blob: 97cf59523b0b1705d3bd6e23c0176756c89d58ba [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Tegra20 External Memory Controller driver
*
* Author: Dmitry Osipenko <digetx@gmail.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/debugfs.h>
#include <linux/devfreq.h>
#include <linux/err.h>
#include <linux/interconnect-provider.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/types.h>
#include <soc/tegra/common.h>
#include <soc/tegra/fuse.h>
#include "../jedec_ddr.h"
#include "../of_memory.h"
#include "mc.h"
#define EMC_INTSTATUS 0x000
#define EMC_INTMASK 0x004
#define EMC_DBG 0x008
#define EMC_ADR_CFG_0 0x010
#define EMC_TIMING_CONTROL 0x028
#define EMC_RC 0x02c
#define EMC_RFC 0x030
#define EMC_RAS 0x034
#define EMC_RP 0x038
#define EMC_R2W 0x03c
#define EMC_W2R 0x040
#define EMC_R2P 0x044
#define EMC_W2P 0x048
#define EMC_RD_RCD 0x04c
#define EMC_WR_RCD 0x050
#define EMC_RRD 0x054
#define EMC_REXT 0x058
#define EMC_WDV 0x05c
#define EMC_QUSE 0x060
#define EMC_QRST 0x064
#define EMC_QSAFE 0x068
#define EMC_RDV 0x06c
#define EMC_REFRESH 0x070
#define EMC_BURST_REFRESH_NUM 0x074
#define EMC_PDEX2WR 0x078
#define EMC_PDEX2RD 0x07c
#define EMC_PCHG2PDEN 0x080
#define EMC_ACT2PDEN 0x084
#define EMC_AR2PDEN 0x088
#define EMC_RW2PDEN 0x08c
#define EMC_TXSR 0x090
#define EMC_TCKE 0x094
#define EMC_TFAW 0x098
#define EMC_TRPAB 0x09c
#define EMC_TCLKSTABLE 0x0a0
#define EMC_TCLKSTOP 0x0a4
#define EMC_TREFBW 0x0a8
#define EMC_QUSE_EXTRA 0x0ac
#define EMC_ODT_WRITE 0x0b0
#define EMC_ODT_READ 0x0b4
#define EMC_MRR 0x0ec
#define EMC_FBIO_CFG5 0x104
#define EMC_FBIO_CFG6 0x114
#define EMC_STAT_CONTROL 0x160
#define EMC_STAT_LLMC_CONTROL 0x178
#define EMC_STAT_PWR_CLOCK_LIMIT 0x198
#define EMC_STAT_PWR_CLOCKS 0x19c
#define EMC_STAT_PWR_COUNT 0x1a0
#define EMC_AUTO_CAL_INTERVAL 0x2a8
#define EMC_CFG_2 0x2b8
#define EMC_CFG_DIG_DLL 0x2bc
#define EMC_DLL_XFORM_DQS 0x2c0
#define EMC_DLL_XFORM_QUSE 0x2c4
#define EMC_ZCAL_REF_CNT 0x2e0
#define EMC_ZCAL_WAIT_CNT 0x2e4
#define EMC_CFG_CLKTRIM_0 0x2d0
#define EMC_CFG_CLKTRIM_1 0x2d4
#define EMC_CFG_CLKTRIM_2 0x2d8
#define EMC_CLKCHANGE_REQ_ENABLE BIT(0)
#define EMC_CLKCHANGE_PD_ENABLE BIT(1)
#define EMC_CLKCHANGE_SR_ENABLE BIT(2)
