| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Tegra20 External Memory Controller driver |
| * |
| * Author: Dmitry Osipenko <digetx@gmail.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/clk/tegra.h> |
| #include <linux/debugfs.h> |
| #include <linux/devfreq.h> |
| #include <linux/err.h> |
| #include <linux/interconnect-provider.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| #include <linux/types.h> |
| |
| #include <soc/tegra/common.h> |
| #include <soc/tegra/fuse.h> |
| |
| #include "../jedec_ddr.h" |
| #include "../of_memory.h" |
| |
| #include "mc.h" |
| |
| #define EMC_INTSTATUS 0x000 |
| #define EMC_INTMASK 0x004 |
| #define EMC_DBG 0x008 |
| #define EMC_ADR_CFG_0 0x010 |
| #define EMC_TIMING_CONTROL 0x028 |
| #define EMC_RC 0x02c |
| #define EMC_RFC 0x030 |
| #define EMC_RAS 0x034 |
| #define EMC_RP 0x038 |
| #define EMC_R2W 0x03c |
| #define EMC_W2R 0x040 |
| #define EMC_R2P 0x044 |
| #define EMC_W2P 0x048 |
| #define EMC_RD_RCD 0x04c |
| #define EMC_WR_RCD 0x050 |
| #define EMC_RRD 0x054 |
| #define EMC_REXT 0x058 |
| #define EMC_WDV 0x05c |
| #define EMC_QUSE 0x060 |
| #define EMC_QRST 0x064 |
| #define EMC_QSAFE 0x068 |
| #define EMC_RDV 0x06c |
| #define EMC_REFRESH 0x070 |
| #define EMC_BURST_REFRESH_NUM 0x074 |
| #define EMC_PDEX2WR 0x078 |
| #define EMC_PDEX2RD 0x07c |
| #define EMC_PCHG2PDEN 0x080 |
| #define EMC_ACT2PDEN 0x084 |
| #define EMC_AR2PDEN 0x088 |
| #define EMC_RW2PDEN 0x08c |
| #define EMC_TXSR 0x090 |
| #define EMC_TCKE 0x094 |
| #define EMC_TFAW 0x098 |
| #define EMC_TRPAB 0x09c |
| #define EMC_TCLKSTABLE 0x0a0 |
| #define EMC_TCLKSTOP 0x0a4 |
| #define EMC_TREFBW 0x0a8 |
| #define EMC_QUSE_EXTRA 0x0ac |
| #define EMC_ODT_WRITE 0x0b0 |
| #define EMC_ODT_READ 0x0b4 |
| #define EMC_MRR 0x0ec |
| #define EMC_FBIO_CFG5 0x104 |
| #define EMC_FBIO_CFG6 0x114 |
| #define EMC_STAT_CONTROL 0x160 |
| #define EMC_STAT_LLMC_CONTROL 0x178 |
| #define EMC_STAT_PWR_CLOCK_LIMIT 0x198 |
| #define EMC_STAT_PWR_CLOCKS 0x19c |
| #define EMC_STAT_PWR_COUNT 0x1a0 |
| #define EMC_AUTO_CAL_INTERVAL 0x2a8 |
| #define EMC_CFG_2 0x2b8 |
| #define EMC_CFG_DIG_DLL 0x2bc |
| #define EMC_DLL_XFORM_DQS 0x2c0 |
| #define EMC_DLL_XFORM_QUSE 0x2c4 |
| #define EMC_ZCAL_REF_CNT 0x2e0 |
| #define EMC_ZCAL_WAIT_CNT 0x2e4 |
| #define EMC_CFG_CLKTRIM_0 0x2d0 |
| #define EMC_CFG_CLKTRIM_1 0x2d4 |
| #define EMC_CFG_CLKTRIM_2 0x2d8 |
| |
| #define EMC_CLKCHANGE_REQ_ENABLE BIT(0) |
| #define EMC_CLKCHANGE_PD_ENABLE BIT(1) |
| #define EMC_CLKCHANGE_SR_ENABLE BIT(2) |
| |
| #define EMC_TIMING_UPDATE BIT(0) |
| |
| #define EMC_REFRESH_OVERFLOW_INT BIT(3) |
| #define EMC_CLKCHANGE_COMPLETE_INT BIT(4) |
| #define EMC_MRR_DIVLD_INT BIT(5) |
| |
| #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0) |
| #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) |
| #define EMC_DBG_FORCE_UPDATE BIT(2) |
| #define EMC_DBG_READ_DQM_CTRL BIT(9) |
| #define EMC_DBG_CFG_PRIORITY BIT(24) |
| |
| #define EMC_FBIO_CFG5_DRAM_WIDTH_X16 BIT(4) |
| #define EMC_FBIO_CFG5_DRAM_TYPE GENMASK(1, 0) |
| |
| #define EMC_MRR_DEV_SELECTN GENMASK(31, 30) |
| #define EMC_MRR_MRR_MA GENMASK(23, 16) |
| #define EMC_MRR_MRR_DATA GENMASK(15, 0) |
| |
| #define EMC_ADR_CFG_0_EMEM_NUMDEV GENMASK(25, 24) |
| |
| #define EMC_PWR_GATHER_CLEAR (1 << 8) |
| #define EMC_PWR_GATHER_DISABLE (2 << 8) |
| #define EMC_PWR_GATHER_ENABLE (3 << 8) |
| |
| enum emc_dram_type { |
| DRAM_TYPE_RESERVED, |
| DRAM_TYPE_DDR1, |
| DRAM_TYPE_LPDDR2, |
| DRAM_TYPE_DDR2, |
| }; |
| |
| static const u16 emc_timing_registers[] = { |
| EMC_RC, |
| EMC_RFC, |
| EMC_RAS, |
| EMC_RP, |
| EMC_R2W, |
| EMC_W2R, |
| EMC_R2P, |
| EMC_W2P, |
| EMC_RD_RCD, |
| EMC_WR_RCD, |
| EMC_RRD, |
| EMC_REXT, |
| EMC_WDV, |
| EMC_QUSE, |
| EMC_QRST, |
| EMC_QSAFE, |
| EMC_RDV, |
| EMC_REFRESH, |
| EMC_BURST_REFRESH_NUM, |
| EMC_PDEX2WR, |
| EMC_PDEX2RD, |
| EMC_PCHG2PDEN, |
| EMC_ACT2PDEN, |
| EMC_AR2PDEN, |
| EMC_RW2PDEN, |
| EMC_TXSR, |
| EMC_TCKE, |
| EMC_TFAW, |
| EMC_TRPAB, |
| EMC_TCLKSTABLE, |
| EMC_TCLKSTOP, |
| EMC_TREFBW, |
| EMC_QUSE_EXTRA, |
| EMC_FBIO_CFG6, |
| EMC_ODT_WRITE, |
| EMC_ODT_READ, |
| EMC_FBIO_CFG5, |
| EMC_CFG_DIG_DLL, |
| EMC_DLL_XFORM_DQS, |
| EMC_DLL_XFORM_QUSE, |
| EMC_ZCAL_REF_CNT, |
