct *work;
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work) {
INIT_WORK(work, do_thaw_all);
schedule_work(work);
}
}
static DEFINE_IDA(unnamed_dev_ida);
/**
* get_anon_bdev - Allocate a block device for filesystems which don't have one.
* @p: Pointer to a dev_t.
*
* Filesystems which don't use real block devices can call this function
* to allocate a virtual block device.
*
* Context: Any context. Frequently called while holding sb_lock.
* Return: 0 on success, -EMFILE if there are no anonymous bdevs left
* or -ENOMEM if memory allocation failed.
*/
int get_anon_bdev(dev_t *p)
{
int dev;
/*
* Many userspace utilities consider an FSID of 0 invalid.
* Always return at least 1 from get_anon_bdev.
*/
dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
GFP_ATOMIC);
if (dev == -ENOSPC)
dev = -EMFILE;
if (dev < 0)
return dev;
*p = MKDEV(0, dev);
return 0;
}
EXPORT_SYMBOL(get_anon_bdev);
void free_anon_bdev(dev_t dev)
{
ida_free(&unnamed_dev_ida, MINOR(dev));
}
EXPORT_SYMBOL(free_anon_bdev);
int set_anon_super(struct super_block *s, void *data)
{
return get_anon_bdev(&s->s_dev);
}
EXPORT_SYMBOL(set_anon_super);
void kill_anon_super(struct super_block *sb)
{
dev_t dev = sb->s_dev;
generic_shutdown_super(sb);
kill_super_notify(sb);
free_anon_bdev(dev);
}
EXPORT_SYMBOL(kill_anon_super);
void kill_litter_super(struct super_block *sb)
{
if (sb->s_root)
d_genocide(sb->s_root);
kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);
int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
{
return set_anon_super(sb, NULL);
}
EXPORT_SYMBOL(set_anon_super_fc);
static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
{
return sb->s_fs_info == fc->s_fs_info;
}
static int test_single_super(struct super_block *s, struct fs_context *fc)
{
return 1;
}
static int vfs_get_super(struct fs_context *fc,
int (*test)(struct super_block *, struct fs_context *),
int (*fill_super)(struct super_block *sb,
struct fs_context *fc))
{
struct super_block *sb;
int err;
sb = sget_fc(fc, test, set_anon_super_fc);
if (IS_ERR(sb))
return PTR_ERR(sb);
if (!sb->s_root) {
err = fill_super(sb, fc);
if (err)
goto error;
sb->s_flags |= SB_ACTIVE;
}
fc->root = dget(sb->s_root);
return 0;
error:
deactivate_locked_super(sb);
return err;
}
int get_tree_nodev(struct fs_context *fc,
int (*fill_super)(struct super_block *sb,
struct fs_context *fc))
{
return vfs_get_super(fc, NULL, fill_super);
}
EXPORT_SYMBOL(get_tree_nodev);
int get_tree_single(struct fs_context *fc,
int (*fill_super)(struct super_block *sb,
struct fs_context *fc))
{
return vfs_get_super(fc, test_single_super, fill_super);
}
EXPORT_SYMBOL(get_tree_single);
int get_tree_keyed(struct fs_context *fc,
int (*fill_super)(struct super_block *sb,
struct fs_context *fc),
void *key)
{
fc->s_fs_info = key;
return vfs_get_super(fc, test_keyed_super, fill_super);
}
EXPORT_SYMBOL(get_tree_keyed);
static int set_bdev_super(struct super_block *s, void *data)
{
s->s_dev = *(dev_t *)data;
return 0;
}
static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
{
return set_bdev_super(s, fc->sget_key);
}
static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
{
return !(s->s_iflags & SB_I_RETIRED) &&
s->s_dev == *(dev_t *)fc->sget_key;
}
/**
* sget_dev - Find or create a superblock by device number
* @fc: Filesystem context.
* @dev: device number
*
* Find or create a superblock using the provided device number that
* will be stored in fc->sget_key.