#define EMC_TIMING_UPDATE BIT(0)
#define EMC_REFRESH_OVERFLOW_INT BIT(3)
#define EMC_CLKCHANGE_COMPLETE_INT BIT(4)
#define EMC_MRR_DIVLD_INT BIT(5)
#define EMC_DBG_READ_MUX_ASSEMBLY BIT(0)
#define EMC_DBG_WRITE_MUX_ACTIVE BIT(1)
#define EMC_DBG_FORCE_UPDATE BIT(2)
#define EMC_DBG_READ_DQM_CTRL BIT(9)
#define EMC_DBG_CFG_PRIORITY BIT(24)
#define EMC_FBIO_CFG5_DRAM_WIDTH_X16 BIT(4)
#define EMC_FBIO_CFG5_DRAM_TYPE GENMASK(1, 0)
#define EMC_MRR_DEV_SELECTN GENMASK(31, 30)
#define EMC_MRR_MRR_MA GENMASK(23, 16)
#define EMC_MRR_MRR_DATA GENMASK(15, 0)
#define EMC_ADR_CFG_0_EMEM_NUMDEV GENMASK(25, 24)
#define EMC_PWR_GATHER_CLEAR (1 << 8)
#define EMC_PWR_GATHER_DISABLE (2 << 8)
#define EMC_PWR_GATHER_ENABLE (3 << 8)
enum emc_dram_type {
DRAM_TYPE_RESERVED,
DRAM_TYPE_DDR1,
DRAM_TYPE_LPDDR2,
DRAM_TYPE_DDR2,
};
static const u16 emc_timing_registers[] = {
EMC_RC,
EMC_RFC,
EMC_RAS,
EMC_RP,
EMC_R2W,
EMC_W2R,
EMC_R2P,
EMC_W2P,
EMC_RD_RCD,
EMC_WR_RCD,
EMC_RRD,
EMC_REXT,
EMC_WDV,
EMC_QUSE,
EMC_QRST,
EMC_QSAFE,
EMC_RDV,
EMC_REFRESH,
EMC_BURST_REFRESH_NUM,
EMC_PDEX2WR,
EMC_PDEX2RD,
EMC_PCHG2PDEN,
EMC_ACT2PDEN,
EMC_AR2PDEN,
EMC_RW2PDEN,
EMC_TXSR,
EMC_TCKE,
EMC_TFAW,
EMC_TRPAB,
EMC_TCLKSTABLE,
EMC_TCLKSTOP,
EMC_TREFBW,
EMC_QUSE_EXTRA,
EMC_FBIO_CFG6,
EMC_ODT_WRITE,
EMC_ODT_READ,
EMC_FBIO_CFG5,
EMC_CFG_DIG_DLL,
EMC_DLL_XFORM_DQS,
EMC_DLL_XFORM_QUSE,
EMC_ZCAL_REF_CNT,
EMC_ZCAL_WAIT_CNT,
EMC_AUTO_CAL_INTERVAL,
EMC_CFG_CLKTRIM_0,
EMC_CFG_CLKTRIM_1,
EMC_CFG_CLKTRIM_2,
};
struct emc_timing {
unsigned long rate;
u32 data[ARRAY_SIZE(emc_timing_registers)];
};
enum emc_rate_request_type {
EMC_RATE_DEVFREQ,
EMC_RATE_DEBUG,
EMC_RATE_ICC,
EMC_RATE_TYPE_MAX,
};
struct emc_rate_request {
unsigned long min_rate;
unsigned long max_rate;
};
struct tegra_emc {
struct device *dev;
struct tegra_mc *mc;
struct icc_provider provider;
struct notifier_block clk_nb;
struct clk *clk;
void __iomem *regs;
unsigned int dram_bus_width;
struct emc_timing *timings;
unsigned int num_timings;
struct {
struct dentry *root;
unsigned long min_rate;
unsigned long max_rate;
} debugfs;
/*
* There are multiple sources in the EMC driver which could request
* a min/max clock rate, these rates are contained in this array.