| EMC_ZCAL_WAIT_CNT, |
| EMC_AUTO_CAL_INTERVAL, |
| EMC_CFG_CLKTRIM_0, |
| EMC_CFG_CLKTRIM_1, |
| EMC_CFG_CLKTRIM_2, |
| }; |
| |
| struct emc_timing { |
| unsigned long rate; |
| u32 data[ARRAY_SIZE(emc_timing_registers)]; |
| }; |
| |
| enum emc_rate_request_type { |
| EMC_RATE_DEVFREQ, |
| EMC_RATE_DEBUG, |
| EMC_RATE_ICC, |
| EMC_RATE_TYPE_MAX, |
| }; |
| |
| struct emc_rate_request { |
| unsigned long min_rate; |
| unsigned long max_rate; |
| }; |
| |
| struct tegra_emc { |
| struct device *dev; |
| struct tegra_mc *mc; |
| struct icc_provider provider; |
| struct notifier_block clk_nb; |
| struct clk *clk; |
| void __iomem *regs; |
| unsigned int dram_bus_width; |
| |
| struct emc_timing *timings; |
| unsigned int num_timings; |
| |
| struct { |
| struct dentry *root; |
| unsigned long min_rate; |
| unsigned long max_rate; |
| } debugfs; |
| |
| /* |
| * There are multiple sources in the EMC driver which could request |
| * a min/max clock rate, these rates are contained in this array. |
| */ |
| struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX]; |
| |
| /* protect shared rate-change code path */ |
| struct mutex rate_lock; |
| |
| struct devfreq_simple_ondemand_data ondemand_data; |
| |
| /* memory chip identity information */ |
| union lpddr2_basic_config4 basic_conf4; |
| unsigned int manufacturer_id; |
| unsigned int revision_id1; |
| unsigned int revision_id2; |
| |
| bool mrr_error; |
| }; |
| |
| static irqreturn_t tegra_emc_isr(int irq, void *data) |
| { |
| struct tegra_emc *emc = data; |
| u32 intmask = EMC_REFRESH_OVERFLOW_INT; |
| u32 status; |
| |
| status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask; |
| if (!status) |
| return IRQ_NONE; |
| |
| /* notify about HW problem */ |
| if (status & EMC_REFRESH_OVERFLOW_INT) |
| dev_err_ratelimited(emc->dev, |
| "refresh request overflow timeout\n"); |
| |
| /* clear interrupts */ |
| writel_relaxed(status, emc->regs + EMC_INTSTATUS); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc, |
| unsigned long rate) |
| { |
| struct emc_timing *timing = NULL; |
| unsigned int i; |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| if (emc->timings[i].rate >= rate) { |
| timing = &emc->timings[i]; |
| break; |
| } |
| } |
| |
| if (!timing) { |
| dev_err(emc->dev, "no timing for rate %lu\n", rate); |
| return NULL; |
| } |
| |
| return timing; |
| } |
| |
| static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) |
| { |
| struct emc_timing *timing = tegra_emc_find_timing(emc, rate); |
| unsigned int i; |
| |
| if (!timing) |
| return -EINVAL; |
| |
| dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n", |
| __func__, timing->rate, rate); |
| |
| /* program shadow registers */ |
| for (i = 0; i < ARRAY_SIZE(timing->data); i++) |
| writel_relaxed(timing->data[i], |
| emc->regs + emc_timing_registers[i]); |
| |
| /* wait until programming has settled */ |
| readl_relaxed(emc->regs + emc_timing_registers[i - 1]); |
| |
| return 0; |
| } |
| |
| static int emc_complete_timing_change(struct tegra_emc *emc, bool flush) |
| { |
| int err; |
| u32 v; |
| |
| dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush); |
| |
| if (flush) { |
| /* manually initiate memory timing update */ |
| writel_relaxed(EMC_TIMING_UPDATE, |
| emc->regs + EMC_TIMING_CONTROL); |
| return 0; |
| } |
| |
| err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v, |
| v & EMC_CLKCHANGE_COMPLETE_INT, |
| 1, 100); |
| if (err) { |
| dev_err(emc->dev, "emc-car handshake timeout: %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_emc_clk_change_notify(struct notifier_block *nb, |
| unsigned long msg, void *data) |
| { |
| struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb); |
| struct clk_notifier_data *cnd = data; |
| int err; |
| |
| switch (msg) { |
| case PRE_RATE_CHANGE: |
| err = emc_prepare_timing_change(emc, cnd->new_rate); |
| break; |
| |
| case ABORT_RATE_CHANGE: |
| err = emc_prepare_timing_change(emc, cnd->old_rate); |
| if (err) |
| break; |
| |
| err = emc_complete_timing_change(emc, true); |
| break; |
| |
| case POST_RATE_CHANGE: |
| err = emc_complete_timing_change(emc, false); |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| return notifier_from_errno(err); |