*
* If an extant superblock is matched, then that will be returned with
* an elevated reference count that the caller must transfer or discard.
*
* If no match is made, a new superblock will be allocated and basic
* initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
* be set). The superblock will be published and it will be returned in
* a partially constructed state with SB_BORN and SB_ACTIVE as yet
* unset.
*
* Return: an existing or newly created superblock on success, an error
* pointer on failure.
*/
struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
{
fc->sget_key = &dev;
return sget_fc(fc, super_s_dev_test, super_s_dev_set);
}
EXPORT_SYMBOL(sget_dev);
#ifdef CONFIG_BLOCK
/*
* Lock the superblock that is holder of the bdev. Returns the superblock
* pointer if we successfully locked the superblock and it is alive. Otherwise
* we return NULL and just unlock bdev->bd_holder_lock.
*
* The function must be called with bdev->bd_holder_lock and releases it.
*/
static struct super_block *bdev_super_lock_shared(struct block_device *bdev)
__releases(&bdev->bd_holder_lock)
{
struct super_block *sb = bdev->bd_holder;
bool born;
lockdep_assert_held(&bdev->bd_holder_lock);
lockdep_assert_not_held(&sb->s_umount);
lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
/* Make sure sb doesn't go away from under us */
spin_lock(&sb_lock);
sb->s_count++;
spin_unlock(&sb_lock);
mutex_unlock(&bdev->bd_holder_lock);
born = super_lock_shared(sb);
if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
super_unlock_shared(sb);
put_super(sb);
return NULL;
}
/*
* The superblock is active and we hold s_umount, we can drop our
* temporary reference now.
*/
put_super(sb);
return sb;
}
static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
{
struct super_block *sb;
sb = bdev_super_lock_shared(bdev);
if (!sb)
return;
if (!surprise)
sync_filesystem(sb);
shrink_dcache_sb(sb);
invalidate_inodes(sb);
if (sb->s_op->shutdown)
sb->s_op->shutdown(sb);
super_unlock_shared(sb);
}
static void fs_bdev_sync(struct block_device *bdev)
{
struct super_block *sb;
sb = bdev_super_lock_shared(bdev);
if (!sb)
return;
sync_filesystem(sb);
super_unlock_shared(sb);
}
const struct blk_holder_ops fs_holder_ops = {
.mark_dead = fs_bdev_mark_dead,
.sync = fs_bdev_sync,
};
EXPORT_SYMBOL_GPL(fs_holder_ops);
int setup_bdev_super(struct super_block *sb, int sb_flags,
struct fs_context *fc)
{
blk_mode_t mode = sb_open_mode(sb_flags);
struct bdev_handle *bdev_handle;
struct block_device *bdev;
bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
if (IS_ERR(bdev_handle)) {
if (fc)
errorf(fc, "%s: Can't open blockdev", fc->source);
return PTR_ERR(bdev_handle);
}
bdev = bdev_handle->bdev;
/*
* This really should be in blkdev_get_by_dev, but right now can't due
* to legacy issues that require us to allow opening a block device node
* writable from userspace even for a read-only block device.
*/
if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
bdev_release(bdev_handle);
return -EACCES;
}
/*
* Until SB_BORN flag is set, there can be no active superblock
* references and thus no filesystem freezing. get_active_super() will
* just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
*
* It is enough to check bdev was not frozen before we set s_bdev.