*/
struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
/* protect shared rate-change code path */
struct mutex rate_lock;
struct devfreq_simple_ondemand_data ondemand_data;
/* memory chip identity information */
union lpddr2_basic_config4 basic_conf4;
unsigned int manufacturer_id;
unsigned int revision_id1;
unsigned int revision_id2;
bool mrr_error;
};
static irqreturn_t tegra_emc_isr(int irq, void *data)
{
struct tegra_emc *emc = data;
u32 intmask = EMC_REFRESH_OVERFLOW_INT;
u32 status;
status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
if (!status)
return IRQ_NONE;
/* notify about HW problem */
if (status & EMC_REFRESH_OVERFLOW_INT)
dev_err_ratelimited(emc->dev,
"refresh request overflow timeout\n");
/* clear interrupts */
writel_relaxed(status, emc->regs + EMC_INTSTATUS);
return IRQ_HANDLED;
}
static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = NULL;
unsigned int i;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate >= rate) {
timing = &emc->timings[i];
break;
}
}
if (!timing) {
dev_err(emc->dev, "no timing for rate %lu\n", rate);
return NULL;
}
return timing;
}
static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
{
struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
unsigned int i;
if (!timing)
return -EINVAL;
dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
__func__, timing->rate, rate);
/* program shadow registers */
for (i = 0; i < ARRAY_SIZE(timing->data); i++)
writel_relaxed(timing->data[i],
emc->regs + emc_timing_registers[i]);
/* wait until programming has settled */
readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
return 0;
}
static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
{
int err;
u32 v;
dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
if (flush) {
/* manually initiate memory timing update */
writel_relaxed(EMC_TIMING_UPDATE,
emc->regs + EMC_TIMING_CONTROL);
return 0;
}
err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
v & EMC_CLKCHANGE_COMPLETE_INT,
1, 100);
if (err) {
dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
return err;
}
return 0;
}
static int tegra_emc_clk_change_notify(struct notifier_block *nb,
unsigned long msg, void *data)
{
struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
struct clk_notifier_data *cnd = data;
int err;
switch (msg) {
case PRE_RATE_CHANGE:
err = emc_prepare_timing_change(emc, cnd->new_rate);
break;
case ABORT_RATE_CHANGE:
err = emc_prepare_timing_change(emc, cnd->old_rate);
if (err)
break;
err = emc_complete_timing_change(emc, true);
break;
case POST_RATE_CHANGE:
err = emc_complete_timing_change(emc, false);
break;
default:
return NOTIFY_DONE;
}
return notifier_from_errno(err);
}
static int load_one_timing_from_dt(struct tegra_emc *emc,
struct emc_timing *timing,
struct device_node *node)
{
u32 rate;
int err;
if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
return -EINVAL;
}
err = of_property_read_u32(node, "clock-frequency", &rate);
if (err) {
dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
node, err);
return err;
}
err = of_property_read_u32_array(node, "nvidia,emc-registers",
timing->data,
ARRAY_SIZE(emc_timing_registers));
if (err) {
dev_err(emc->dev,
"timing %pOF: failed to read emc timing data: %d\n",
node, err);
return err;
}
/*
* The EMC clock rate is twice the bus rate, and the bus rate is
* measured in kHz.
