| /******************************************************************************* |
| |
| Intel 10 Gigabit PCI Express Linux driver |
| Copyright(c) 1999 - 2012 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| #include "ixgbe.h" |
| #include <linux/export.h> |
| #include <linux/ptp_classify.h> |
| |
| /* |
| * The 82599 and the X540 do not have true 64bit nanosecond scale |
| * counter registers. Instead, SYSTIME is defined by a fixed point |
| * system which allows the user to define the scale counter increment |
| * value at every level change of the oscillator driving the SYSTIME |
| * value. For both devices the TIMINCA:IV field defines this |
| * increment. On the X540 device, 31 bits are provided. However on the |
| * 82599 only provides 24 bits. The time unit is determined by the |
| * clock frequency of the oscillator in combination with the TIMINCA |
| * register. When these devices link at 10Gb the oscillator has a |
| * period of 6.4ns. In order to convert the scale counter into |
| * nanoseconds the cyclecounter and timecounter structures are |
| * used. The SYSTIME registers need to be converted to ns values by use |
| * of only a right shift (division by power of 2). The following math |
| * determines the largest incvalue that will fit into the available |
| * bits in the TIMINCA register. |
| * |
| * PeriodWidth: Number of bits to store the clock period |
| * MaxWidth: The maximum width value of the TIMINCA register |
| * Period: The clock period for the oscillator |
| * round(): discard the fractional portion of the calculation |
| * |
| * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] |
| * |
| * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns |
| * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns |
| * |
| * The period also changes based on the link speed: |
| * At 10Gb link or no link, the period remains the same. |
| * At 1Gb link, the period is multiplied by 10. (64ns) |
| * At 100Mb link, the period is multiplied by 100. (640ns) |
| * |
| * The calculated value allows us to right shift the SYSTIME register |
| * value in order to quickly convert it into a nanosecond clock, |
| * while allowing for the maximum possible adjustment value. |
| * |
| * These diagrams are only for the 10Gb link period |
| * |
| * SYSTIMEH SYSTIMEL |
| * +--------------+ +--------------+ |
| * X540 | 32 | | 1 | 3 | 28 | |
| * *--------------+ +--------------+ |
| * \________ 36 bits ______/ fract |
| * |
| * +--------------+ +--------------+ |
| * 82599 | 32 | | 8 | 3 | 21 | |
| * *--------------+ +--------------+ |
| * \________ 43 bits ______/ fract |
| * |
| * The 36 bit X540 SYSTIME overflows every |
| * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds |
| * |
| * The 43 bit 82599 SYSTIME overflows every |
| * 2^43 * 10^-9 / 3600 = 2.4 hours |
| */ |
| #define IXGBE_INCVAL_10GB 0x66666666 |
| #define IXGBE_INCVAL_1GB 0x40000000 |
| #define IXGBE_INCVAL_100 0x50000000 |
| |
| #define IXGBE_INCVAL_SHIFT_10GB 28 |
| #define IXGBE_INCVAL_SHIFT_1GB 24 |
| #define IXGBE_INCVAL_SHIFT_100 21 |
| |
| #define IXGBE_INCVAL_SHIFT_82599 7 |
| #define IXGBE_INCPER_SHIFT_82599 24 |
| #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL |
| |
| #define IXGBE_OVERFLOW_PERIOD (HZ * 30) |
| |
| #ifndef NSECS_PER_SEC |
| #define NSECS_PER_SEC 1000000000ULL |
| #endif |
| |
| static struct sock_filter ptp_filter[] = { |
| PTP_FILTER |
| }; |
| |
| /** |
| * ixgbe_ptp_read - read raw cycle counter (to be used by time counter) |
| * @cc: the cyclecounter structure |
| * |
| * this function reads the cyclecounter registers and is called by the |
| * cyclecounter structure used to construct a ns counter from the |
| * arbitrary fixed point registers |
| */ |
| static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc) |
| { |
| struct ixgbe_adapter *adapter = |
| container_of(cc, struct ixgbe_adapter, cc); |
| struct ixgbe_hw *hw = &adapter->hw; |
| u64 stamp = 0; |
| |
| stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); |
| stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; |
| |
| return stamp; |
| } |
| |
| /** |
| * ixgbe_ptp_adjfreq |
| * @ptp: the ptp clock structure |
| * @ppb: parts per billion adjustment from base |
| * |
| * adjust the frequency of the ptp cycle counter by the |