*/
mutex_lock(&bdev->bd_fsfreeze_mutex);
if (bdev->bd_fsfreeze_count > 0) {
mutex_unlock(&bdev->bd_fsfreeze_mutex);
if (fc)
warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
bdev_release(bdev_handle);
return -EBUSY;
}
spin_lock(&sb_lock);
sb->s_bdev_handle = bdev_handle;
sb->s_bdev = bdev;
sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
if (bdev_stable_writes(bdev))
sb->s_iflags |= SB_I_STABLE_WRITES;
spin_unlock(&sb_lock);
mutex_unlock(&bdev->bd_fsfreeze_mutex);
snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
sb->s_id);
sb_set_blocksize(sb, block_size(bdev));
return 0;
}
EXPORT_SYMBOL_GPL(setup_bdev_super);
/**
* get_tree_bdev - Get a superblock based on a single block device
* @fc: The filesystem context holding the parameters
* @fill_super: Helper to initialise a new superblock
*/
int get_tree_bdev(struct fs_context *fc,
int (*fill_super)(struct super_block *,
struct fs_context *))
{
struct super_block *s;
int error = 0;
dev_t dev;
if (!fc->source)
return invalf(fc, "No source specified");
error = lookup_bdev(fc->source, &dev);
if (error) {
errorf(fc, "%s: Can't lookup blockdev", fc->source);
return error;
}
fc->sb_flags |= SB_NOSEC;
s = sget_dev(fc, dev);
if (IS_ERR(s))
return PTR_ERR(s);
if (s->s_root) {
/* Don't summarily change the RO/RW state. */
if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
deactivate_locked_super(s);
return -EBUSY;
}
} else {
/*
* We drop s_umount here because we need to open the bdev and
* bdev->open_mutex ranks above s_umount (blkdev_put() ->
* bdev_mark_dead()). It is safe because we have active sb
* reference and SB_BORN is not set yet.
*/
super_unlock_excl(s);
error = setup_bdev_super(s, fc->sb_flags, fc);
__super_lock_excl(s);
if (!error)
error = fill_super(s, fc);
if (error) {
deactivate_locked_super(s);
return error;
}
s->s_flags |= SB_ACTIVE;
}
BUG_ON(fc->root);
fc->root = dget(s->s_root);
return 0;
}
EXPORT_SYMBOL(get_tree_bdev);
static int test_bdev_super(struct super_block *s, void *data)
{
return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
}
struct dentry *mount_bdev(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
struct super_block *s;
int error;
dev_t dev;
error = lookup_bdev(dev_name, &dev);
if (error)
return ERR_PTR(error);
flags |= SB_NOSEC;
s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
if (IS_ERR(s))
return ERR_CAST(s);
if (s->s_root) {
if ((flags ^ s->s_flags) & SB_RDONLY) {
deactivate_locked_super(s);
return ERR_PTR(-EBUSY);
}
} else {
/*
* We drop s_umount here because we need to open the bdev and
* bdev->open_mutex ranks above s_umount (blkdev_put() ->
* bdev_mark_dead()). It is safe because we have active sb
* reference and SB_BORN is not set yet.
*/
super_unlock_excl(s);
error = setup_bdev_super(s, flags, NULL);
__super_lock_excl(s);
if (!error)
error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
s->s_flags |= SB_ACTIVE;
}
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_bdev);
void kill_block_super(struct super_block *sb)
{
struct block_device *bdev = sb->s_bdev;
generic_shutdown_super(sb);
if (bdev) {
sync_blockdev(bdev);
bdev_release(sb->s_bdev_handle);
}
}
EXPORT_SYMBOL(kill_block_super);
#endif
struct dentry *mount_nodev(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
int error;
struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
s->s_flags |= SB_ACTIVE;
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_nodev);
int reconfigure_single(struct super_block *s,
int flags, void *data)
{
struct fs_context *fc;
int ret;
/* The caller really need to be passing fc down into mount_single(),
* then a chunk of this can be removed. [Bollocks -- AV]
* Better yet, reconfiguration shouldn't happen, but rather the second
* mount should be rejected if the parameters are not compatible.