*/
timing->rate = rate * 2 * 1000;
dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
__func__, node, timing->rate);
return 0;
}
static int cmp_timings(const void *_a, const void *_b)
{
const struct emc_timing *a = _a;
const struct emc_timing *b = _b;
if (a->rate < b->rate)
return -1;
if (a->rate > b->rate)
return 1;
return 0;
}
static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
struct device_node *node)
{
struct device_node *child;
struct emc_timing *timing;
int child_count;
int err;
child_count = of_get_child_count(node);
if (!child_count) {
dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
return -EINVAL;
}
emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
GFP_KERNEL);
if (!emc->timings)
return -ENOMEM;
timing = emc->timings;
for_each_child_of_node(node, child) {
if (of_node_name_eq(child, "lpddr2"))
continue;
err = load_one_timing_from_dt(emc, timing++, child);
if (err) {
of_node_put(child);
return err;
}
emc->num_timings++;
}
sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
NULL);
dev_info_once(emc->dev,
"got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
emc->num_timings,
tegra_read_ram_code(),
emc->timings[0].rate / 1000000,
emc->timings[emc->num_timings - 1].rate / 1000000);
return 0;
}
static struct device_node *
tegra_emc_find_node_by_ram_code(struct tegra_emc *emc)
{
struct device *dev = emc->dev;
struct device_node *np;
u32 value, ram_code;
int err;
if (emc->mrr_error) {
dev_warn(dev, "memory timings skipped due to MRR error\n");
return NULL;
}
if (of_get_child_count(dev->of_node) == 0) {
dev_info_once(dev, "device-tree doesn't have memory timings\n");
return NULL;
}
if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
return of_node_get(dev->of_node);
ram_code = tegra_read_ram_code();
for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
np = of_find_node_by_name(np, "emc-tables")) {
err = of_property_read_u32(np, "nvidia,ram-code", &value);
if (err || value != ram_code) {
struct device_node *lpddr2_np;
bool cfg_mismatches = false;
lpddr2_np = of_find_node_by_name(np, "lpddr2");
if (lpddr2_np) {
const struct lpddr2_info *info;
info = of_lpddr2_get_info(lpddr2_np, dev);
if (info) {
if (info->manufacturer_id >= 0 &&
info->manufacturer_id != emc->manufacturer_id)
cfg_mismatches = true;
if (info->revision_id1 >= 0 &&
info->revision_id1 != emc->revision_id1)
cfg_mismatches = true;
if (info->revision_id2 >= 0 &&
info->revision_id2 != emc->revision_id2)
cfg_mismatches = true;
if (info->density != emc->basic_conf4.density)
cfg_mismatches = true;
if (info->io_width != emc->basic_conf4.io_width)
cfg_mismatches = true;
if (info->arch_type != emc->basic_conf4.arch_type)
cfg_mismatches = true;
} else {
dev_err(dev, "failed to parse %pOF\n", lpddr2_np);
cfg_mismatches = true;
}
of_node_put(lpddr2_np);
} else {
cfg_mismatches = true;
}
if (cfg_mismatches) {
of_node_put(np);
continue;
}
}
return np;
}
dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
ram_code);
return NULL;
}
static int emc_read_lpddr_mode_register(struct tegra_emc *emc,
unsigned int emem_dev,
unsigned int register_addr,
unsigned int *register_data)
{
u32 memory_dev = emem_dev ? 1 : 2;
u32 val, mr_mask = 0xff;
int err;
/* clear data-valid interrupt status */
writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS);
/* issue mode register read request */
val = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev);
val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr);
writel_relaxed(val, emc->regs + EMC_MRR);
/* wait for the LPDDR2 data-valid interrupt */
err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val,
val & EMC_MRR_DIVLD_INT,
1, 100);
if (err) {
dev_err(emc->dev, "mode register %u read failed: %d\n",
register_addr, err);
emc->mrr_error = true;
return err;
}
/* read out mode register data */
val = readl_relaxed(emc->regs + EMC_MRR);
*register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask;
return 0;
}
static void emc_read_lpddr_sdram_info(struct tegra_emc *emc,
unsigned int emem_dev,
bool print_out)
{
/* these registers are standard for all LPDDR JEDEC memory chips */
emc_read_lpddr_mode_register(emc, emem_dev, 5, &emc->manufacturer_id);
emc_read_lpddr_mode_register(emc, emem_dev, 6, &emc->revision_id1);
emc_read_lpddr_mode_register(emc, emem_dev, 7, &emc->revision_id2);
emc_read_lpddr_mode_register(emc, emem_dev, 8, &emc->basic_conf4.value);
if (!print_out)
return;
dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n",
emem_dev, emc->manufacturer_id,
lpddr2_jedec_manufacturer(emc->manufacturer_id),
emc->revision_id1, emc->revision_id2,
4 >> emc->basic_conf4.arch_type,
64 << emc->basic_conf4.density,
32 >> emc->basic_conf4.io_width);
}
static int emc_setup_hw(struct tegra_emc *emc)
{
u32 emc_cfg, emc_dbg, emc_fbio, emc_adr_cfg;
u32 intmask = EMC_REFRESH_OVERFLOW_INT;
static bool print_sdram_info_once;
enum emc_dram_type dram_type;
const char *dram_type_str;
unsigned int emem_numdev;
emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
/*
* Depending on a memory type, DRAM should enter either self-refresh
* or power-down state on EMC clock change.