| * indicated ppb from the base frequency. |
| */ |
| static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) |
| { |
| struct ixgbe_adapter *adapter = |
| container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| struct ixgbe_hw *hw = &adapter->hw; |
| u64 freq; |
| u32 diff, incval; |
| int neg_adj = 0; |
| |
| if (ppb < 0) { |
| neg_adj = 1; |
| ppb = -ppb; |
| } |
| |
| smp_mb(); |
| incval = ACCESS_ONCE(adapter->base_incval); |
| |
| freq = incval; |
| freq *= ppb; |
| diff = div_u64(freq, 1000000000ULL); |
| |
| incval = neg_adj ? (incval - diff) : (incval + diff); |
| |
| switch (hw->mac.type) { |
| case ixgbe_mac_X540: |
| IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); |
| break; |
| case ixgbe_mac_82599EB: |
| IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, |
| (1 << IXGBE_INCPER_SHIFT_82599) | |
| incval); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_ptp_adjtime |
| * @ptp: the ptp clock structure |
| * @delta: offset to adjust the cycle counter by |
| * |
| * adjust the timer by resetting the timecounter structure. |
| */ |
| static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct ixgbe_adapter *adapter = |
| container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| unsigned long flags; |
| u64 now; |
| |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| |
| now = timecounter_read(&adapter->tc); |
| now += delta; |
| |
| /* reset the timecounter */ |
| timecounter_init(&adapter->tc, |
| &adapter->cc, |
| now); |
| |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| return 0; |
| } |
| |
| /** |
| * ixgbe_ptp_gettime |
| * @ptp: the ptp clock structure |
| * @ts: timespec structure to hold the current time value |
| * |
| * read the timecounter and return the correct value on ns, |
| * after converting it into a struct timespec. |
| */ |
| static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) |
| { |
| struct ixgbe_adapter *adapter = |
| container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| u64 ns; |
| u32 remainder; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| ns = timecounter_read(&adapter->tc); |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder); |
| ts->tv_nsec = remainder; |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_ptp_settime |
| * @ptp: the ptp clock structure |
| * @ts: the timespec containing the new time for the cycle counter |
| * |
| * reset the timecounter to use a new base value instead of the kernel |
| * wall timer value. |
| */ |
| static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, |
| const struct timespec *ts) |
| { |
| struct ixgbe_adapter *adapter = |
| container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| u64 ns; |
| unsigned long flags; |
| |
| ns = ts->tv_sec * 1000000000ULL; |
| ns += ts->tv_nsec; |
| |
| /* reset the timecounter */ |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| timecounter_init(&adapter->tc, &adapter->cc, ns); |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_ptp_enable |
| * @ptp: the ptp clock structure |
| * @rq: the requested feature to change |
| * @on: whether to enable or disable the feature |
| * |
| * enable (or disable) ancillary features of the phc subsystem. |
| * our driver only supports the PPS feature on the X540 |
| */ |
| static int ixgbe_ptp_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| struct ixgbe_adapter *adapter = |
| container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| |
| /** |
| * When PPS is enabled, unmask the interrupt for the ClockOut |
| * feature, so that the interrupt handler can send the PPS |
| * event when the clock SDP triggers. Clear mask when PPS is |
| * disabled |
| */ |
| if (rq->type == PTP_CLK_REQ_PPS) { |
| switch (adapter->hw.mac.type) { |
| case ixgbe_mac_X540: |
| if (on) |
| adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; |
| else |
| adapter->flags2 &= |
| ~IXGBE_FLAG2_PTP_PPS_ENABLED; |
| return 0; |
| default: |
| break; |
| } |
| } |
| |
| return -ENOTSUPP; |
| } |
| |
| /** |
| * ixgbe_ptp_check_pps_event |
| * @adapter: the private adapter structure |
| * @eicr: the interrupt cause register value |
| * |
| * This function is called by the interrupt routine when checking for |
| * interrupts. It will check and handle a pps event. |