| } |
| |
| static int load_one_timing_from_dt(struct tegra_emc *emc, |
| struct emc_timing *timing, |
| struct device_node *node) |
| { |
| u32 rate; |
| int err; |
| |
| if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) { |
| dev_err(emc->dev, "incompatible DT node: %pOF\n", node); |
| return -EINVAL; |
| } |
| |
| err = of_property_read_u32(node, "clock-frequency", &rate); |
| if (err) { |
| dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n", |
| node, err); |
| return err; |
| } |
| |
| err = of_property_read_u32_array(node, "nvidia,emc-registers", |
| timing->data, |
| ARRAY_SIZE(emc_timing_registers)); |
| if (err) { |
| dev_err(emc->dev, |
| "timing %pOF: failed to read emc timing data: %d\n", |
| node, err); |
| return err; |
| } |
| |
| /* |
| * The EMC clock rate is twice the bus rate, and the bus rate is |
| * measured in kHz. |
| */ |
| timing->rate = rate * 2 * 1000; |
| |
| dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n", |
| __func__, node, timing->rate); |
| |
| return 0; |
| } |
| |
| static int cmp_timings(const void *_a, const void *_b) |
| { |
| const struct emc_timing *a = _a; |
| const struct emc_timing *b = _b; |
| |
| if (a->rate < b->rate) |
| return -1; |
| |
| if (a->rate > b->rate) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc, |
| struct device_node *node) |
| { |
| struct device_node *child; |
| struct emc_timing *timing; |
| int child_count; |
| int err; |
| |
| child_count = of_get_child_count(node); |
| if (!child_count) { |
| dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node); |
| return -EINVAL; |
| } |
| |
| emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), |
| GFP_KERNEL); |
| if (!emc->timings) |
| return -ENOMEM; |
| |
| timing = emc->timings; |
| |
| for_each_child_of_node(node, child) { |
| if (of_node_name_eq(child, "lpddr2")) |
| continue; |
| |
| err = load_one_timing_from_dt(emc, timing++, child); |
| if (err) { |
| of_node_put(child); |
| return err; |
| } |
| |
| emc->num_timings++; |
| } |
| |
| sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, |
| NULL); |
| |
| dev_info_once(emc->dev, |
| "got %u timings for RAM code %u (min %luMHz max %luMHz)\n", |
| emc->num_timings, |
| tegra_read_ram_code(), |
| emc->timings[0].rate / 1000000, |
| emc->timings[emc->num_timings - 1].rate / 1000000); |
| |
| return 0; |
| } |
| |
| static struct device_node * |
| tegra_emc_find_node_by_ram_code(struct tegra_emc *emc) |
| { |
| struct device *dev = emc->dev; |
| struct device_node *np; |
| u32 value, ram_code; |
| int err; |
| |
| if (emc->mrr_error) { |
| dev_warn(dev, "memory timings skipped due to MRR error\n"); |
| return NULL; |
| } |
| |
| if (of_get_child_count(dev->of_node) == 0) { |
| dev_info_once(dev, "device-tree doesn't have memory timings\n"); |
| return NULL; |
| } |
| |
| if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code")) |
| return of_node_get(dev->of_node); |
| |
| ram_code = tegra_read_ram_code(); |
| |
| for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np; |
| np = of_find_node_by_name(np, "emc-tables")) { |
| err = of_property_read_u32(np, "nvidia,ram-code", &value); |
| if (err || value != ram_code) { |
| struct device_node *lpddr2_np; |
| bool cfg_mismatches = false; |
| |
| lpddr2_np = of_find_node_by_name(np, "lpddr2"); |
| if (lpddr2_np) { |
| const struct lpddr2_info *info; |
| |
| info = of_lpddr2_get_info(lpddr2_np, dev); |
| if (info) { |
| if (info->manufacturer_id >= 0 && |
| info->manufacturer_id != emc->manufacturer_id) |
| cfg_mismatches = true; |
| |
| if (info->revision_id1 >= 0 && |
| info->revision_id1 != emc->revision_id1) |
| cfg_mismatches = true; |
| |
| if (info->revision_id2 >= 0 && |
| info->revision_id2 != emc->revision_id2) |
| cfg_mismatches = true; |
| |
| if (info->density != emc->basic_conf4.density) |
| cfg_mismatches = true; |
| |
| if (info->io_width != emc->basic_conf4.io_width) |
| cfg_mismatches = true; |
| |
| if (info->arch_type != emc->basic_conf4.arch_type) |
| cfg_mismatches = true; |
| } else { |
| dev_err(dev, "failed to parse %pOF\n", lpddr2_np); |
| cfg_mismatches = true; |
| } |
| |
| of_node_put(lpddr2_np); |
| } else { |
| cfg_mismatches = true; |