*/
if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
!(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
dev_err(emc->dev,
"bootloader didn't specify DRAM auto-suspend mode\n");
return -EINVAL;
}
/* enable EMC and CAR to handshake on PLL divider/source changes */
emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
/* initialize interrupt */
writel_relaxed(intmask, emc->regs + EMC_INTMASK);
writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
/* ensure that unwanted debug features are disabled */
emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
emc_dbg |= EMC_DBG_CFG_PRIORITY;
emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
emc->dram_bus_width = 16;
else
emc->dram_bus_width = 32;
dram_type = FIELD_GET(EMC_FBIO_CFG5_DRAM_TYPE, emc_fbio);
switch (dram_type) {
case DRAM_TYPE_RESERVED:
dram_type_str = "INVALID";
break;
case DRAM_TYPE_DDR1:
dram_type_str = "DDR1";
break;
case DRAM_TYPE_LPDDR2:
dram_type_str = "LPDDR2";
break;
case DRAM_TYPE_DDR2:
dram_type_str = "DDR2";
break;
}
emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG_0);
emem_numdev = FIELD_GET(EMC_ADR_CFG_0_EMEM_NUMDEV, emc_adr_cfg) + 1;
dev_info_once(emc->dev, "%ubit DRAM bus, %u %s %s attached\n",
emc->dram_bus_width, emem_numdev, dram_type_str,
emem_numdev == 2 ? "devices" : "device");
if (dram_type == DRAM_TYPE_LPDDR2) {
while (emem_numdev--)
emc_read_lpddr_sdram_info(emc, emem_numdev,
!print_sdram_info_once);
print_sdram_info_once = true;
}
return 0;
}
static long emc_round_rate(unsigned long rate,
unsigned long min_rate,
unsigned long max_rate,
void *arg)
{
struct emc_timing *timing = NULL;
struct tegra_emc *emc = arg;
unsigned int i;
if (!emc->num_timings)
return clk_get_rate(emc->clk);
min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
continue;
if (emc->timings[i].rate > max_rate) {
i = max(i, 1u) - 1;
if (emc->timings[i].rate < min_rate)
break;
}
if (emc->timings[i].rate < min_rate)
continue;
timing = &emc->timings[i];
break;
}
if (!timing) {
dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
rate, min_rate, max_rate);
return -EINVAL;
}
return timing->rate;
}
static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
{
unsigned int i;
for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
emc->requested_rate[i].min_rate = 0;
emc->requested_rate[i].max_rate = ULONG_MAX;
}
}
static int emc_request_rate(struct tegra_emc *emc,
unsigned long new_min_rate,
unsigned long new_max_rate,
enum emc_rate_request_type type)
{
struct emc_rate_request *req = emc->requested_rate;
unsigned long min_rate = 0, max_rate = ULONG_MAX;
unsigned int i;
int err;
/* select minimum and maximum rates among the requested rates */
for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
if (i == type) {
min_rate = max(new_min_rate, min_rate);
max_rate = min(new_max_rate, max_rate);
} else {
min_rate = max(req->min_rate, min_rate);
max_rate = min(req->max_rate, max_rate);
}
}
if (min_rate > max_rate) {
dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
__func__, type, min_rate, max_rate);
return -ERANGE;
}
/*
* EMC rate-changes should go via OPP API because it manages voltage
* changes.