| */ |
| void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr) |
| { |
| struct ixgbe_hw *hw = &adapter->hw; |
| struct ptp_clock_event event; |
| |
| event.type = PTP_CLOCK_PPS; |
| |
| /* Make sure ptp clock is valid, and PPS event enabled */ |
| if (!adapter->ptp_clock || |
| !(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) |
| return; |
| |
| if (unlikely(eicr & IXGBE_EICR_TIMESYNC)) { |
| switch (hw->mac.type) { |
| case ixgbe_mac_X540: |
| ptp_clock_event(adapter->ptp_clock, &event); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| /** |
| * ixgbe_ptp_enable_sdp |
| * @hw: the hardware private structure |
| * @shift: the clock shift for calculating nanoseconds |
| * |
| * this function enables the clock out feature on the sdp0 for the |
| * X540 device. It will create a 1second periodic output that can be |
| * used as the PPS (via an interrupt). |
| * |
| * It calculates when the systime will be on an exact second, and then |
| * aligns the start of the PPS signal to that value. The shift is |
| * necessary because it can change based on the link speed. |
| */ |
| static void ixgbe_ptp_enable_sdp(struct ixgbe_hw *hw, int shift) |
| { |
| u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh; |
| u64 clock_edge = 0; |
| u32 rem; |
| |
| switch (hw->mac.type) { |
| case ixgbe_mac_X540: |
| esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); |
| |
| /* |
| * enable the SDP0 pin as output, and connected to the native |
| * function for Timesync (ClockOut) |
| */ |
| esdp |= (IXGBE_ESDP_SDP0_DIR | |
| IXGBE_ESDP_SDP0_NATIVE); |
| |
| /* |
| * enable the Clock Out feature on SDP0, and allow interrupts |
| * to occur when the pin changes |
| */ |
| tsauxc = (IXGBE_TSAUXC_EN_CLK | |
| IXGBE_TSAUXC_SYNCLK | |
| IXGBE_TSAUXC_SDP0_INT); |
| |
| /* clock period (or pulse length) */ |
| clktiml = (u32)(NSECS_PER_SEC << shift); |
| clktimh = (u32)((NSECS_PER_SEC << shift) >> 32); |
| |
| clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); |
| clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; |
| |
| /* |
| * account for the fact that we can't do u64 division |
| * with remainder, by converting the clock values into |
| * nanoseconds first |
| */ |
| clock_edge >>= shift; |
| div_u64_rem(clock_edge, NSECS_PER_SEC, &rem); |
| clock_edge += (NSECS_PER_SEC - rem); |
| clock_edge <<= shift; |
| |
| /* specify the initial clock start time */ |
| trgttiml = (u32)clock_edge; |
| trgttimh = (u32)(clock_edge >> 32); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); |
| IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); |
| IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); |
| IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); |
| IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EICR_TIMESYNC); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * ixgbe_ptp_disable_sdp |
| * @hw: the private hardware structure |
| * |
| * this function disables the auxiliary SDP clock out feature |
| */ |
| static void ixgbe_ptp_disable_sdp(struct ixgbe_hw *hw) |
| { |
| IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EICR_TIMESYNC); |
| IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0); |
| } |
| |
| /** |
| * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow |
| * @work: structure containing information about this work task |
| * |
| * this work function is scheduled to continue reading the timecounter |
| * in order to prevent missing when the system time registers wrap |
| * around. This needs to be run approximately twice a minute when no |
| * PTP activity is occurring. |
| */ |
| void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) |
| { |
| unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies; |
| struct timespec ts; |
| |
| if ((adapter->flags2 & IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED) && |
| (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) { |
| ixgbe_ptp_gettime(&adapter->ptp_caps, &ts); |
| adapter->last_overflow_check = jiffies; |
| } |
| } |
| |
| /** |
| * ixgbe_ptp_match - determine if this skb matches a ptp packet |
| * @skb: pointer to the skb |
| * @hwtstamp: pointer to the hwtstamp_config to check |
| * |
| * Determine whether the skb should have been timestamped, assuming the |
| * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet |
| * should have a timestamp waiting in the registers, and 0 otherwise. |
| * |
| * V1 packets have to check the version type to determine whether they are |
| * correct. However, we can't directly access the data because it might be |
| * fragmented in the SKB, in paged memory. In order to work around this, we |
| * use skb_copy_bits which will properly copy the data whether it is in the |
| * paged memory fragments or not. We have to copy the IP header as well as the |
| * message type. |
| */ |
| static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter) |
| { |
| struct iphdr iph; |
| u8 msgtype; |
| unsigned int type, offset; |
| |
| if (rx_filter == HWTSTAMP_FILTER_NONE) |
| return 0; |
| |
| type = sk_run_filter(skb, ptp_filter); |
| |
| if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT)) |
| return type & PTP_CLASS_V2; |
| |
| /* For the remaining cases actually check message type */ |
| switch (type) { |
| case PTP_CLASS_V1_IPV4: |
| skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph)); |
| offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL; |
| break; |
| case PTP_CLASS_V1_IPV6: |
| offset = OFF_PTP6 + OFF_PTP_CONTROL; |
| break; |
| default: |
| /* other cases invalid or handled above */ |
| return 0; |
| } |
| |
| /* Make sure our buffer is long enough */ |
| if (skb->len < offset) |
| return 0; |
| |
| skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype)); |
| |
| switch (rx_filter) { |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG); |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG); |
| break; |
| default: |
| return 0; |
| } |
| } |
| |
| /** |
| * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp |
| * @q_vector: structure containing interrupt and ring information |
| * @skb: particular skb to send timestamp with |
| * |
| * if the timestamp is valid, we convert it into the timecounter ns |
| * value, then store that result into the shhwtstamps structure which |
| * is passed up the network stack |
| */ |
| void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector, |
| struct sk_buff *skb) |
| { |
| struct ixgbe_adapter *adapter; |
| struct ixgbe_hw *hw; |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 regval = 0, ns; |
| u32 tsynctxctl; |
| unsigned long flags; |
| |
| /* we cannot process timestamps on a ring without a q_vector */ |
| if (!q_vector || !q_vector->adapter) |
| return; |
| |
| adapter = q_vector->adapter; |
| hw = &adapter->hw; |
| |
| tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); |
| regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); |
| regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; |
| |
| /* |
| * if TX timestamp is not valid, exit after clearing the |
| * timestamp registers |
| */ |
| if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID)) |
| return; |
| |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| ns = timecounter_cyc2time(&adapter->tc, regval); |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
| shhwtstamps.hwtstamp = ns_to_ktime(ns); |
| skb_tstamp_tx(skb, &shhwtstamps); |
| } |
| |
| /** |
| * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp |
| * @q_vector: structure containing interrupt and ring information |
| * @rx_desc: the rx descriptor |
| * @skb: particular skb to send timestamp with |
| * |
| * if the timestamp is valid, we convert it into the timecounter ns |
| * value, then store that result into the shhwtstamps structure which |
| * is passed up the network stack |
| */ |
| void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector, |
| union ixgbe_adv_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| struct ixgbe_adapter *adapter; |
| struct ixgbe_hw *hw; |
| struct skb_shared_hwtstamps *shhwtstamps; |
| u64 regval = 0, ns; |
| u32 tsyncrxctl; |
| unsigned long flags; |
| |
| /* we cannot process timestamps on a ring without a q_vector */ |
| if (!q_vector || !q_vector->adapter) |
| return; |
| |
| adapter = q_vector->adapter; |
| hw = &adapter->hw; |
| |
| tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); |
| |
| /* Check if we have a valid timestamp and make sure the skb should |
| * have been timestamped */ |
| if (likely(!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID) || |