*/
fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
if (IS_ERR(fc))
return PTR_ERR(fc);
ret = parse_monolithic_mount_data(fc, data);
if (ret < 0)
goto out;
ret = reconfigure_super(fc);
out:
put_fs_context(fc);
return ret;
}
static int compare_single(struct super_block *s, void *p)
{
return 1;
}
struct dentry *mount_single(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int))
{
struct super_block *s;
int error;
s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
if (IS_ERR(s))
return ERR_CAST(s);
if (!s->s_root) {
error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
if (!error)
s->s_flags |= SB_ACTIVE;
} else {
error = reconfigure_single(s, flags, data);
}
if (unlikely(error)) {
deactivate_locked_super(s);
return ERR_PTR(error);
}
return dget(s->s_root);
}
EXPORT_SYMBOL(mount_single);
/**
* vfs_get_tree - Get the mountable root
* @fc: The superblock configuration context.
*
* The filesystem is invoked to get or create a superblock which can then later
* be used for mounting. The filesystem places a pointer to the root to be
* used for mounting in @fc->root.
*/
int vfs_get_tree(struct fs_context *fc)
{
struct super_block *sb;
int error;
if (fc->root)
return -EBUSY;
/* Get the mountable root in fc->root, with a ref on the root and a ref
* on the superblock.
*/
error = fc->ops->get_tree(fc);
if (error < 0)
return error;
if (!fc->root) {
pr_err("Filesystem %s get_tree() didn't set fc->root\n",
fc->fs_type->name);
/* We don't know what the locking state of the superblock is -
* if there is a superblock.
*/
BUG();
}
sb = fc->root->d_sb;
WARN_ON(!sb->s_bdi);
/*
* super_wake() contains a memory barrier which also care of
* ordering for super_cache_count(). We place it before setting
* SB_BORN as the data dependency between the two functions is
* the superblock structure contents that we just set up, not
* the SB_BORN flag.
*/
super_wake(sb, SB_BORN);
error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
if (unlikely(error)) {
fc_drop_locked(fc);
return error;
}
/*
* filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
* but s_maxbytes was an unsigned long long for many releases. Throw
* this warning for a little while to try and catch filesystems that
* violate this rule.
*/
WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
return 0;
}
EXPORT_SYMBOL(vfs_get_tree);
/*
* Setup private BDI for given superblock. It gets automatically cleaned up
* in generic_shutdown_super().
*/
int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
{
struct backing_dev_info *bdi;
int err;
va_list args;
bdi = bdi_alloc(NUMA_NO_NODE);
if (!bdi)
return -ENOMEM;
va_start(args, fmt);
err = bdi_register_va(bdi, fmt, args);
va_end(args);
if (err) {
bdi_put(bdi);
return err;
}
WARN_ON(sb->s_bdi != &noop_backing_dev_info);
sb->s_bdi = bdi;
sb->s_iflags |= SB_I_PERSB_BDI;
return 0;
}
EXPORT_SYMBOL(super_setup_bdi_name);
/*
* Setup private BDI for given superblock. I gets automatically cleaned up
* in generic_shutdown_super().
*/
int super_setup_bdi(struct super_block *sb)
{
static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
atomic_long_inc_return(&bdi_seq));
}
EXPORT_SYMBOL(super_setup_bdi);
/**
* sb_wait_write - wait until all writers to given file system finish
* @sb: the super for which we wait
* @level: type of writers we wait for (normal vs page fault)
*
* This function waits until there are no writers of given type to given file
* system.
*/
static void sb_wait_write(struct super_block *sb, int level)
{
percpu_down_write(sb->s_writers.rw_sem + level-1);
}
/*
* We are going to return to userspace and forget about these locks, the
* ownership goes to the caller of thaw_super() which does unlock().