*/
err = dev_pm_opp_set_rate(emc->dev, min_rate);
if (err)
return err;
emc->requested_rate[type].min_rate = new_min_rate;
emc->requested_rate[type].max_rate = new_max_rate;
return 0;
}
static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
enum emc_rate_request_type type)
{
struct emc_rate_request *req = &emc->requested_rate[type];
int ret;
mutex_lock(&emc->rate_lock);
ret = emc_request_rate(emc, rate, req->max_rate, type);
mutex_unlock(&emc->rate_lock);
return ret;
}
static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
enum emc_rate_request_type type)
{
struct emc_rate_request *req = &emc->requested_rate[type];
int ret;
mutex_lock(&emc->rate_lock);
ret = emc_request_rate(emc, req->min_rate, rate, type);
mutex_unlock(&emc->rate_lock);
return ret;
}
/*
* debugfs interface
*
* The memory controller driver exposes some files in debugfs that can be used
* to control the EMC frequency. The top-level directory can be found here:
*
* /sys/kernel/debug/emc
*
* It contains the following files:
*
* - available_rates: This file contains a list of valid, space-separated
* EMC frequencies.
*
* - min_rate: Writing a value to this file sets the given frequency as the
* floor of the permitted range. If this is higher than the currently
* configured EMC frequency, this will cause the frequency to be
* increased so that it stays within the valid range.
*
* - max_rate: Similarily to the min_rate file, writing a value to this file
* sets the given frequency as the ceiling of the permitted range. If
* the value is lower than the currently configured EMC frequency, this
* will cause the frequency to be decreased so that it stays within the
* valid range.
*/
static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
{
unsigned int i;
for (i = 0; i < emc->num_timings; i++)
if (rate == emc->timings[i].rate)
return true;
return false;
}
static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
{
struct tegra_emc *emc = s->private;
const char *prefix = "";
unsigned int i;
for (i = 0; i < emc->num_timings; i++) {
seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
prefix = " ";
}
seq_puts(s, "\n");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates);
static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
{
struct tegra_emc *emc = data;
*rate = emc->debugfs.min_rate;
return 0;
}
static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
{
struct tegra_emc *emc = data;
int err;
if (!tegra_emc_validate_rate(emc, rate))
return -EINVAL;
err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
if (err < 0)
return err;
emc->debugfs.min_rate = rate;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
tegra_emc_debug_min_rate_get,
tegra_emc_debug_min_rate_set, "%llu\n");
static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
{
struct tegra_emc *emc = data;
*rate = emc->debugfs.max_rate;
return 0;
}
static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
{
struct tegra_emc *emc = data;
int err;
if (!tegra_emc_validate_rate(emc, rate))
return -EINVAL;
err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
if (err < 0)
return err;
emc->debugfs.max_rate = rate;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
tegra_emc_debug_max_rate_get,
tegra_emc_debug_max_rate_set, "%llu\n");
static void tegra_emc_debugfs_init(struct tegra_emc *emc)
{
struct device *dev = emc->dev;
unsigned int i;
int err;
emc->debugfs.min_rate = ULONG_MAX;
emc->debugfs.max_rate = 0;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate < emc->debugfs.min_rate)
emc->debugfs.min_rate = emc->timings[i].rate;
if (emc->timings[i].rate > emc->debugfs.max_rate)
emc->debugfs.max_rate = emc->timings[i].rate;
}
if (!emc->num_timings) {
emc->debugfs.min_rate = clk_get_rate(emc->clk);
emc->debugfs.max_rate = emc->debugfs.min_rate;
}
err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
emc->debugfs.max_rate);
if (err < 0) {
dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
emc->debugfs.min_rate, emc->debugfs.max_rate,
emc->clk);
}
emc->debugfs.root = debugfs_create_dir("emc", NULL);
debugfs_create_file("available_rates", 0444, emc->debugfs.root,
emc, &tegra_emc_debug_available_rates_fops);
debugfs_create_file("min_rate", 0644, emc->debugfs.root,
emc, &tegra_emc_debug_min_rate_fops);
debugfs_create_file("max_rate", 0644, emc->debugfs.root,
emc, &tegra_emc_debug_max_rate_fops);
}
static inline struct tegra_emc *
to_tegra_emc_provider(struct icc_provider *provider)
{
return container_of(provider, struct tegra_emc, provider);
}
static struct icc_node_data *
emc_of_icc_xlate_extended(const struct of_phandle_args *spec, void *data)
{
struct icc_provider *provider = data;
struct icc_node_data *ndata;
struct icc_node *node;
/* External Memory is the only possible ICC route */
list_for_each_entry(node, &provider->nodes, node_list) {
if (node->id != TEGRA_ICC_EMEM)
continue;
ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
if (!ndata)
return ERR_PTR(-ENOMEM);
/*
* SRC and DST nodes should have matching TAG in order to have
* it set by default for a requested path.