| !ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter))) |
| return; |
| |
| /* |
| * Always read the registers, in order to clear a possible fault |
| * because of stagnant RX timestamp values for a packet that never |
| * reached the queue. |
| */ |
| regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); |
| regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; |
| |
| /* |
| * If the timestamp bit is set in the packet's descriptor, we know the |
| * timestamp belongs to this packet. No other packet can be |
| * timestamped until the registers for timestamping have been read. |
| * Therefor only one packet with this bit can be in the queue at a |
| * time, and the rx timestamp values that were in the registers belong |
| * to this packet. |
| * |
| * If nothing went wrong, then it should have a skb_shared_tx that we |
| * can turn into a skb_shared_hwtstamps. |
| */ |
| if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS))) |
| return; |
| |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| ns = timecounter_cyc2time(&adapter->tc, regval); |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| shhwtstamps = skb_hwtstamps(skb); |
| shhwtstamps->hwtstamp = ns_to_ktime(ns); |
| } |
| |
| /** |
| * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping |
| * @adapter: pointer to adapter struct |
| * @ifreq: ioctl data |
| * @cmd: particular ioctl requested |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't case any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware |
| * filters. Not all combinations are supported, in particular event |
| * type has to be specified. Matching the kind of event packet is |
| * not supported, with the exception of "all V2 events regardless of |
| * level 2 or 4". |
| * |
| * Since hardware always timestamps Path delay packets when timestamping V2 |
| * packets, regardless of the type specified in the register, only use V2 |
| * Event mode. This more accurately tells the user what the hardware is going |
| * to do anyways. |
| */ |
| int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter, |
| struct ifreq *ifr, int cmd) |
| { |
| struct ixgbe_hw *hw = &adapter->hw; |
| struct hwtstamp_config config; |
| u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; |
| u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; |
| u32 tsync_rx_mtrl = 0; |
| bool is_l4 = false; |
| bool is_l2 = false; |
| u32 regval; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| /* reserved for future extensions */ |
| if (config.flags) |
| return -EINVAL; |
| |
| switch (config.tx_type) { |
| case HWTSTAMP_TX_OFF: |
| tsync_tx_ctl = 0; |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| tsync_rx_ctl = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; |
| is_l2 = true; |
| is_l4 = true; |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_ALL: |
| default: |
| /* |
| * register RXMTRL must be set in order to do V1 packets, |
| * therefore it is not possible to time stamp both V1 Sync and |
| * Delay_Req messages and hardware does not support |
| * timestamping all packets => return error |
| */ |
| config.rx_filter = HWTSTAMP_FILTER_NONE; |
| return -ERANGE; |
| } |
| |
| if (hw->mac.type == ixgbe_mac_82598EB) { |
| if (tsync_rx_ctl | tsync_tx_ctl) |
| return -ERANGE; |
| return 0; |
| } |
| |
| /* Store filter value for later use */ |
| adapter->rx_hwtstamp_filter = config.rx_filter; |
| |
| /* define ethertype filter for timestamped packets */ |
| if (is_l2) |
| IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), |
| (IXGBE_ETQF_FILTER_EN | /* enable filter */ |
| IXGBE_ETQF_1588 | /* enable timestamping */ |
| ETH_P_1588)); /* 1588 eth protocol type */ |
| else |
| IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0); |
| |
| #define PTP_PORT 319 |
| /* L4 Queue Filter[3]: filter by destination port and protocol */ |
| if (is_l4) { |
| u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */ |
| | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */ |
| | IXGBE_FTQF_QUEUE_ENABLE); |
| |
| ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */ |
| & IXGBE_FTQF_DEST_PORT_MASK /* dest check */ |
| & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */ |
| << IXGBE_FTQF_5TUPLE_MASK_SHIFT); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3), |
| (3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 | |
| IXGBE_IMIR_SIZE_BP_82599)); |
| |
| /* enable port check */ |
| IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3), |
| (htons(PTP_PORT) | |
| htons(PTP_PORT) << 16)); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf); |
| |
| tsync_rx_mtrl |= PTP_PORT << 16; |
| } else { |
| IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0); |
| } |
| |
| /* enable/disable TX */ |
| regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); |
| regval &= ~IXGBE_TSYNCTXCTL_ENABLED; |
| regval |= tsync_tx_ctl; |
| IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); |
| |
| /* enable/disable RX */ |
| regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); |
| regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); |
| regval |= tsync_rx_ctl; |
| IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); |
| |
| /* define which PTP packets are time stamped */ |
| IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); |
| |
| IXGBE_WRITE_FLUSH(hw); |
| |
| /* clear TX/RX time stamp registers, just to be sure */ |
| regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH); |
| regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH); |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw |
| * @adapter: pointer to the adapter structure |
| * |
| * this function initializes the timecounter and cyclecounter |
| * structures for use in generated a ns counter from the arbitrary |
| * fixed point cycles registers in the hardware. |
| * |
| * A change in link speed impacts the frequency of the DMA clock on |
| * the device, which is used to generate the cycle counter |
| * registers. Therefor this function is called whenever the link speed |
| * changes. |
| * |
| * This function also turns on the SDP pin for clock out feature (X540 |
| * only), because this is where the shift is first calculated. |
| */ |
| void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) |
| { |
| struct ixgbe_hw *hw = &adapter->hw; |
| u32 incval = 0; |
| u32 timinca = 0; |
| u32 shift = 0; |
| u32 cycle_speed; |
| unsigned long flags; |
| |
| /** |
| * Determine what speed we need to set the cyclecounter |
| * for. It should be different for 100Mb, 1Gb, and 10Gb. Treat |
| * unknown speeds as 10Gb. (Hence why we can't just copy the |
| * link_speed. |
| */ |
| switch (adapter->link_speed) { |
| case IXGBE_LINK_SPEED_100_FULL: |
| case IXGBE_LINK_SPEED_1GB_FULL: |
| case IXGBE_LINK_SPEED_10GB_FULL: |
| cycle_speed = adapter->link_speed; |
| break; |
| default: |
| /* cycle speed should be 10Gb when there is no link */ |
| cycle_speed = IXGBE_LINK_SPEED_10GB_FULL; |
| break; |
| } |
| |
| /* |
| * grab the current TIMINCA value from the register so that it can be |
| * double checked. If the register value has been cleared, it must be |
| * reset to the correct value for generating a cyclecounter. If |
| * TIMINCA is zero, the SYSTIME registers do not increment at all. |
| */ |
| timinca = IXGBE_READ_REG(hw, IXGBE_TIMINCA); |
| |
| /* Bail if the cycle speed didn't change and TIMINCA is non-zero */ |
| if (adapter->cycle_speed == cycle_speed && timinca) |
| return; |
| |
| /* disable the SDP clock out */ |
| ixgbe_ptp_disable_sdp(hw); |
| |
| /** |
| * Scale the NIC cycle counter by a large factor so that |
| * relatively small corrections to the frequency can be added |
| * or subtracted. The drawbacks of a large factor include |
| * (a) the clock register overflows more quickly, (b) the cycle |
| * counter structure must be able to convert the systime value |
| * to nanoseconds using only a multiplier and a right-shift, |
| * and (c) the value must fit within the timinca register space |
| * => math based on internal DMA clock rate and available bits |
| */ |
| switch (cycle_speed) { |
| case IXGBE_LINK_SPEED_100_FULL: |
| incval = IXGBE_INCVAL_100; |
| shift = IXGBE_INCVAL_SHIFT_100; |
| break; |
| case IXGBE_LINK_SPEED_1GB_FULL: |
| incval = IXGBE_INCVAL_1GB; |
| shift = IXGBE_INCVAL_SHIFT_1GB; |
| break; |
| case IXGBE_LINK_SPEED_10GB_FULL: |
| incval = IXGBE_INCVAL_10GB; |
| shift = IXGBE_INCVAL_SHIFT_10GB; |
| break; |
| } |
| |
| /** |
| * Modify the calculated values to fit within the correct |