| } |
| |
| if (cfg_mismatches) { |
| of_node_put(np); |
| continue; |
| } |
| } |
| |
| return np; |
| } |
| |
| dev_err(dev, "no memory timings for RAM code %u found in device tree\n", |
| ram_code); |
| |
| return NULL; |
| } |
| |
| static int emc_read_lpddr_mode_register(struct tegra_emc *emc, |
| unsigned int emem_dev, |
| unsigned int register_addr, |
| unsigned int *register_data) |
| { |
| u32 memory_dev = emem_dev ? 1 : 2; |
| u32 val, mr_mask = 0xff; |
| int err; |
| |
| /* clear data-valid interrupt status */ |
| writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS); |
| |
| /* issue mode register read request */ |
| val = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev); |
| val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr); |
| |
| writel_relaxed(val, emc->regs + EMC_MRR); |
| |
| /* wait for the LPDDR2 data-valid interrupt */ |
| err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val, |
| val & EMC_MRR_DIVLD_INT, |
| 1, 100); |
| if (err) { |
| dev_err(emc->dev, "mode register %u read failed: %d\n", |
| register_addr, err); |
| emc->mrr_error = true; |
| return err; |
| } |
| |
| /* read out mode register data */ |
| val = readl_relaxed(emc->regs + EMC_MRR); |
| *register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask; |
| |
| return 0; |
| } |
| |
| static void emc_read_lpddr_sdram_info(struct tegra_emc *emc, |
| unsigned int emem_dev, |
| bool print_out) |
| { |
| /* these registers are standard for all LPDDR JEDEC memory chips */ |
| emc_read_lpddr_mode_register(emc, emem_dev, 5, &emc->manufacturer_id); |
| emc_read_lpddr_mode_register(emc, emem_dev, 6, &emc->revision_id1); |
| emc_read_lpddr_mode_register(emc, emem_dev, 7, &emc->revision_id2); |
| emc_read_lpddr_mode_register(emc, emem_dev, 8, &emc->basic_conf4.value); |
| |
| if (!print_out) |
| return; |
| |
| dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n", |
| emem_dev, emc->manufacturer_id, |
| lpddr2_jedec_manufacturer(emc->manufacturer_id), |
| emc->revision_id1, emc->revision_id2, |
| 4 >> emc->basic_conf4.arch_type, |
| 64 << emc->basic_conf4.density, |
| 32 >> emc->basic_conf4.io_width); |
| } |
| |
| static int emc_setup_hw(struct tegra_emc *emc) |
| { |
| u32 emc_cfg, emc_dbg, emc_fbio, emc_adr_cfg; |
| u32 intmask = EMC_REFRESH_OVERFLOW_INT; |
| static bool print_sdram_info_once; |
| enum emc_dram_type dram_type; |
| const char *dram_type_str; |
| unsigned int emem_numdev; |
| |
| emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2); |
| |
| /* |
| * Depending on a memory type, DRAM should enter either self-refresh |
| * or power-down state on EMC clock change. |
| */ |
| if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) && |
| !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) { |
| dev_err(emc->dev, |
| "bootloader didn't specify DRAM auto-suspend mode\n"); |
| return -EINVAL; |
| } |
| |
| /* enable EMC and CAR to handshake on PLL divider/source changes */ |
| emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE; |
| writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2); |
| |
| /* initialize interrupt */ |
| writel_relaxed(intmask, emc->regs + EMC_INTMASK); |
| writel_relaxed(intmask, emc->regs + EMC_INTSTATUS); |
| |
| /* ensure that unwanted debug features are disabled */ |
| emc_dbg = readl_relaxed(emc->regs + EMC_DBG); |
| emc_dbg |= EMC_DBG_CFG_PRIORITY; |
| emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY; |
| emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE; |
| emc_dbg &= ~EMC_DBG_FORCE_UPDATE; |
| writel_relaxed(emc_dbg, emc->regs + EMC_DBG); |
| |
| emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5); |
| |
| if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16) |
| emc->dram_bus_width = 16; |
| else |
| emc->dram_bus_width = 32; |
| |
| dram_type = FIELD_GET(EMC_FBIO_CFG5_DRAM_TYPE, emc_fbio); |
| |
| switch (dram_type) { |
| case DRAM_TYPE_RESERVED: |
| dram_type_str = "INVALID"; |
| break; |
| case DRAM_TYPE_DDR1: |
| dram_type_str = "DDR1"; |
| break; |
| case DRAM_TYPE_LPDDR2: |
| dram_type_str = "LPDDR2"; |
| break; |
| case DRAM_TYPE_DDR2: |
| dram_type_str = "DDR2"; |
| break; |
| } |
| |
| emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG_0); |