*/
ndata->tag = TEGRA_MC_ICC_TAG_ISO;
ndata->node = node;
return ndata;
}
return ERR_PTR(-EPROBE_DEFER);
}
static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
{
struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
unsigned long long rate = max(avg_bw, peak_bw);
unsigned int dram_data_bus_width_bytes;
int err;
/*
* Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data
* is sampled on both clock edges. This means that EMC clock rate
* equals to the peak data-rate.
*/
dram_data_bus_width_bytes = emc->dram_bus_width / 8;
do_div(rate, dram_data_bus_width_bytes);
rate = min_t(u64, rate, U32_MAX);
err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
if (err)
return err;
return 0;
}
static int tegra_emc_interconnect_init(struct tegra_emc *emc)
{
const struct tegra_mc_soc *soc;
struct icc_node *node;
int err;
emc->mc = devm_tegra_memory_controller_get(emc->dev);
if (IS_ERR(emc->mc))
return PTR_ERR(emc->mc);
soc = emc->mc->soc;
emc->provider.dev = emc->dev;
emc->provider.set = emc_icc_set;
emc->provider.data = &emc->provider;
emc->provider.aggregate = soc->icc_ops->aggregate;
emc->provider.xlate_extended = emc_of_icc_xlate_extended;
icc_provider_init(&emc->provider);
/* create External Memory Controller node */
node = icc_node_create(TEGRA_ICC_EMC);
if (IS_ERR(node)) {
err = PTR_ERR(node);
goto err_msg;
}
node->name = "External Memory Controller";
icc_node_add(node, &emc->provider);
/* link External Memory Controller to External Memory (DRAM) */
err = icc_link_create(node, TEGRA_ICC_EMEM);
if (err)
goto remove_nodes;
/* create External Memory node */
node = icc_node_create(TEGRA_ICC_EMEM);
if (IS_ERR(node)) {
err = PTR_ERR(node);
goto remove_nodes;
}
node->name = "External Memory (DRAM)";
icc_node_add(node, &emc->provider);
err = icc_provider_register(&emc->provider);
if (err)
goto remove_nodes;
return 0;
remove_nodes:
icc_nodes_remove(&emc->provider);
err_msg:
dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
return err;
}
static void devm_tegra_emc_unset_callback(void *data)
{
tegra20_clk_set_emc_round_callback(NULL, NULL);
}
static void devm_tegra_emc_unreg_clk_notifier(void *data)
{
struct tegra_emc *emc = data;
clk_notifier_unregister(emc->clk, &emc->clk_nb);
}
static int tegra_emc_init_clk(struct tegra_emc *emc)
{
int err;
tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
NULL);
if (err)
return err;
emc->clk = devm_clk_get(emc->dev, NULL);
if (IS_ERR(emc->clk)) {
dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
return PTR_ERR(emc->clk);
}
err = clk_notifier_register(emc->clk, &emc->clk_nb);
if (err) {
dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
return err;
}
err = devm_add_action_or_reset(emc->dev,
devm_tegra_emc_unreg_clk_notifier, emc);
if (err)
return err;
return 0;
}
static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct tegra_emc *emc = dev_get_drvdata(dev);
struct dev_pm_opp *opp;
unsigned long rate;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp)) {
dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
return PTR_ERR(opp);
}
rate = dev_pm_opp_get_freq(opp);
dev_pm_opp_put(opp);
return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
}
static int tegra_emc_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct tegra_emc *emc = dev_get_drvdata(dev);
/* freeze counters */
writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