*/
static void lockdep_sb_freeze_release(struct super_block *sb)
{
int level;
for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}
/*
* Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
*/
static void lockdep_sb_freeze_acquire(struct super_block *sb)
{
int level;
for (level = 0; level < SB_FREEZE_LEVELS; ++level)
percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}
static void sb_freeze_unlock(struct super_block *sb, int level)
{
for (level--; level >= 0; level--)
percpu_up_write(sb->s_writers.rw_sem + level);
}
static int wait_for_partially_frozen(struct super_block *sb)
{
int ret = 0;
do {
unsigned short old = sb->s_writers.frozen;
up_write(&sb->s_umount);
ret = wait_var_event_killable(&sb->s_writers.frozen,
sb->s_writers.frozen != old);
down_write(&sb->s_umount);
} while (ret == 0 &&
sb->s_writers.frozen != SB_UNFROZEN &&
sb->s_writers.frozen != SB_FREEZE_COMPLETE);
return ret;
}
/**
* freeze_super - lock the filesystem and force it into a consistent state
* @sb: the super to lock
* @who: context that wants to freeze
*
* Syncs the super to make sure the filesystem is consistent and calls the fs's
* freeze_fs. Subsequent calls to this without first thawing the fs may return
* -EBUSY.
*
* @who should be:
* * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
* * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
*
* The @who argument distinguishes between the kernel and userspace trying to
* freeze the filesystem. Although there cannot be multiple kernel freezes or
* multiple userspace freezes in effect at any given time, the kernel and
* userspace can both hold a filesystem frozen. The filesystem remains frozen
* until there are no kernel or userspace freezes in effect.
*
* During this function, sb->s_writers.frozen goes through these values:
*
* SB_UNFROZEN: File system is normal, all writes progress as usual.
*
* SB_FREEZE_WRITE: The file system is in the process of being frozen. New
* writes should be blocked, though page faults are still allowed. We wait for
* all writes to complete and then proceed to the next stage.
*
* SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
* but internal fs threads can still modify the filesystem (although they
* should not dirty new pages or inodes), writeback can run etc. After waiting
* for all running page faults we sync the filesystem which will clean all
* dirty pages and inodes (no new dirty pages or inodes can be created when
* sync is running).
*
* SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
* modification are blocked (e.g. XFS preallocation truncation on inode
* reclaim). This is usually implemented by blocking new transactions for
* filesystems that have them and need this additional guard. After all
* internal writers are finished we call ->freeze_fs() to finish filesystem
* freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
* mostly auxiliary for filesystems to verify they do not modify frozen fs.
*
* sb->s_writers.frozen is protected by sb->s_umount.
*/
int freeze_super(struct super_block *sb, enum freeze_holder who)
{
int ret;
atomic_inc(&sb->s_active);
if (!super_lock_excl(sb))
WARN(1, "Dying superblock while freezing!");
retry:
if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
if (sb->s_writers.freeze_holders & who) {
deactivate_locked_super(sb);
return -EBUSY;
}
WARN_ON(sb->s_writers.freeze_holders == 0);
/*
* Someone else already holds this type of freeze; share the
* freeze and assign the active ref to the freeze.
*/
sb->s_writers.freeze_holders |= who;
super_unlock_excl(sb);
return 0;
}
if (sb->s_writers.frozen != SB_UNFROZEN) {
ret = wait_for_partially_frozen(sb);
if (ret) {
deactivate_locked_super(sb);
return ret;
}
goto retry;
}
if (!(sb->s_flags & SB_BORN)) {
super_unlock_excl(sb);
return 0; /* sic - it's "nothing to do" */
}
if (sb_rdonly(sb)) {
/* Nothing to do really... */
sb->s_writers.freeze_holders |= who;
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
wake_up_var(&sb->s_writers.frozen);