| emem_numdev = FIELD_GET(EMC_ADR_CFG_0_EMEM_NUMDEV, emc_adr_cfg) + 1; |
| |
| dev_info_once(emc->dev, "%ubit DRAM bus, %u %s %s attached\n", |
| emc->dram_bus_width, emem_numdev, dram_type_str, |
| emem_numdev == 2 ? "devices" : "device"); |
| |
| if (dram_type == DRAM_TYPE_LPDDR2) { |
| while (emem_numdev--) |
| emc_read_lpddr_sdram_info(emc, emem_numdev, |
| !print_sdram_info_once); |
| print_sdram_info_once = true; |
| } |
| |
| return 0; |
| } |
| |
| static long emc_round_rate(unsigned long rate, |
| unsigned long min_rate, |
| unsigned long max_rate, |
| void *arg) |
| { |
| struct emc_timing *timing = NULL; |
| struct tegra_emc *emc = arg; |
| unsigned int i; |
| |
| if (!emc->num_timings) |
| return clk_get_rate(emc->clk); |
| |
| min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate); |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| if (emc->timings[i].rate < rate && i != emc->num_timings - 1) |
| continue; |
| |
| if (emc->timings[i].rate > max_rate) { |
| i = max(i, 1u) - 1; |
| |
| if (emc->timings[i].rate < min_rate) |
| break; |
| } |
| |
| if (emc->timings[i].rate < min_rate) |
| continue; |
| |
| timing = &emc->timings[i]; |
| break; |
| } |
| |
| if (!timing) { |
| dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n", |
| rate, min_rate, max_rate); |
| return -EINVAL; |
| } |
| |
| return timing->rate; |
| } |
| |
| static void tegra_emc_rate_requests_init(struct tegra_emc *emc) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < EMC_RATE_TYPE_MAX; i++) { |
| emc->requested_rate[i].min_rate = 0; |
| emc->requested_rate[i].max_rate = ULONG_MAX; |
| } |
| } |
| |
| static int emc_request_rate(struct tegra_emc *emc, |
| unsigned long new_min_rate, |
| unsigned long new_max_rate, |
| enum emc_rate_request_type type) |
| { |
| struct emc_rate_request *req = emc->requested_rate; |
| unsigned long min_rate = 0, max_rate = ULONG_MAX; |
| unsigned int i; |
| int err; |
| |
| /* select minimum and maximum rates among the requested rates */ |
| for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) { |
| if (i == type) { |
| min_rate = max(new_min_rate, min_rate); |
| max_rate = min(new_max_rate, max_rate); |
| } else { |
| min_rate = max(req->min_rate, min_rate); |
| max_rate = min(req->max_rate, max_rate); |
| } |
| } |
| |
| if (min_rate > max_rate) { |
| dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n", |
| __func__, type, min_rate, max_rate); |
| return -ERANGE; |
| } |
| |
| /* |
| * EMC rate-changes should go via OPP API because it manages voltage |
| * changes. |
| */ |
| err = dev_pm_opp_set_rate(emc->dev, min_rate); |
| if (err) |
| return err; |
| |
| emc->requested_rate[type].min_rate = new_min_rate; |
| emc->requested_rate[type].max_rate = new_max_rate; |
| |
| return 0; |
| } |
| |
| static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate, |
| enum emc_rate_request_type type) |
| { |
| struct emc_rate_request *req = &emc->requested_rate[type]; |
| int ret; |
| |
| mutex_lock(&emc->rate_lock); |
| ret = emc_request_rate(emc, rate, req->max_rate, type); |
| mutex_unlock(&emc->rate_lock); |
| |
| return ret; |
| } |
| |
| static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate, |
| enum emc_rate_request_type type) |
| { |
| struct emc_rate_request *req = &emc->requested_rate[type]; |
| int ret; |
| |
| mutex_lock(&emc->rate_lock); |
| ret = emc_request_rate(emc, req->min_rate, rate, type); |
| mutex_unlock(&emc->rate_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * debugfs interface |
| * |
| * The memory controller driver exposes some files in debugfs that can be used |
| * to control the EMC frequency. The top-level directory can be found here: |
| * |
| * /sys/kernel/debug/emc |
| * |
| * It contains the following files: |
| * |
| * - available_rates: This file contains a list of valid, space-separated |
| * EMC frequencies. |
| * |
| * - min_rate: Writing a value to this file sets the given frequency as the |
| * floor of the permitted range. If this is higher than the currently |
| * configured EMC frequency, this will cause the frequency to be |
| * increased so that it stays within the valid range. |
| * |