| * number of bits specified by the hardware. The 82599 doesn't |
| * have the same space as the X540, so bitshift the calculated |
| * values to fit. |
| */ |
| switch (hw->mac.type) { |
| case ixgbe_mac_X540: |
| IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); |
| break; |
| case ixgbe_mac_82599EB: |
| incval >>= IXGBE_INCVAL_SHIFT_82599; |
| shift -= IXGBE_INCVAL_SHIFT_82599; |
| IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, |
| (1 << IXGBE_INCPER_SHIFT_82599) | |
| incval); |
| break; |
| default: |
| /* other devices aren't supported */ |
| return; |
| } |
| |
| /* reset the system time registers */ |
| IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000); |
| IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| /* now that the shift has been calculated and the systime |
| * registers reset, (re-)enable the Clock out feature*/ |
| ixgbe_ptp_enable_sdp(hw, shift); |
| |
| /* store the new cycle speed */ |
| adapter->cycle_speed = cycle_speed; |
| |
| ACCESS_ONCE(adapter->base_incval) = incval; |
| smp_mb(); |
| |
| /* grab the ptp lock */ |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| |
| memset(&adapter->cc, 0, sizeof(adapter->cc)); |
| adapter->cc.read = ixgbe_ptp_read; |
| adapter->cc.mask = CLOCKSOURCE_MASK(64); |
| adapter->cc.shift = shift; |
| adapter->cc.mult = 1; |
| |
| /* reset the ns time counter */ |
| timecounter_init(&adapter->tc, &adapter->cc, |
| ktime_to_ns(ktime_get_real())); |
| |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| } |
| |
| /** |
| * ixgbe_ptp_init |
| * @adapter: the ixgbe private adapter structure |
| * |
| * This function performs the required steps for enabling ptp |
| * support. If ptp support has already been loaded it simply calls the |
| * cyclecounter init routine and exits. |
| */ |
| void ixgbe_ptp_init(struct ixgbe_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| switch (adapter->hw.mac.type) { |
| case ixgbe_mac_X540: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 250000000; |
| adapter->ptp_caps.n_alarm = 0; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.n_per_out = 0; |
| adapter->ptp_caps.pps = 1; |
| adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; |
| adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; |
| adapter->ptp_caps.gettime = ixgbe_ptp_gettime; |
| adapter->ptp_caps.settime = ixgbe_ptp_settime; |
| adapter->ptp_caps.enable = ixgbe_ptp_enable; |
| break; |
| case ixgbe_mac_82599EB: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 250000000; |
| adapter->ptp_caps.n_alarm = 0; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.n_per_out = 0; |
| adapter->ptp_caps.pps = 0; |
| adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; |
| adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; |
| adapter->ptp_caps.gettime = ixgbe_ptp_gettime; |
| adapter->ptp_caps.settime = ixgbe_ptp_settime; |
| adapter->ptp_caps.enable = ixgbe_ptp_enable; |
| break; |
| default: |
| adapter->ptp_clock = NULL; |
| return; |
| } |
| |
| /* initialize the ptp filter */ |
| if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) |
| e_dev_warn("ptp_filter_init failed\n"); |
| |
| spin_lock_init(&adapter->tmreg_lock); |
| |
| ixgbe_ptp_start_cyclecounter(adapter); |
| |
| /* (Re)start the overflow check */ |
| adapter->flags2 |= IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED; |
| |
| adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps); |
| if (IS_ERR(adapter->ptp_clock)) { |
| adapter->ptp_clock = NULL; |
| e_dev_err("ptp_clock_register failed\n"); |
| } else |
| e_dev_info("registered PHC device on %s\n", netdev->name); |
| |
| return; |
| } |
| |
| /** |
| * ixgbe_ptp_stop - disable ptp device and stop the overflow check |
| * @adapter: pointer to adapter struct |
| * |
| * this function stops the ptp support, and cancels the delayed work. |
| */ |
| void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) |
| { |
| ixgbe_ptp_disable_sdp(&adapter->hw); |
| |
| /* stop the overflow check task */ |
| adapter->flags2 &= ~IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED; |
| |
| if (adapter->ptp_clock) { |
| ptp_clock_unregister(adapter->ptp_clock); |
| adapter->ptp_clock = NULL; |
| e_dev_info("removed PHC on %s\n", |
| adapter->netdev->name); |
| } |
| } |