super_unlock_excl(sb);
return 0;
}
sb->s_writers.frozen = SB_FREEZE_WRITE;
/* Release s_umount to preserve sb_start_write -> s_umount ordering */
super_unlock_excl(sb);
sb_wait_write(sb, SB_FREEZE_WRITE);
if (!super_lock_excl(sb))
WARN(1, "Dying superblock while freezing!");
/* Now we go and block page faults... */
sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
/* All writers are done so after syncing there won't be dirty data */
ret = sync_filesystem(sb);
if (ret) {
sb->s_writers.frozen = SB_UNFROZEN;
sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
wake_up_var(&sb->s_writers.frozen);
deactivate_locked_super(sb);
return ret;
}
/* Now wait for internal filesystem counter */
sb->s_writers.frozen = SB_FREEZE_FS;
sb_wait_write(sb, SB_FREEZE_FS);
if (sb->s_op->freeze_fs) {
ret = sb->s_op->freeze_fs(sb);
if (ret) {
printk(KERN_ERR
"VFS:Filesystem freeze failed\n");
sb->s_writers.frozen = SB_UNFROZEN;
sb_freeze_unlock(sb, SB_FREEZE_FS);
wake_up_var(&sb->s_writers.frozen);
deactivate_locked_super(sb);
return ret;
}
}
/*
* For debugging purposes so that fs can warn if it sees write activity
* when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
*/
sb->s_writers.freeze_holders |= who;
sb->s_writers.frozen = SB_FREEZE_COMPLETE;
wake_up_var(&sb->s_writers.frozen);
lockdep_sb_freeze_release(sb);
super_unlock_excl(sb);
return 0;
}
EXPORT_SYMBOL(freeze_super);
/*
* Undoes the effect of a freeze_super_locked call. If the filesystem is
* frozen both by userspace and the kernel, a thaw call from either source
* removes that state without releasing the other state or unlocking the
* filesystem.
*/
static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
{
int error;
if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
if (!(sb->s_writers.freeze_holders & who)) {
super_unlock_excl(sb);
return -EINVAL;
}
/*
* Freeze is shared with someone else. Release our hold and
* drop the active ref that freeze_super assigned to the
* freezer.
*/
if (sb->s_writers.freeze_holders & ~who) {
sb->s_writers.freeze_holders &= ~who;
deactivate_locked_super(sb);
return 0;
}
} else {
super_unlock_excl(sb);
return -EINVAL;
}
if (sb_rdonly(sb)) {
sb->s_writers.freeze_holders &= ~who;
sb->s_writers.frozen = SB_UNFROZEN;
wake_up_var(&sb->s_writers.frozen);
goto out;
}
lockdep_sb_freeze_acquire(sb);
if (sb->s_op->unfreeze_fs) {
error = sb->s_op->unfreeze_fs(sb);
if (error) {
printk(KERN_ERR "VFS:Filesystem thaw failed\n");
lockdep_sb_freeze_release(sb);
super_unlock_excl(sb);
return error;
}
}
sb->s_writers.freeze_holders &= ~who;
sb->s_writers.frozen = SB_UNFROZEN;
wake_up_var(&sb->s_writers.frozen);
sb_freeze_unlock(sb, SB_FREEZE_FS);
out:
deactivate_locked_super(sb);
return 0;
}
/**
* thaw_super -- unlock filesystem
* @sb: the super to thaw
* @who: context that wants to freeze
*
* Unlocks the filesystem and marks it writeable again after freeze_super()
* if there are no remaining freezes on the filesystem.
*
* @who should be:
* * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
* * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
*/
int thaw_super(struct super_block *sb, enum freeze_holder who)
{
if (!super_lock_excl(sb))
WARN(1, "Dying superblock while thawing!");
return thaw_super_locked(sb, who);
}
EXPORT_SYMBOL(thaw_super);
/*
* Create workqueue for deferred direct IO completions. We allocate the
* workqueue when it's first needed. This avoids creating workqueue for
* filesystems that don't need it and also allows us to create the workqueue
* late enough so the we can include s_id in the name of the workqueue.
*/
int sb_init_dio_done_wq(struct super_block *sb)
{
struct workqueue_struct *old;
struct workqueue_struct *wq = alloc_workqueue("dio/%s",
WQ_MEM_RECLAIM, 0,
sb->s_id);
if (!wq)
return -ENOMEM;
/*
* This has to be atomic as more DIOs can race to create the workqueue
*/
old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
/* Someone created workqueue before us? Free ours... */
if (old)
destroy_workqueue(wq);
return 0;
}