| * - max_rate: Similarily to the min_rate file, writing a value to this file |
| * sets the given frequency as the ceiling of the permitted range. If |
| * the value is lower than the currently configured EMC frequency, this |
| * will cause the frequency to be decreased so that it stays within the |
| * valid range. |
| */ |
| |
| static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < emc->num_timings; i++) |
| if (rate == emc->timings[i].rate) |
| return true; |
| |
| return false; |
| } |
| |
| static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data) |
| { |
| struct tegra_emc *emc = s->private; |
| const char *prefix = ""; |
| unsigned int i; |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| seq_printf(s, "%s%lu", prefix, emc->timings[i].rate); |
| prefix = " "; |
| } |
| |
| seq_puts(s, "\n"); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates); |
| |
| static int tegra_emc_debug_min_rate_get(void *data, u64 *rate) |
| { |
| struct tegra_emc *emc = data; |
| |
| *rate = emc->debugfs.min_rate; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_debug_min_rate_set(void *data, u64 rate) |
| { |
| struct tegra_emc *emc = data; |
| int err; |
| |
| if (!tegra_emc_validate_rate(emc, rate)) |
| return -EINVAL; |
| |
| err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG); |
| if (err < 0) |
| return err; |
| |
| emc->debugfs.min_rate = rate; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops, |
| tegra_emc_debug_min_rate_get, |
| tegra_emc_debug_min_rate_set, "%llu\n"); |
| |
| static int tegra_emc_debug_max_rate_get(void *data, u64 *rate) |
| { |
| struct tegra_emc *emc = data; |
| |
| *rate = emc->debugfs.max_rate; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_debug_max_rate_set(void *data, u64 rate) |
| { |
| struct tegra_emc *emc = data; |
| int err; |
| |
| if (!tegra_emc_validate_rate(emc, rate)) |
| return -EINVAL; |
| |
| err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG); |
| if (err < 0) |
| return err; |
| |
| emc->debugfs.max_rate = rate; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops, |
| tegra_emc_debug_max_rate_get, |
| tegra_emc_debug_max_rate_set, "%llu\n"); |
| |
| static void tegra_emc_debugfs_init(struct tegra_emc *emc) |
| { |
| struct device *dev = emc->dev; |
| unsigned int i; |
| int err; |
| |
| emc->debugfs.min_rate = ULONG_MAX; |
| emc->debugfs.max_rate = 0; |
| |
| for (i = 0; i < emc->num_timings; i++) { |
| if (emc->timings[i].rate < emc->debugfs.min_rate) |
| emc->debugfs.min_rate = emc->timings[i].rate; |
| |
| if (emc->timings[i].rate > emc->debugfs.max_rate) |
| emc->debugfs.max_rate = emc->timings[i].rate; |
| } |
| |
| if (!emc->num_timings) { |
| emc->debugfs.min_rate = clk_get_rate(emc->clk); |
| emc->debugfs.max_rate = emc->debugfs.min_rate; |
| } |
| |
| err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, |
| emc->debugfs.max_rate); |
| if (err < 0) { |
| dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", |
| emc->debugfs.min_rate, emc->debugfs.max_rate, |
| emc->clk); |
| } |
| |
| emc->debugfs.root = debugfs_create_dir("emc", NULL); |
| |
| debugfs_create_file("available_rates", 0444, emc->debugfs.root, |
| emc, &tegra_emc_debug_available_rates_fops); |
| debugfs_create_file("min_rate", 0644, emc->debugfs.root, |
| emc, &tegra_emc_debug_min_rate_fops); |
| debugfs_create_file("max_rate", 0644, emc->debugfs.root, |
| emc, &tegra_emc_debug_max_rate_fops); |
| } |
| |
| static inline struct tegra_emc * |
| to_tegra_emc_provider(struct icc_provider *provider) |
| { |
| return container_of(provider, struct tegra_emc, provider); |
| } |
| |
| static struct icc_node_data * |
| emc_of_icc_xlate_extended(const struct of_phandle_args *spec, void *data) |
| { |
| struct icc_provider *provider = data; |
| struct icc_node_data *ndata; |
| struct icc_node *node; |
| |
| /* External Memory is the only possible ICC route */ |
| list_for_each_entry(node, &provider->nodes, node_list) { |
| if (node->id != TEGRA_ICC_EMEM) |
| continue; |
| |
| ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); |
| if (!ndata) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * SRC and DST nodes should have matching TAG in order to have |
| * it set by default for a requested path. |
| */ |