/*
* busy_time: number of clocks EMC request was accepted
* total_time: number of clocks PWR_GATHER control was set to ENABLE
*/
stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
stat->current_frequency = clk_get_rate(emc->clk);
/* clear counters and restart */
writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
return 0;
}
static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
.polling_ms = 30,
.target = tegra_emc_devfreq_target,
.get_dev_status = tegra_emc_devfreq_get_dev_status,
};
static int tegra_emc_devfreq_init(struct tegra_emc *emc)
{
struct devfreq *devfreq;
/*
* PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold
* should be less than 50. Secondly, multiple active memory clients
* may cause over 20% of lost clock cycles due to stalls caused by
* competing memory accesses. This means that threshold should be
* set to a less than 30 in order to have a properly working governor.
*/
emc->ondemand_data.upthreshold = 20;
/*
* Reset statistic gathers state, select global bandwidth for the
* statistics collection mode and set clocks counter saturation
* limit to maximum.
*/
writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
DEVFREQ_GOV_SIMPLE_ONDEMAND,
&emc->ondemand_data);
if (IS_ERR(devfreq)) {
dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
return PTR_ERR(devfreq);
}
return 0;
}
static int tegra_emc_probe(struct platform_device *pdev)
{
struct tegra_core_opp_params opp_params = {};
struct device_node *np;
struct tegra_emc *emc;
int irq, err;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "please update your device tree\n");
return irq;
}
emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
if (!emc)
return -ENOMEM;
mutex_init(&emc->rate_lock);
emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
emc->dev = &pdev->dev;
emc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(emc->regs))
return PTR_ERR(emc->regs);
err = emc_setup_hw(emc);
if (err)
return err;
np = tegra_emc_find_node_by_ram_code(emc);
if (np) {
err = tegra_emc_load_timings_from_dt(emc, np);
of_node_put(np);
if (err)
return err;
}
err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
dev_name(&pdev->dev), emc);
if (err) {
dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
return err;
}
err = tegra_emc_init_clk(emc);
if (err)
return err;
opp_params.init_state = true;
err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
if (err)
return err;
platform_set_drvdata(pdev, emc);
tegra_emc_rate_requests_init(emc);
tegra_emc_debugfs_init(emc);
tegra_emc_interconnect_init(emc);
tegra_emc_devfreq_init(emc);
/*
* Don't allow the kernel module to be unloaded. Unloading adds some
* extra complexity which doesn't really worth the effort in a case of
* this driver.
*/
try_module_get(THIS_MODULE);
return 0;
}
static const struct of_device_id tegra_emc_of_match[] = {
{ .compatible = "nvidia,tegra20-emc", },
{},
};
MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
static struct platform_driver tegra_emc_driver = {
.probe = tegra_emc_probe,
.driver = {
.name = "tegra20-emc",
.of_match_table = tegra_emc_of_match,
.suppress_bind_attrs = true,
.sync_state = icc_sync_state,
},
};
module_platform_driver(tegra_emc_driver);
MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
MODULE_SOFTDEP("pre: governor_simpleondemand");
MODULE_LICENSE("GPL v2");