| ndata->tag = TEGRA_MC_ICC_TAG_ISO; |
| ndata->node = node; |
| |
| return ndata; |
| } |
| |
| return ERR_PTR(-EPROBE_DEFER); |
| } |
| |
| static int emc_icc_set(struct icc_node *src, struct icc_node *dst) |
| { |
| struct tegra_emc *emc = to_tegra_emc_provider(dst->provider); |
| unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw); |
| unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw); |
| unsigned long long rate = max(avg_bw, peak_bw); |
| unsigned int dram_data_bus_width_bytes; |
| int err; |
| |
| /* |
| * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data |
| * is sampled on both clock edges. This means that EMC clock rate |
| * equals to the peak data-rate. |
| */ |
| dram_data_bus_width_bytes = emc->dram_bus_width / 8; |
| do_div(rate, dram_data_bus_width_bytes); |
| rate = min_t(u64, rate, U32_MAX); |
| |
| err = emc_set_min_rate(emc, rate, EMC_RATE_ICC); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_interconnect_init(struct tegra_emc *emc) |
| { |
| const struct tegra_mc_soc *soc; |
| struct icc_node *node; |
| int err; |
| |
| emc->mc = devm_tegra_memory_controller_get(emc->dev); |
| if (IS_ERR(emc->mc)) |
| return PTR_ERR(emc->mc); |
| |
| soc = emc->mc->soc; |
| |
| emc->provider.dev = emc->dev; |
| emc->provider.set = emc_icc_set; |
| emc->provider.data = &emc->provider; |
| emc->provider.aggregate = soc->icc_ops->aggregate; |
| emc->provider.xlate_extended = emc_of_icc_xlate_extended; |
| |
| icc_provider_init(&emc->provider); |
| |
| /* create External Memory Controller node */ |
| node = icc_node_create(TEGRA_ICC_EMC); |
| if (IS_ERR(node)) { |
| err = PTR_ERR(node); |
| goto err_msg; |
| } |
| |
| node->name = "External Memory Controller"; |
| icc_node_add(node, &emc->provider); |
| |
| /* link External Memory Controller to External Memory (DRAM) */ |
| err = icc_link_create(node, TEGRA_ICC_EMEM); |
| if (err) |
| goto remove_nodes; |
| |
| /* create External Memory node */ |
| node = icc_node_create(TEGRA_ICC_EMEM); |
| if (IS_ERR(node)) { |
| err = PTR_ERR(node); |
| goto remove_nodes; |
| } |
| |
| node->name = "External Memory (DRAM)"; |
| icc_node_add(node, &emc->provider); |
| |
| err = icc_provider_register(&emc->provider); |
| if (err) |
| goto remove_nodes; |
| |
| return 0; |
| |
| remove_nodes: |
| icc_nodes_remove(&emc->provider); |
| err_msg: |
| dev_err(emc->dev, "failed to initialize ICC: %d\n", err); |
| |
| return err; |
| } |
| |
| static void devm_tegra_emc_unset_callback(void *data) |
| { |
| tegra20_clk_set_emc_round_callback(NULL, NULL); |
| } |
| |
| static void devm_tegra_emc_unreg_clk_notifier(void *data) |
| { |
| struct tegra_emc *emc = data; |
| |
| clk_notifier_unregister(emc->clk, &emc->clk_nb); |
| } |
| |
| static int tegra_emc_init_clk(struct tegra_emc *emc) |
| { |
| int err; |
| |
| tegra20_clk_set_emc_round_callback(emc_round_rate, emc); |
| |
| err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback, |
| NULL); |
| if (err) |
| return err; |
| |
| emc->clk = devm_clk_get(emc->dev, NULL); |
| if (IS_ERR(emc->clk)) { |
| dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk); |
| return PTR_ERR(emc->clk); |
| } |
| |
| err = clk_notifier_register(emc->clk, &emc->clk_nb); |
| if (err) { |
| dev_err(emc->dev, "failed to register clk notifier: %d\n", err); |
| return err; |
| } |
| |
| err = devm_add_action_or_reset(emc->dev, |
| devm_tegra_emc_unreg_clk_notifier, emc); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq, |
| u32 flags) |
| { |
| struct tegra_emc *emc = dev_get_drvdata(dev); |
| struct dev_pm_opp *opp; |
| unsigned long rate; |
| |
| opp = devfreq_recommended_opp(dev, freq, flags); |
| if (IS_ERR(opp)) { |
| dev_err(dev, "failed to find opp for %lu Hz\n", *freq); |
| return PTR_ERR(opp); |
| } |
| |
| rate = dev_pm_opp_get_freq(opp); |
| dev_pm_opp_put(opp); |
| |
| return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ); |
| } |
| |
| static int tegra_emc_devfreq_get_dev_status(struct device *dev, |
| struct devfreq_dev_status *stat) |
| { |
| struct tegra_emc *emc = dev_get_drvdata(dev); |
| |
| /* freeze counters */ |
| writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL); |
| |
| /* |
| * busy_time: number of clocks EMC request was accepted |
| * total_time: number of clocks PWR_GATHER control was set to ENABLE |
| */ |
| stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT); |
| stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS); |
| stat->current_frequency = clk_get_rate(emc->clk); |
| |
| /* clear counters and restart */ |
| writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL); |
| writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL); |
| |
| return 0; |
| } |
| |
| static struct devfreq_dev_profile tegra_emc_devfreq_profile = { |
| .polling_ms = 30, |
| .target = tegra_emc_devfreq_target, |
| .get_dev_status = tegra_emc_devfreq_get_dev_status, |
| }; |
| |
| static int tegra_emc_devfreq_init(struct tegra_emc *emc) |
| { |
| struct devfreq *devfreq; |
| |
| /* |
| * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold |
| * should be less than 50. Secondly, multiple active memory clients |
| * may cause over 20% of lost clock cycles due to stalls caused by |
| * competing memory accesses. This means that threshold should be |
| * set to a less than 30 in order to have a properly working governor. |
| */ |
| emc->ondemand_data.upthreshold = 20; |
| |
| /* |
| * Reset statistic gathers state, select global bandwidth for the |
| * statistics collection mode and set clocks counter saturation |
| * limit to maximum. |
| */ |
| writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL); |
| writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL); |
| writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT); |
| |
| devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile, |
| DEVFREQ_GOV_SIMPLE_ONDEMAND, |
| &emc->ondemand_data); |
| if (IS_ERR(devfreq)) { |
| dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq); |
| return PTR_ERR(devfreq); |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_emc_probe(struct platform_device *pdev) |
| { |
| struct tegra_core_opp_params opp_params = {}; |
| struct device_node *np; |
| struct tegra_emc *emc; |
| int irq, err; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "please update your device tree\n"); |
| return irq; |
| } |
| |
| emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); |
| if (!emc) |
| return -ENOMEM; |
| |
| mutex_init(&emc->rate_lock); |
| emc->clk_nb.notifier_call = tegra_emc_clk_change_notify; |
| emc->dev = &pdev->dev; |
| |
| emc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(emc->regs)) |
| return PTR_ERR(emc->regs); |
| |
| err = emc_setup_hw(emc); |
| if (err) |
| return err; |
| |
| np = tegra_emc_find_node_by_ram_code(emc); |
| if (np) { |
| err = tegra_emc_load_timings_from_dt(emc, np); |
| of_node_put(np); |
| if (err) |
| return err; |
| } |
| |
| err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0, |
| dev_name(&pdev->dev), emc); |
| if (err) { |
| dev_err(&pdev->dev, "failed to request IRQ: %d\n", err); |
| return err; |
| } |
| |
| err = tegra_emc_init_clk(emc); |
| if (err) |
| return err; |
| |
| opp_params.init_state = true; |
| |
| err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params); |
| if (err) |
| return err; |
| |
| platform_set_drvdata(pdev, emc); |
| tegra_emc_rate_requests_init(emc); |
| tegra_emc_debugfs_init(emc); |
| tegra_emc_interconnect_init(emc); |
| tegra_emc_devfreq_init(emc); |
| |
| /* |
| * Don't allow the kernel module to be unloaded. Unloading adds some |
| * extra complexity which doesn't really worth the effort in a case of |
| * this driver. |
| */ |
| try_module_get(THIS_MODULE); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id tegra_emc_of_match[] = { |
| { .compatible = "nvidia,tegra20-emc", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, tegra_emc_of_match); |
| |
| static struct platform_driver tegra_emc_driver = { |
| .probe = tegra_emc_probe, |
| .driver = { |
| .name = "tegra20-emc", |
| .of_match_table = tegra_emc_of_match, |
| .suppress_bind_attrs = true, |
| .sync_state = icc_sync_state, |
| }, |
| }; |
| module_platform_driver(tegra_emc_driver); |
| |
| MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>"); |
| MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver"); |
| MODULE_SOFTDEP("pre: governor_simpleondemand"); |
| MODULE_LICENSE("GPL v2"); |